1
|
Preinfalk V, Kimmeswenger I, Somoza V, Lieder B. Dipeptidyl-peptidase 4 (DPP4) mediates fatty acid uptake inhibition by glucose via TAS1R3 and GLUT-2 in Caco-2 enterocytes. Heliyon 2024; 10:e30329. [PMID: 38707340 PMCID: PMC11066672 DOI: 10.1016/j.heliyon.2024.e30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Both high glucose intake with a high-fat meal and inhibition of dipeptidyl peptidase-4 (DPP4) have been associated with plasma lipid-lowering effects, but mechanistic understanding linking glucose and fat absorption is lacking. We here hypothesized that glucose ameliorates intestinal fatty acid uptake via a pathway involving DPP4. A concentration of 50 mM glucose reduced mean DPP4 activity in differentiated Caco-2 enterocytes by 42.5 % and fatty acid uptake by 66.0 % via nutrient sensing by the sweet taste receptor subunit TAS1R3 and glucose transporter GLUT-2. No effect of the DPP4 substrates GLP-1 and GIP or of the cellular energy status on the reduced uptake of fatty acids was seen, but a direct interaction between DPP4 and fatty acid transporters is suggested. Conclusively we identified DPP4 as a regulator of fatty acid absorption in Caco-2 enterocytes that mediates the inhibition of intestinal fatty acid uptake by glucose via an interplay of GLUT-2 and TAS1R3.
Collapse
Affiliation(s)
- Verena Preinfalk
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Isabella Kimmeswenger
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, Department of Human Nutrition and Dietetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Datta R, Gholampour MA, Yang CD, Volk R, Lin S, Podolsky MJ, Arnold T, Rieder F, Zaro BW, Verzi M, Lehner R, Abumrad N, Lizama CO, Atabai K. MFGE8 links absorption of dietary fatty acids with catabolism of enterocyte lipid stores through HNF4γ-dependent transcription of CES enzymes. Cell Rep 2023; 42:112249. [PMID: 36924494 PMCID: PMC10138282 DOI: 10.1016/j.celrep.2023.112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/21/2022] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Enterocytes modulate the extent of postprandial lipemia by storing dietary fats in cytoplasmic lipid droplets (cLDs). We have previously shown that the integrin ligand MFGE8 links absorption of dietary fats with activation of triglyceride (TG) hydrolases that catabolize cLDs for chylomicron production. Here, we identify CES1D as the key hydrolase downstream of the MFGE8-αvβ5 integrin pathway that regulates catabolism of diet-derived cLDs. Mfge8 knockout (KO) enterocytes have reduced CES1D transcript and protein levels and reduced protein levels of the transcription factor HNF4γ. Both Ces1d and Hnf4γ KO mice have decreased enterocyte TG hydrolase activity coupled with retention of TG in cLDs. Mechanistically, MFGE8-dependent fatty acid uptake through CD36 stabilizes HNF4γ protein level; HNF4γ then increases Ces1d transcription. Our work identifies a regulatory network that regulates the severity of postprandial lipemia by linking dietary fat absorption with protein stabilization of a transcription factor that increases expression of hydrolases responsible for catabolizing diet-derived cLDs.
Collapse
Affiliation(s)
- Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohammad A Gholampour
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Regan Volk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sinan Lin
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Balyn W Zaro
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Richard Lehner
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Nada Abumrad
- Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Korbelius M, Vujic N, Sachdev V, Obrowsky S, Rainer S, Gottschalk B, Graier WF, Kratky D. ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes. Cell Rep 2020; 28:1923-1934.e4. [PMID: 31412256 PMCID: PMC6713565 DOI: 10.1016/j.celrep.2019.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis. Massive intestinal cLD accumulation in iDKO mice independent of dietary lipids together with inefficient lipid incorporation into cLDs in the early absorption phase demonstrate the existence of a secretion/re-uptake cycle, corroborating the availability of two diverse cLD pools. This study identified ATGL/CGI-58 as critical players in the catabolism of basolaterally (blood) derived lipids and highlights the necessity to modify the current model of intestinal lipid metabolism.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Sascha Obrowsky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria.
| |
Collapse
|
5
|
Co JY, Margalef-Català M, Li X, Mah AT, Kuo CJ, Monack DM, Amieva MR. Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions. Cell Rep 2020; 26:2509-2520.e4. [PMID: 30811997 PMCID: PMC6391775 DOI: 10.1016/j.celrep.2019.01.108] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/20/2023] Open
Abstract
Human enteroids-epithelial spheroids derived from primary gastrointestinal tissue-are a promising model to study pathogen-epithelial interactions. However, accessing the apical enteroid surface is challenging because it is enclosed within the spheroid. We developed a technique to reverse enteroid polarity such that the apical surface everts to face the media. Apical-out enteroids maintain proper polarity and barrier function, differentiate into the major intestinal epithelial cell (IEC) types, and exhibit polarized absorption of nutrients. We used this model to study host-pathogen interactions and identified distinct polarity-specific patterns of infection by invasive enteropathogens. Salmonella enterica serovar Typhimurium targets IEC apical surfaces for invasion via cytoskeletal rearrangements, and Listeria monocytogenes, which binds to basolateral receptors, invade apical surfaces at sites of cell extrusion. Despite different modes of entry, both pathogens exit the epithelium within apically extruding enteroid cells. This model will enable further examination of IECs in health and disease.
Collapse
Affiliation(s)
- Julia Y Co
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Mar Margalef-Català
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Xingnan Li
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Manuel R Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Drennen C, Gorse E, Stratford RE. Cellular Pharmacokinetic Model-Based Analysis of Genistein, Glyceollin, and MK-571 Effects on 5 (and 6)-Carboxy-2',7'-Dichloroflourescein Disposition in Caco-2 Cells. J Pharm Sci 2018; 107:1194-1203. [PMID: 29247742 PMCID: PMC5856607 DOI: 10.1016/j.xphs.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
Pharmacokinetic modeling was used to describe 5 (and 6)-carboxy-2',7'-dichloroflourescein (CDF) disposition in Caco-2 cells following CDF or CDFDA (CDF diacetate) dosing. CDF transcellular flux was modeled by simple passive diffusion. CDFDA dosing models were based on simultaneous fitting of CDF levels in apical, basolateral, and intracellular compartments. Predicted CDF efflux was 50% higher across the apical versus the basolateral membrane. This difference was similar following apical and basolateral CDFDA dosing, despite intracellular levels being 3-fold higher following basolateral dosing, thus supporting nonsaturable CDF efflux kinetics. A 3-compartment catenary model with intracellular CDFDA hydrolysis described CDF disposition. This model predicted that apical CDF efflux was not altered in the presence of MK-571, and that basolateral membrane clearance was enhanced to account for reduced intracellular CDF in the presence of this multidrug resistance-associated protein (MRP) inhibitor. Similar effects were predicted for glyceollin, while genistein exposure had no predicted effects on CDF efflux. These modulator effects are discussed in the context of model predicted intracellular CDF concentrations relative to reports of CDF affinity (measured by Km) for MRP2 and MRP3. This model-based analysis confirms the complexity of efflux kinetics and suggests that other transporters may have contributed to CDF efflux.
Collapse
Affiliation(s)
- Callie Drennen
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Erin Gorse
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Robert E Stratford
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
7
|
Dasilva G, Boller M, Medina I, Storch J. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. J Nutr Biochem 2017; 55:68-75. [PMID: 29413491 DOI: 10.1016/j.jnutbio.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Abstract
Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782, Spain.
| | - Matthew Boller
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Wood SM, Gill AJ, Brodsky AS, Lu S, Friedman K, Karashchuk G, Lombardo K, Yang D, Resnick MB. Fatty acid-binding protein 1 is preferentially lost in microsatellite instable colorectal carcinomas and is immune modulated via the interferon γ pathway. Mod Pathol 2017; 30:123-133. [PMID: 27687006 PMCID: PMC5218856 DOI: 10.1038/modpathol.2016.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Fatty acid-binding protein 1 (FABP1) is an intracellular protein responsible for the transportation of long chain fatty acids. Aside from its functions in lipid metabolism and cellular differentiation, FABP1 also plays a role in inflammation through its interaction with peroxisome proliferator-activated receptors (PPARs). Previously, we compared expression of colonic epithelium genes in a subset of microsatellite instable (MSI) colorectal carcinomas (medullary carcinomas) to normal colonic mucosa and found that FABP1 expression was markedly decreased in the tumors. Further analysis of RNA expression in the colorectal subtypes and The Cancer Genome Atlas data set found that FABP1 expression is decreased in the CMS1 subset of colorectal carcinomas, which is characterized by microsatellite instability. As MSI colorectal carcinomas are known for their robust immune response, we then aimed to link FABP1 to the immune microenvironment of MSI carcinomas. To confirm the gene expression results, we performed immunohistochemical analysis of a cohort of colorectal carcinomas. FABP1 was preferentially lost in MSI carcinomas (123/133, 93%) compared with microsatellite stable carcinomas (240/562, 43%, P<0.0001). In addition, higher numbers of tumor-infiltrating lymphocytes were present in tumors with loss of FABP1 (P<0.0001). Decreased expression of the fatty acid storage and glucose regulator, PPARγ, was associated with the loss of FABP1 (P<0.0001). Colorectal cancer cell lines treated with interferon γ exhibited decreased expression of FABP1. FABP1 expression was partially recovered with the treatment of the cell lines with rosiglitazone, a PPARγ agonist. This study demonstrated that the loss of FABP1 expression is associated with MSI carcinomas and that interferon γ stimulation plays a role in this process via its interaction with PPARγ.
Collapse
Affiliation(s)
- Stephanie M Wood
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Sydney NSW 2006 Australia
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kenneth Friedman
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kara Lombardo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Yin F, Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides. PLoS One 2016; 11:e0160751. [PMID: 27508934 PMCID: PMC4979964 DOI: 10.1371/journal.pone.0160751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND & AIMS Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. METHODOLOGY/PRINCIPAL FINDINGS Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis indicated that dietary BG intervention induced 79 and 205 characterized DEGs in the jejunum and liver, respectively. In addition, 255 and 165 TSEGs were detected in the liver and jejunum of BG-fed group, while 162 and 211 TSEGs genes were observed in the liver and jejunum of BD-fed birds, respectively. Bioinformatic analysis with both IPA and DAVID-BR further revealed a significant enrichment of DEGs and TSEGs in the biological processes for reducing the synthesis, storage, transportation and secretion of lipids in the jejunum, while those in the liver were for enhancing the oxidation of ingested lipids and fatty acids. In particular, transcriptional regulators of THRSP and EGR-1 as well as several DEGs involved in the PPAR-α signaling pathway were significantly induced by dietary BG intervention for lipid catabolism. CONCLUSIONS Our results demonstrate that BG reduces body fat deposition via regulation of gene expression, which is involved in the biological events relating to the reduction of synthesis, storage, transportation and secretion, and improvement of oxidation of lipids and fatty acids.
Collapse
Affiliation(s)
- Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xuejiang Shi
- Next Generation Sequencing Platforms, Clinical Genomics Centre, the UHN/MSH Gene Profiling Facility, Toronto, Ontario, Canada
| | - Xiaojian Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Steve Leeson
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Mansbach CM, Siddiqi S. Control of chylomicron export from the intestine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G659-68. [PMID: 26950854 DOI: 10.1152/ajpgi.00228.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/22/2016] [Indexed: 01/31/2023]
Abstract
The control of chylomicron output by the intestine is a complex process whose outlines have only recently come into focus. In this review we will cover aspects of chylomicron formation and prechylomicron vesicle generation that elucidate potential control points. Substrate (dietary fatty acids and monoacylglycerols) availability is directly related to the output rate of chylomicrons. These substrates must be converted to triacylglycerol before packaging in prechylomicrons by a series of endoplasmic reticulum (ER)-localized acylating enzymes that rapidly convert fatty acids and monoacylglycerols to triacylglycerol. The packaging of the prechylomicron with triacylglycerol is controlled by the microsomal triglyceride transport protein, another potential limiting step. The prechylomicrons, once loaded with triacylglycerol, are ready to be incorporated into the prechylomicron transport vesicle that transports the prechylomicron from the ER to the Golgi. Control of this exit step from the ER, the rate-limiting step in the transcellular movement of the triacylglycerol, is a multistep process involving the activation of PKCζ, the phosphorylation of Sar1b, releasing the liver fatty acid binding protein from a heteroquatromeric complex, which enables it to bind to the ER and organize the prechylomicron transport vesicle budding complex. We propose that control of PKCζ activation is the major physiological regulator of chylomicron output.
Collapse
Affiliation(s)
- Charles M Mansbach
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Shahzad Siddiqi
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| |
Collapse
|
12
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Siddiqi S, Mansbach CM. Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine. J Lipid Res 2015; 56:859-70. [PMID: 25713101 DOI: 10.1194/jlr.m056051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chylomicron output by the intestine is proportional to intestinal phosphatidylcholine (PC) delivery. Using five different variations of PC delivery to the intestine, we found that lyso-phosphatidylcholine (lyso-PC), the absorbed form of PC, concentrations in the cytosol (0 to 0.45 nM) were proportional to the input rate. The activity of protein kinase C (PKC)ζ, which controls prechylomicron output rate by the endoplasmic reticulum (ER), correlated with the lyso-PC concentration suggesting that it may be a PKCζ activator. Using recombinant PKCζ, the Km for lyso-PC activation was 1.49 nM and the Vmax 1.12 nM, more than the maximal lyso-PC concentration in cytosol, 0.45 nM. Among the phospholipids and their lyso derivatives, lyso-PC was the most potent activator of PKCζ and the only one whose cytosolic concentration suggested that it could be a physiological activator because other phospholipid concentrations were negligible. PKCζ was on the surface of the dietary fatty acid transport vesicle, the caveolin-1-containing endocytic vesicle. Once activated, PKCζ, eluted off the vesicle. A conformational change in PKCζ on activation was suggested by limited proteolysis. We conclude that PKCζ on activation changes its conformation resulting in elution from its vesicle. The downstream effect of dietary PC is to activate PKCζ, resulting in greater chylomicron output by the ER.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN
| | - Charles M Mansbach
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN Veterans Affairs Medical Center, Memphis, TN
| |
Collapse
|
14
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1404] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
15
|
Rohm B, Riedel A, Ley JP, Widder S, Krammer GE, Somoza V. Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells. Food Funct 2014; 6:173-85. [PMID: 25422952 DOI: 10.1039/c4fo00435c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red pepper and its major pungent component, capsaicin, have been associated with hypolipidemic effects in rats, although mechanistic studies on the effects of capsaicin and/or structurally related compounds on lipid metabolism are scarce. In this work, the effects of capsaicin and its structural analog nonivamide, the aliphatic alkamide trans-pellitorine and vanillin as the basic structural element of all vanilloids on the mechanisms of intestinal fatty acid uptake in differentiated intestinal Caco-2 cells were studied. Capsaicin and nonivamide were found to reduce fatty acid uptake, with IC₅₀ values of 0.49 μM and 1.08 μM, respectively. trans-Pellitorine was shown to reduce fatty acid uptake by 14.0±2.14% at 100 μM, whereas vanillin was not effective, indicating a pivotal role of the alkyl chain with the acid amide group in fatty acid uptake by Caco-2 cells. This effect was associated neither with the activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or the epithelial sodium channel (ENaC) nor with effects on paracellular transport or glucose uptake. However, acetyl-coenzyme A synthetase activity increased (p<0.05) in the presence of 10 μM capsaicin, nonivamide or trans-pellitorine, pointing to an increased fatty acid biosynthesis that might counteract the decreased fatty acid uptake.
Collapse
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
16
|
Effects of eicosapentaenoic acid and docosahexaenoic acid on chylomicron and VLDL synthesis and secretion in Caco-2 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:684325. [PMID: 24987699 PMCID: PMC4058467 DOI: 10.1155/2014/684325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 μM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA (P < 0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P > 0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P < 0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P < 0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P < 0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB.
Collapse
|
17
|
Grandvuinet AS, Gustavsson L, Steffansen B. New Insights into the Carrier-Mediated Transport of Estrone-3-sulfate in the Caco-2 Cell Model. Mol Pharm 2013; 10:3285-95. [DOI: 10.1021/mp300618a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anne Sophie Grandvuinet
- Department of Pharmacy, Faculty
of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lena Gustavsson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital,
Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden
| | - Bente Steffansen
- Department of Pharmacy, Faculty
of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Maestre R, Douglass JD, Kodukula S, Medina I, Storch J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J Nutr 2013; 143:295-301. [PMID: 23325921 PMCID: PMC3713019 DOI: 10.3945/jn.112.160101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.
Collapse
Affiliation(s)
- Rodrigo Maestre
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain.
| | - John D. Douglass
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Isabel Medina
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain; and
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
19
|
Estimation of Michaelis–Menten constant of efflux transporter considering asymmetric permeability. Int J Pharm 2011; 418:161-7. [DOI: 10.1016/j.ijpharm.2011.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022]
|
20
|
Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G803-14. [PMID: 21350192 PMCID: PMC3094135 DOI: 10.1152/ajpgi.00229.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has long been known that mammalian enterocytes coexpress two members of the fatty acid-binding protein (FABP) family, the intestinal FABP (IFABP) and the liver FABP (LFABP). Both bind long-chain fatty acids and have similar though not identical distributions in the intestinal tract. While a number of in vitro properties suggest the potential for different functions, the underlying reasons for expression of both proteins in the same cells are not known. Utilizing mice genetically lacking either IFABP or LFABP, we directly demonstrate that each of the enterocyte FABPs participates in specific pathways of intestinal lipid metabolism. In particular, LFABP appears to target fatty acids toward oxidative pathways and dietary monoacylglycerols toward anabolic pathways, while IFABP targets dietary fatty acids toward triacylglycerol synthesis. The two FABP-null models also displayed differences in whole body response to fasting, with LFABP-null animals losing less fat-free mass and IFABP-null animals losing more fat mass relative to wild-type mice. The metabolic changes observed in both null models appear to occur by nontranscriptional mechanisms, supporting the hypothesis that the enterocyte FABPs are specifically trafficking their ligands to their respective metabolic fates.
Collapse
Affiliation(s)
- William Stacy Lagakos
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Angela Marie Gajda
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Luis Agellon
- 2School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada;
| | - Bert Binas
- 3Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea; and
| | - Victor Choi
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Bernadette Mandap
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Timothy Russnak
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Yin Xiu Zhou
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey;
| | - Judith Storch
- 1Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; ,4Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
21
|
Zenhom M, Hyder A, Kraus-Stojanowic I, Auinger A, Roeder T, Schrezenmeir J. PPARγ-dependent peptidoglycan recognition protein 3 (PGlyRP3) expression regulates proinflammatory cytokines by microbial and dietary fatty acids. Immunobiology 2010; 216:715-24. [PMID: 21176858 DOI: 10.1016/j.imbio.2010.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 01/25/2023]
Abstract
PGlyRPs recognize bacterial peptidoglycan and function in antibacterial innate immunity. Focusing on the interference between nutrition and recognition pattern proteins, free fatty acids (FFA) of dietary and bacterial sources may exert their immunological response through modulating the expression level of the PGlyRPs in enterocytes. PGlyRP3 was the only PGlyRPs member expressed in Caco2 cells. In silico analysis showed that the promoter of PGlyRP3 has some PPRE regions that, as tested by EMSA, bind physically to the PPARγ-RXRα complex. PGlyRP3 gene expression was induced by PPARγ ligands including GW1929 and some FFA. Overexpression of PGlyRP3 in Caco2 cells down regulated the expression of the inflammatory cytokines IL-8, IL-12 and TNF-α, while its silencing increased the expression of these cytokines. FFA that induced the PGlyRP3 inhibited the tested cytokines. Silencing of PGlyRP3 gene caused the same FFA to increase the cytokine gene expression. A negative regulation of NF-κB pathway, including up-regulation of Iκβ-α and down regulation of NF-κB and COX-2, is involved in the anti-inflammatory effects of PGlyRP3. In conclusion, PPARγ mediates a modulation of PGlyRP3 gene expression, which is involved in inhibiting inflammation through negative regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Marwa Zenhom
- Department of Physiology and Biochemistry of Nutrition, Max Rubner Institute, Hermann Weigmann Str. 1, 24103 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010; 9:597-614. [PMID: 20671764 DOI: 10.1038/nrd3187] [Citation(s) in RCA: 460] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.
Collapse
Affiliation(s)
- Kiyohiko Sugano
- Pfizer, Research Formulation, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The absorption of dietary fat is of increasing concern given the rise of obesity not only in the United States but throughout the developed world. This review explores what happens to dietary fat within the enterocyte. Absorbed fatty acids and monoacylglycerols are required to be bound to intracellular proteins and/or to be rapidly converted to triacylglycerols to prevent cellular membrane disruption. The triacylglycerol produced at the level of the endoplasmic reticulum (ER) is either incorporated into prechylomicrons within the ER lumen or shunted to triacylglycerol storage pools. The prechylomicrons exit the ER in a specialized transport vesicle in the rate-limiting step in the intracellular transit of triacylglycerol across the enterocyte. The prechylomicrons are further processed in the Golgi and are transported to the basolateral membrane via a separate vesicular system for exocytosis into the intestinal lamina propria. Fatty acids and monoacylglycerols entering the enterocyte via the basolateral membrane are also incorporated into triacylglycerol, but the basolaterally entering lipid is much more likely to enter the triacylglycerol storage pool than the lipid entering via the apical membrane.
Collapse
Affiliation(s)
- Charles M Mansbach
- The University of Tennessee Health Science Center and the Veterans Administration Medical Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
24
|
Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J, Siddiqi SA, Mansbach CM. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res 2010; 51:1918-28. [PMID: 20237389 DOI: 10.1194/jlr.m005611] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary lipid absorption is dependent on chylomicron production whose rate-limiting step across the intestinal absorptive cell is the exit of chylomicrons from the endoplasmic reticulum (ER) in its ER-to-Golgi transport vesicle, the prechylomicron transport vesicle (PCTV). This study addresses the composition of the budding complex for PCTV. Immunoprecipitation (IP) studies from rat intestinal ER solubilized in Triton X-100 suggested that vesicle-associated membrane protein 7 (VAMP7), apolipoprotein B48 (apoB48), liver fatty acid-binding protein (L-FABP), CD36, and the COPII proteins were associated on incubation of the ER with cytosol and ATP. This association was confirmed by chromatography of the solubilized ER over Sephacryl S400-HR in which these constituents cochromatographed with an apparent kDa of 630. No multiprotein complex was detected when the ER was chromatographed in the absence of PCTV budding activity (resting ER or PKCzeta depletion of ER and cytosol). Treatment of the ER with anti-apoB48 or anti-VAMP7 antibodies or using gene disrupted L-FABP or CD36 mice all significantly inhibited PCTV generation. A smaller complex (no COPII proteins) was formed when only rL-FABP was used to bud PCTV. The data support the conclusion that the PCTV budding complex in intestinal ER is composed of VAMP7, apoB48, CD36, and L-FABP, plus the COPII proteins.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Karsenty J, Helal O, de la Porte PL, Beauclair-Deprez P, Martin-Elyazidi C, Planells R, Storch J, Gastaldi M. I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog. Mol Cell Biochem 2009; 326:97-104. [PMID: 19125316 DOI: 10.1007/s11010-008-0004-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/11/2008] [Indexed: 11/30/2022]
Abstract
To investigate the structure-function relationships of intestinal fatty acid-binding protein (I-FABP) in cellular fatty acid (FA) trafficking, we compared the distribution of a fluorescent FA analog (BODIPY FL C16) in Cos-1 cells transiently transfected with the wild type protein (wt I-FABP) to that of a variant deleted of the alpha helical domain (HL I-FABP). In vector-only cells, BODIPY fluorescence was distributed throughout the cytoplasm. In the absence of added FA, wt I-FABP was found largely in the perinuclear region with some cytoplasmic staining as well. Addition of BODIPY FL C16 to transfected cells showed that the fluorescent FA was essentially completely colocalized with the protein in the cytoplasmic and perinuclear regions as well as in cytoplasmic clusters that are not observed in the absence of wt I-FABP. For HL I-FABP, the distribution of the protein in the absence of FA was diffusely cytoplasmic, in marked contrast to the wt protein. Addition of BODIPY led to less extensive colocalization than that observed for wt I-FABP. In particular, no localization to the perinuclear region was found. Organelle colocalization studies showed that both proteins colocalized with mitochondria and endoplasmic reticulum/golgi markers, but little with a lysosomal marker. The perinuclear localization for wt I-FABP and BODIPY did not show colocalization with any of the markers tested. Taken together, these results indicate that I-FABP binds FA in vivo and that the helical domain may be important for targeting I-FABP to a perinuclear domain but not, perhaps, to the endoplasmic reticulum, golgi apparatus or mitochondria.
Collapse
Affiliation(s)
- Julie Karsenty
- INSERM, U476 Nutrition Humaine et Lipides, Marseille, 13385, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nutrigenomics represents a shift of nutrition research from epidemiology and physiology to molecular biology and genetics. Nutrigenomics seeks to understand nutrition influences on homeostasis, the mechanism of genetic predispositions for diseases, to identify the genes influencing risk of diet related diseases. This review presents somein vitromodels applicable in nutrigenomic studies, and discuses the use of animal models, their advantages and limitations and relevance for human situation.In vitroandin vivomodels are suitable for performance of DNA microarrays, proteomic and transcriptomic analyses.In vitromodels (intracellular organelles and suborganellar compartments, cell cultures, or tissue samples/cultures) give insight in metabolic pathways and responses to test stimuli on cellular and molecular levels. Animal models allow evaluation of the biological significance of the effects recordedin vitroand testing of the hypothesis on how a specific factor affects specific species under specific circumstances. Therefore, the evaluation of the data in relation to human organism should be done carefully, considering the species differences. The use ofin vitroandin vivomodels is likely to continue as the effects of nutrition on health and disease cannot be fully explained without understanding of nutrients action at nuclear level and their role in the intra- and intercellular signal transduction. Through advances in cell and molecular biology (including genomic and proteomic), the use of these models should become more predictively accurate. However, this predictive value relies on an underpinning knowledge of the advantages and limitations of the model in nutrigenomic research as in other fields of biomedical research.
Collapse
|
27
|
Storch J, Zhou YX, Lagakos WS. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J Lipid Res 2008; 49:1762-9. [PMID: 18421071 DOI: 10.1194/jlr.m800116-jlr200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic fates of radiolabeled sn-2-monoacylglycerol (MG) and oleate (FA) in rat and mouse intestine, added in vivo to the apical (AP) surface in bile salt micelles, or to the basolateral (BL) surface via albumin-bound solution, were examined. Mucosal lipid products were quantified, and the results demonstrate a dramatic difference in the esterification patterns for both MG and FA, depending upon their site of entry into the enterocyte. For both lipids, the ratio of triacylglycerol to phospholipid (TG:PL) formed was approximately 10-fold higher for delivery at the AP relative to the BL surface. Further, a 3-fold higher level of FA oxidation was found for BL compared with AP substrate delivery. Incorporation of FA into individual PL species was also significantly different, with >2-fold greater incorporation into phosphatidylethanolamine (PE) and a 3-fold decrease in the phosphatidylcholine:PE ratio for AP- compared with BL-added lipid. Overnight fasting increased the TG:PL incorporation ratio for both AP and BL lipid addition, suggesting that metabolic compartmentation is a physiologically regulated phenomenon. These results support the existence of separate pools of TG and glycerolipid intermediates in the intestinal epithelial cell, and underscore the importance of substrate trafficking in the regulation of enterocyte lipid metabolism.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
28
|
Riihimäki L, Galkin A, Finel M, Heikura J, Valkonen K, Virtanen V, Laaksonen R, Slotte JP, Vuorela P. Transport properties of bovine and reindeer β-lactoglobulin in the Caco-2 cell model. Int J Pharm 2008; 347:1-8. [PMID: 17658229 DOI: 10.1016/j.ijpharm.2007.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/30/2022]
Abstract
Beta-lactoglobulin (betaLG) is a protein that binds ligands like fatty acids and retinol into the hydrophobic pocket. Our purpose was to study bovine and reindeer betaLG as transporter molecules and compare their transport properties across Caco-2 cell membrane. The reindeer betaLG has more valuable binder characteristics than bovine betaLG because it has only one genetic phenotype and it seems to exhibit better immunological properties. The permeation of betaLG in Caco-2 cells was evaluated by immunoblotting, and the permeation of the model substances retinol, palmitic acid and cholesterol with and without betaLG was determined using [(3)H]-labelled ligands. Both bovine and reindeer betaLG were able to pass across a Caco-2 cell monolayer similarly. Unbound and betaLG-bound [(3)H]retinol and [(3)H]palmitic acid were equally transported across the Caco-2 cell layer, whereas [(3)H]cholesterol could not pass across Caco-2 cells with or without betaLG at any of the studied circumstances. Thus, the bovine and reindeer milk betaLG is not a suitable protein to enhance transport of ligands across the Caco-2 cell membrane, used for predicting intestinal absorption.
Collapse
Affiliation(s)
- Laura Riihimäki
- Drug Discovery and Development Technology Center, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vasiluk L, Pinto LJ, Tsang WS, Gobas FAPC, Eickhoff C, Moore MM. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol 2007; 46:610-8. [PMID: 17959292 DOI: 10.1016/j.fct.2007.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/23/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
Abstract
Food ingestion is the major route of exposure to many hydrophobic organic contaminants (HOCs) such as benzo[a]pyrene (BaP). It has been proposed that food-bound HOCs may become bioavailable after their mobilization by gastrointestinal fluids. The purpose of this research was to measure the uptake efficiency of [(14)C]-BaP bound to skim milk powder using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells). Neutralization of intestinal fluids released [(14)C]-BaP into the soluble fraction. Ageing of benzo[a]pyrene onto skim milk for 6 months significantly decreased the mobilized fraction but did not affect the amount of benzo[a]pyrene taken up into Caco-2 cells. Hence, significant differences in aqueous phase concentrations may not always be reflected in significant differences in uptake. We obtained evidence that the digestion/uptake of skim milk lipids is accompanied by the diffusive uptake of BaP (the fat flush hypothesis) as trans-cellular transfer of BaP was favoured in the apical to basolateral direction. These data support the theory that non-polar substances including HOCs are preferentially transferred from the lumen into the bloodstream and provide indirect evidence that the uptake is related to the fugacity gradient created by the unidirectional uptake of dietary lipids.
Collapse
Affiliation(s)
- Luba Vasiluk
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | |
Collapse
|
30
|
Thumser AE, Storch J. Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol Cell Biochem 2007; 299:67-73. [PMID: 16645726 DOI: 10.1007/s11010-005-9041-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The BODIPY-labeled fatty acid analogues are a useful addition to the tools employed to study the cellular uptake and metabolism of lipids. In this study, we show that BODIPY FL C(16) binds to purified liver and intestinal fatty acid-binding proteins with high affinity at a site similar to that for the physiological fatty acid oleic acid. Further, in human intestinal Caco-2 cells BODIPY FL C(16) co-localizes extensively with mitochondria, endoplasmic reticulum/Golgi, and L-FABP. Virtually no esterification of BODIPY FL C(16) was observed under the experimental conditions employed. We conclude that BODIPY FL C(16) may be a useful tool for studying the distribution and function of FABPs in a cellular environment.
Collapse
Affiliation(s)
- Alfred E Thumser
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | | |
Collapse
|
31
|
Velkov T, Horne J, Laguerre A, Jones E, Scanlon MJ, Porter CJH. Examination of the Role of Intestinal Fatty Acid-Binding Protein in Drug Absorption Using a Parallel Artificial Membrane Permeability Assay. ACTA ACUST UNITED AC 2007; 14:453-65. [PMID: 17462580 DOI: 10.1016/j.chembiol.2007.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 03/02/2007] [Accepted: 03/07/2007] [Indexed: 11/18/2022]
Abstract
Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein - intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Ménez C, Buyse M, Farinotti R, Barratt G. Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process. Lipids 2007; 42:229-40. [PMID: 17393228 DOI: 10.1007/s11745-007-3026-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Miltefosine (hexadecylphosphocholine, HePC) is the first effective oral agent for the treatment of visceral leishmaniasis. The characteristics of HePC incorporation into the human intestinal epithelial cell line Caco-2 were investigated in order to understand its oral absorption mechanism. The results provide evidence for the involvement of a carrier-mediated mechanism, since the association of HePC at the apical pole of Caco-2 cells was (1) saturable as a function of time with a rapid initial incorporation over 5 min followed by a more gradual increase; (2) saturable as a function of concentration over the range studied (2-200 microM) with a saturable component which followed Michaelis-Menten kinetics (apparent K (m) 15.7 micromol/L, V (max) 39.2 nmol/mg protein/h) and a nonspecific diffusion component; (3) partially inhibited by low temperature and ATP depletion, indicating the temperature and energy-dependence of the uptake process. Moreover, we demonstrated, by an albumin back-extraction method, that HePC is internalized via translocation from the outer to the inner leaflet of the plasma membrane and that HePC may preferentially diffuse through intact raft microdomains. In conclusion, our results suggest that incorporation of HePC at the apical membrane of Caco-2 cells may occur through a passive diffusion followed by a translocation in the inner membrane leaflet through an active carrier-mediated mechanism.
Collapse
Affiliation(s)
- Cécile Ménez
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612 Faculté de Pharmacie, Univ. Paris-Sud 11, IFR 141, Tour D5, 2éme étage, 5 rue J.B. Clément, Châtenay-Malabry, Cedex 92296, France
| | | | | | | |
Collapse
|
33
|
Peretti N, Delvin E, Sinnett D, Marcil V, Garofalo C, Levy E. Asymmetrical regulation of scavenger receptor class B type I by apical and basolateral stimuli using Caco-2 cells. J Cell Biochem 2007; 100:421-33. [PMID: 16927335 DOI: 10.1002/jcb.20882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholesterol uptake and the mechanisms that regulate cholesterol translocation from the intestinal lumen into enterocytes remain for the most part unclear. Since scavenger receptor class B type I (SR-BI) has been suggested to play a role in cholesterol absorption, we investigated cellular SR-BI modulation by various potential effectors administered in both apical and basolateral sides of Caco-2 cells. With differentiation, Caco-2 cells increased SR-BI protein expression. Western blot analysis showed the ability of cholesterol and oxysterols in both cell compartments to reduce SR-BI protein expression. Among the n-3, n-6, and n-9 fatty acid families, only eicosapentaenoic acid was able to lower SR-BI protein expression on both sides, whereas apical alpha-linolenic acid decreased SR-BI abundance and basolateral arachidonic acid (AA) raised it. Epidermal growth factor and growth hormone, either in the apical or basolateral medium, diminished SR-BI cellular content, while insulin displayed the same effect only on the basolateral side. In the presence of proinflammatory agents (LPS, TNF-alpha, IFN-gamma), Caco-2 cells exhibited differential behavior. SR-BI was downregulated by lipopolysaccharide on both sides. Finally, WY-14643 fibrate diminished SR-BI protein expression when it was added to the apical medium. Biotinylation studies in response to selected stimuli revealed that regulatory modifications in SR-BI protein expression occurred for the most part at the apical cell surface irrespective of the effector location. Our data indicate that various effectors supplied to the apical and basolateral compartments may impact on SR-BI at the apical membrane, thus suggesting potential regulation of intestinal cholesterol absorption and distribution in various intracellular pools.
Collapse
Affiliation(s)
- N Peretti
- Centre de Recherche, CHU-Sainte-Justine, Université de Montréal, Montréal (Québec), Canada, H3T 1C5
| | | | | | | | | | | |
Collapse
|
34
|
Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P. NPC2, the Protein Deficient in Niemann-Pick C2 Disease, Consists of Multiple Glycoforms That Bind a Variety of Sterols. J Biol Chem 2006; 281:36710-23. [PMID: 17018531 DOI: 10.1074/jbc.m608743200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick C disease is a fatal neurodegenerative disorder characterized by an endolysosomal accumulation of cholesterol and other lipids. One form of the disease is caused by a deficiency in NPC2, a soluble lysosomal glycoprotein that binds cholesterol. To better understand the biological function of NPC2 and how its deficiency results in disease, we have characterized the structural and functional properties of recombinant human protein. Highly purified NPC2 consists of a complex mixture of glycosylated isoforms, similar to that observed in human brain autopsy specimens. Mass spectrometric analysis revealed that of the three potential N-linked glycosylation sites present in the mature protein, Asn-19 is not utilized; Asn-39 is linked to an endoglycosidase H (Endo H)-sensitive oligosaccharide, and Asn-116 is variably utilized, either being unmodified or linked to Endo H-sensitive or Endo H-resistant oligosaccharides. All glycoforms are endocytosed and ameliorate the cholesterol storage phenotype of NPC2-deficient fibroblasts. In addition, the purified preparation contains a mixture of both free and lipid-bound protein. All glycoforms bind cholesterol, and sterol binding to NPC2 significantly alters its behavior upon cation-exchange chromatography. Based on this observation, we developed chromatography-based binding assays and determined that NPC2 forms an equimolar complex with the fluorescent cholesterol analog dehydroergosterol. In addition, we find that NPC2 binds a range of cholesterol-related molecules (cholesterol precursors, plant sterols, some oxysterols, cholesterol sulfate, cholesterol acetate, and 5-alpha-cholestan-3-one) and that 27-hydroxysterol accumulates in NPC2-deficient mouse liver. Binding was not detected for various glycolipids, phospholipids, or fatty acids. These biochemical properties support a direct and specialized function of NPC2 in lysosomal sterol transport.
Collapse
Affiliation(s)
- Heng-Ling Liou
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
35
|
Siddiqi SA, Mahan J, Siddiqi S, Gorelick FS, Mansbach CM. Vesicle-associated membrane protein 7 is expressed in intestinal ER. J Cell Sci 2006; 119:943-50. [PMID: 16495485 PMCID: PMC2828367 DOI: 10.1242/jcs.02803] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal dietary triacylglycerol absorption is a multi-step process. Triacylglycerol exit from the endoplasmic reticulum (ER) is the rate-limiting step in the progress of the lipid from its apical absorption to its basolateral membrane export. Triacylglycerol is transported from the ER to the cis Golgi in a specialized vesicle, the pre-chylomicron transport vesicle (PCTV). The vesicle-associated membrane protein 7 (VAMP7) was found to be more concentrated on PCTVs compared with ER membranes. VAMP7 has been previously identified associated with post-Golgi sites in eukaryotes. To examine the potential role of VAMP7 in PCTV trafficking, antibodies were generated that identified a 25 kDa band consistent with VAMP7 but did not crossreact with VAMP1,2. VAMP7 was concentrated on intestinal ER by immunofluorescence microscopy. Immunoelectron microscopy showed that the ER proteins Sar1 and rBet1 were present on PCTVs and colocalized with VAMP7. Iodixanol gradient centrifugation showed VAMP7 to be isodense with ER and endosomes. Although VAMP7 localized to intestinal ER, it was not present in the ER of liver and kidney. Anti-VAMP7 antibodies reduced the transfer of triacylglycerol, but not newly synthesized proteins, from the ER to the Golgi by 85%. We conclude that VAMP7 is enriched in intestinal ER and that it plays a functional role in the delivery of triacylglycerol from the ER to the Golgi.
Collapse
Affiliation(s)
- Shadab A. Siddiqi
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - James Mahan
- Veterans Affairs Medical Center, Memphis, TN 38163 USA
| | - Shahzad Siddiqi
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Fred S. Gorelick
- Department of Medicine, VA Healthcare, and Yale University School of Medicine, New Haven, CT 06516 USA
| | - Charles M. Mansbach
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- Veterans Affairs Medical Center, Memphis, TN 38163 USA
- Author for correspondence ()
| |
Collapse
|
36
|
Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 2006; 281:20974-20982. [PMID: 16735505 PMCID: PMC2833420 DOI: 10.1074/jbc.m601401200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shahzad Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - James Mahan
- Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Kiffany Peggs
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fred S Gorelick
- Department of Medicine, Veterans Affairs Healthcare, New Haven, Connecticut 06516; Yale University School of Medicine, New Haven, Connecticut 06516
| | - Charles M Mansbach
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Veterans Affairs Medical Center, Memphis, Tennessee 38104.
| |
Collapse
|
37
|
Mashek DG, McKenzie MA, Van Horn CG, Coleman RA. Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem 2005; 281:945-50. [PMID: 16263710 DOI: 10.1074/jbc.m507646200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Nutrition, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
38
|
Hao H, Wang G, Sun J, Ding Z, Wu X, Roberts M. Unidirectional inversion of ibuprofen in Caco-2 cells: developing a suitable model for presystemic chiral inversion study. Biol Pharm Bull 2005; 28:682-7. [PMID: 15802810 DOI: 10.1248/bpb.28.682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal chiral inversion of ibuprofen is still lacking direct evidence. In a preliminary experiment, ibuprofen was found to undergo inversion in Caco-2 cells. This investigation was thus conducted to determine the characteristics and influence of some biochemical factors on the chiral inversion of ibuprofen in Caco-2 cells. The effects of substrate concentration (2.5-40 microg/ml), cell density (0.5-2 x 10(6) cells/well), content of serum (0-20%), coexistence of S ibuprofen (corresponding doses), sodium azide (10 mM), exogenous Coenzyme A (CoA) (0.1-0.4 mM), and palmitic acid (5-25 microM) on inversion were examined. A stereoselective HPLC method based on the Chromasil-CHI-TBB column was developed for quantitative analysis of the drug in cell culture medium. The inversion ratio (F(i)) and elimination rate constant were calculated as the indexes of inversion extent. Inversion of ibuprofen in Caco-2 cells was found to be both dose and cell density dependent, indicating saturable characteristics. Addition of serum significantly inhibited the inversion, to an extent of 2.7 fold decrease at 20% content. Preexistence of S enantiomer exerted a significant inhibitory effect (p<0.01 for all tests). Sodium azide decreased the inversion ratio from 0.43 to 0.32 (p<0.01). Exogenous CoA and palmitic acid significantly promoted the inversion at all tested doses (p<0.01 for all tests). This research provided strong evidence to the capacity and capability of intestinal chiral inversion. Although long incubation times up to 120 h were required, Caco-2 cells should be a suitable model for chiral inversion research of 2-APAs considering the human-resourced and well-defined characteristics from the present study.
Collapse
Affiliation(s)
- Haiping Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing.
| | | | | | | | | | | |
Collapse
|
39
|
Lenaerts K, Mariman E, Bouwman F, Renes J. Differentiation stage-dependent preferred uptake of basolateral (systemic) glutamine into Caco-2 cells results in its accumulation in proteins with a role in cell-cell interaction. FEBS J 2005; 272:3350-64. [PMID: 15978041 DOI: 10.1111/j.1742-4658.2005.04750.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glutamine is an essential amino acid for enterocytes, especially in states of critical illness and injury. In several studies it has been speculated that the beneficial effects of glutamine are dependent on the route of supply (luminal or systemic). The aim of this study was to investigate the relevance of both routes of glutamine delivery to in vitro intestinal cells and to explore the molecular basis for proposed beneficial glutamine effects: (a) by determining the relative uptake of radiolabelled glutamine in Caco-2 cells; (b) by assessing the effect of glutamine on the proteome of Caco-2 cells using a 2D gel electrophoresis approach; and (c) by examining glutamine incorporation into cellular proteins using a new mass spectrometry-based method with stable isotope labelled glutamine. Results of this study show that exogenous glutamine is taken up by Caco-2 cells from both the apical and the basolateral side. Basolateral uptake consistently exceeds apical uptake and this phenomenon is more pronounced in 5-day-differentiated cells than in 15-day-differentiated cells. No effect of exogenous glutamine supply on the proteome was detected. However, we demonstrated that exogenous glutamine is incorporated into newly synthesized proteins and this occurred at a faster rate from basolateral glutamine, which is in line with the uptake rates. Interestingly, a large number of rapidly labelled proteins is involved in establishing cell-cell interactions. In this respect, our data may point to a molecular basis for observed beneficial effects of glutamine on intestinal cells and support results from studies with critically ill patients where parenteral glutamine supplementation is preferred over luminal supplementation.
Collapse
Affiliation(s)
- Kaatje Lenaerts
- Maastricht Proteomics Center, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, the Netherlands.
| | | | | | | |
Collapse
|
40
|
Brand RM, Cetin Y, Mueller C, Cuppett SL. Effect of fatty acids on herbicide transport across Caco-2 cell monolayers. Toxicol In Vitro 2005; 19:595-601. [PMID: 15896553 DOI: 10.1016/j.tiv.2005.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/16/2022]
Abstract
Oral ingestion of pesticides can be a major exposure route. These compounds are frequently consumed in the presence of triacylglycerides, which are then hydrolyzed to free fatty acids. The purpose of this work was to examine the effect of two common fatty acids, palmitic (PA) and oleic (OA) acids, and the biological emulsifier sodium taurocholate (TC) on the absorption of three herbicides (trifluralin, alachlor and atrazine) by Caco-2 cell monolayers. Trifluralin's absorption was enhanced (p < 0.05) in the presence of OA whereas the greatest absorption of atrazine and alachlor occurred with PA and the control media, respectively. Trifluralin had significantly lower absorption through the monolayer than either alachlor or atrazine (p < 0.001). A mass balance study demonstrated that trifluralin accumulated within the cell monolayer (13.85% of the donor after 3 h of exposure), but alachlor and atrazine (1.27% and 0.85%, respectively) did not. This response was linear with time (21.89% trifluralin after 6 h of exposure), and demonstrated the potential for continued release of trifluralin after source removal. These experiments demonstrated that fatty acids and an emulsifier can influence absorption of herbicides across small intestinal epithelium.
Collapse
Affiliation(s)
- Rhonda M Brand
- Division of Emergency Medicine of Evanston, Northwestern Healthcare and Department of Medicine, Fienberg School of Medicine at Northwestern University, Evanston, IL 60201, USA.
| | | | | | | |
Collapse
|
41
|
Cavret S, Feidt C. Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium. ENVIRONMENTAL RESEARCH 2005; 98:22-32. [PMID: 15721880 DOI: 10.1016/j.envres.2004.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 05/11/2004] [Accepted: 10/29/2004] [Indexed: 05/24/2023]
Abstract
Food would seem to be one of the main ways of animal and human contamination with polycyclic aromatic hydrocarbons (PAHs). In vivo studies suggest a transfer in intestinal epithelium by diffusion, which appears extensively governed by the physicochemical properties of PAHs, particularly lipophilicity. However, other mechanisms, such as metabolism, are considered to intervene. Our work aimed at testing in vitro intestinal metabolism and defining its impact on transepithelial transport of PAHs. Caco-2 cells were cultivated on permeable filters and incubated with 14C-labeled benzo[a]pyrene (BaP), pyrene (Pyr), and phenanthrene (Phe), which differ in their physicochemical properties. The results showed that the cells were able to metabolize the compounds. In basal media, Phe appeared to be the least hydroxylated molecule (45% after a 6-h exposure), followed by Pyr (65%) and finally BaP (96%). Inhibition of PAH metabolism showed a determinant effect on kinetics profiles. Transfer in the basal compartment of BaP, Pyr, and Phe radioactivities was, respectively, 26, 4, and 2 times lower with inhibitors, corroborating that intestinal metabolism of PAHs would have a positive impact on their transfer, an impact that increased with their lipophilicity. Furthermore, after a 6-h incubation, metabolites were also detected in apical medium. These findings suggested that intestinal metabolism might play a key role in intestinal barrier permeability and thus in the bioavailability of tested micropollutants.
Collapse
Affiliation(s)
- Séverine Cavret
- ISARAlyon, 31 place Bellecour, F-69288 Lyon Cedex 02, France.
| | | |
Collapse
|
42
|
Cavret S, Feidt C, Laurent F. Differential transfer of organic micropollutants through intestinal barrier using Caco-2 cell line. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:2773-2777. [PMID: 15796624 DOI: 10.1021/jf035163w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Food seems to be one of the main ways of animal and human contamination with polycyclic aromatic hydrocarbons (PAHs) and dioxins. In vivo studies showed a blood absorption of these xenobiotics after their ingestion. Our work aimed at studying the in vitro transfer of PAHs and dioxins through intestinal barrier. Caco-2 cells were cultivated on permeable filters to measure transepithelial permeability of (14)C labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene, pyrene, and phenanthrene, which differed in their physicochemical properties. The results showed that the molecules were able to cross intestinal cell layers. All the molecules were detected associated with cells, even if the dioxin was the less uptaken compound. Phenanthrene appeared in basal media faster, and its level after a 6-h exposure was respectively 1.1, 2, and 7 times higher than pyrene, benzo[a]pyrene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin levels. These findings suggest that intestinal epithelium plays a key role in selective permeability and then in bioavailibility of micropollutants.
Collapse
|
43
|
Cavret S, Rychen G, Feidt C. IN VITRO INTESTINAL TRANSFER AND METABOLISM OF POLYCYCLIC AROMATIC HYDROCARBONS. Polycycl Aromat Compd 2004. [DOI: 10.1080/10406630490471573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Jindrichová S, Nováková O, Bryndová J, Tvrzická E, Lisá V, Novák F, Pácha J. Corticosteroid effect on Caco-2 cell lipids depends on cell differentiation. J Steroid Biochem Mol Biol 2003; 87:157-65. [PMID: 14672736 DOI: 10.1016/j.jsbmb.2003.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies from our laboratory have indicated that secondary hyperaldosteronism affects phospholipids of rat colonic enterocytes. To assess whether this represents a direct effect of mineralocorticoids on enterocytes, the role of aldosterone and dexamethasone in the regulation of lipid metabolism was examined in Caco-2 cells during development of their enterocyte phenotype. Differentiation of Caco-2 cells was associated with increased levels of triglycerides (TG) and cholesteryl esters (CE), a decreased content of cholesterol and phospholipids and changes in individual phospholipid classes. The phospholipids of differentiated cells had a higher content of n-6 polyunsaturated fatty acids (PUFA) and lower amounts of monounsaturated (MUFA) and saturated fatty acids than subconfluent undifferentiated cells. Differentiated cells exhibited a higher ability to incorporate [3H]arachidonic acid (AA) into cellular phospholipids and a lower ability for incorporation into TG and CE. Incubation of subconfluent undifferentiated cells with aldosterone or dexamethasone was without effect on the content of lipids, their fatty acids and [3H]AA incorporation. In contrast, aldosterone treatment of differentiated cells diminished the content of TG, increased the content of phospholipids and modulated their fatty acid composition. The percentage of n-6 and n-3 PUFA in phospholipids was increased and that of MUFA decreased, whereas no changes in TG were observed. The incorporation of [3H]AA into phospholipids was increased and into TG decreased and these changes were blocked by spironolactone. Treatment of differentiated cells with dexamethasone increased their CE content but no effect was identified upon other lipids, their fatty acid composition and on the incorporation of [3H]AA. As expected for the involvement of corticosteroid hormones the mineralocorticoid and glucocorticoid receptors were identified in Caco-2 cells by RT-PCR. The results suggest that aldosterone had a profound influence on lipid metabolism in enterocytes and that its effect depends on the stage of differentiation. The aldosterone-dependent changes occurring in phospholipids and their fatty acid composition may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.
Collapse
Affiliation(s)
- S Jindrichová
- Institute of Physiology, Czech Academy of Sciences, Vídenská 1083, 142 20 Prague 4-Krc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
45
|
Torii M, Takiguchi Y, Izumi M, Fukushima T, Yokota M. Carbapenem antibiotics inhibit valproic acid transport in Caco-2 cell monolayers. Int J Pharm 2002; 233:253-6. [PMID: 11897429 DOI: 10.1016/s0378-5173(01)00916-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concomitant use of carbapenem antibiotics with valproic acid has been prohibited because carbapenems induced a decrease in plasma concentration of valproic acid in epileptic patients during valproic acid therapy. Our previous in vivo study in rats proposed that inhibition by carbapenem of the intestinal absorption of valproic acid might be a possible mechanism for the drug-drug interaction. To demonstrate the hypothesis, we examined the effects of imipenem and panipenem on intestinal transepithelial transport of valproic acid using Caco-2 cell monolayers. Imipenem and panipenem inhibited the transport of [14C]-valproic acid across the Caco-2 cell monolayers from apical-to-basolateral side in a concentration-dependent manner, although they had no effect on the uptake of [14C]-valproic acid by Caco-2 cells. The inhibition by the carbapenems of the valproic acid transport was found even when they were added to only the basolateral side. From these results, the carbapenems may inhibit the absorption of valproic acid at the basolateral membrane of intestinal epithelial cells, which contributes to the decrease in plasma concentration of valproic acid after oral administration.
Collapse
Affiliation(s)
- Mayumi Torii
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
46
|
Ho SY, Delgado L, Storch J. Monoacylglycerol metabolism in human intestinal Caco-2 cells: evidence for metabolic compartmentation and hydrolysis. J Biol Chem 2002; 277:1816-23. [PMID: 11682480 DOI: 10.1074/jbc.m108027200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free fatty acids (FFA) and sn-2-monoacylglycerol (MG), the two major hydrolysis products of dietary triacylglycerol (TG), are absorbed from the lumen into polarized enterocytes that line the small intestine. Intensive studies regarding FFA metabolism in the intestine have been published; however, little is known regarding the metabolism of MG. In these studies, we examined the metabolism of sn-2-monoolein (sn-2-18:1) by human intestinal Caco-2 cells. To mimic the physiological presentation of MG to the enterocyte, the metabolism of [(3)H]sn-2-monoolein was examined by adding taurocholate-mixed sn-2-18:1 and albumin-bound sn-2-18:1 at the apical (AP) and basolateral (BL) surfaces of the Caco-2 cell, respectively. The results demonstrate that more sn-2-18:1 was incorporated into TG from AP taurocholate-mixed sn-2-18:1, whereas more phospholipid was synthesized from BL albumin-bound sn-2-18:1. The TG:phospholipid ratio was approximately 5-fold higher for AP relative to BL MG incubation. Qualitatively similar results were observed for bovine serum albumin-bound MG added at the apical surface. It was also found that substantial sn-2-18:1 radioactivity was recovered in the FFA fraction, suggesting that sn-2-18:1 may be directly hydrolyzed within the Caco-2. We therefore used reverse transcription-PCR with primers designed from the murine MG lipase (MGL) gene, and detected the presence of MG lipase mRNA in Caco-2. The human MGL gene was cloned and found to be 83% identical to the murine MGL, and identical to a previously described lysophospholipase-like protein. Northern blot analysis showed the expression of MGL throughout Caco-2 differentiation. Thus, MG metabolism in Caco-2 cells may include not only well established anabolic processes, but also catabolic processes. Further, the observed polarity of MG metabolism suggests that, as for fatty acids, separate precursor and/or product pools of lipid may exist in the intestinal enterocyte.
Collapse
Affiliation(s)
- Shiu-Ying Ho
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | | | |
Collapse
|
47
|
Gedde-Dahl A, Kulseth MA, Ranheim T, Drevon CA, Rustan AC. Reduced secretion of triacylglycerol in CaCo-2 cells transfected with intestinal fatty acid-binding protein. Lipids 2002; 37:61-8. [PMID: 11876264 DOI: 10.1007/s11745-002-0864-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fatty acid-binding proteins are hypothesized to be involved in cellular fatty acid transport and trafficking. We established CaCo-2 cells stably transfected with intestinal fatty acid-binding protein (I-FABP) and examined how the expression of this protein may influence fatty acid metabolism. I-FABP expression was detectable in I-FABP-transfected cells, whereas parent CaCo-2 cells as well as mock-transfected cells failed to express detectable levels of I-FABP mRNA or protein at any stage of differentiation. For studies of lipid metabolism, cells were incubated with [14C]oleic acid in taurocholate micelles containing monoolein, and distribution of labeled fatty acid in cellular and secreted lipids was examined. In one transfected cell clone, expressing the highest level of I-FABP, labeled cellular triacylglycerol increased approximately twofold as compared to control cells. The level of intracellular triacylglycerol in two other I-FABP-transfected clones resembled that of control cells. However, secretion of triacylglycerol was markedly reduced in all the I-FABP-expressing cell lines. Our data suggest that increased expression of I-FABP leads to reduced triacylglycerol secretion in intestinal cells.
Collapse
Affiliation(s)
- Ane Gedde-Dahl
- Department of Pharmacology, School of Pharmacy, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
48
|
Ho SY, Storch J. Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells. Am J Physiol Cell Physiol 2001; 281:C1106-17. [PMID: 11546646 DOI: 10.1152/ajpcell.2001.281.4.c1106] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free fatty acids (FFA) and sn-2-monoacylglycerol (sn-2-MG), the two hydrolysis products of dietary triacylglycerol, are absorbed from the lumen into polarized enterocytes that line the small intestine. Intensive studies regarding FFA transport across the brush-border membrane of the enterocyte are available; however, little is known about sn-2-MG transport. We therefore studied the kinetics of sn-2-MG transport, compared with those of long-chain FFA (LCFA), by human intestinal Caco-2 cells. To mimic postprandial luminal and plasma environments, we examined the uptake of taurocholate-mixed lipids and albumin-bound lipids at the apical (AP) and basolateral (BL) surfaces of Caco-2 cells, respectively. The results demonstrate that the uptake of sn-2-monoolein at both the AP and BL membranes appears to be a saturable function of the monomer concentration of sn-2-monoolein. Furthermore, trypsin preincubation inhibits sn-2-monoolein uptake at both AP and BL poles of cells. These results suggest that sn-2-monoolein uptake may be a protein-mediated process. Competition studies also support a protein-mediated mechanism and indicate that LCFA and LCMG may compete through the same membrane protein(s) at the AP surface of Caco-2 cells. The plasma membrane fatty acid-binding protein (FABP(pm)) is known to be expressed in Caco-2, and here we demonstrate that fatty acid transport protein (FATP) is also expressed. These putative plasma membrane LCFA transporters may be involved in the uptake of sn-2-monoolein into Caco-2 cells.
Collapse
Affiliation(s)
- S Y Ho
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
49
|
Alpers DH, Bass NM, Engle MJ, DeSchryver-Kecskemeti K. Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:352-62. [PMID: 10666570 DOI: 10.1016/s1388-1981(99)00200-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intestinal mucosa metabolizes fatty acids differently when presented to the lumenal or basolateral membrane. Expression of both liver and intestinal fatty acid binding proteins (L- and I-FABPs) uniquely in the enterocyte offers a possible explanation of this phenomenon. An organ explant system was used to analyze the relative binding of fatty acids to each protein. More fatty acid was bound to L-FABP than to I-FABPs (28% vs. 6% of cytosolic radioactivity), no matter on which side the fatty acid was added. However, a 2-3-fold increase in fatty acid binding to the intestinal paralog was noted after apical addition of palmitic or oleic acid in mucosa from chow fed rats. When oleic acid was added apically, a 1.4-fold increase in binding to I-FABP was observed in mucosa derived from chronically fat fed rats, consistent with the previously observed 50% increase in the content of that protein. Immunocytochemical localization of both FABPs in vivo demonstrated an apical cytoplasmic localization in the fasting state, and redistribution to the entire cytoplasm after fat feeding. These data are consistent with the hypothesis that I-FABP may contribute to the metabolic compartmentalization of apically presented fatty acids in the intestine.
Collapse
Affiliation(s)
- D H Alpers
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The intestine synthesizes very low density lipoproteins (VLDL) and chylomicrons (CM) to transport fat and fat-soluble vitamins into the blood. VLDL assembly occurs constitutively whereas CM assembly is a characteristic property of the enterocytes during the postprandial state. The secretion of CM is specifically inhibited by Pluronic L81. CM are very heterogeneously-sized particles that consist of a core of triglycerides (TG) and cholesterol esters and a monolayer of phospholipids (PL), cholesterol and proteins. The fatty acid composition of TG, but not PL, in CM mirrors the fatty acid composition of fat in the diet. CM assembly is deficient in abetalipoproteinemia and CM retention disease. Abetalipoproteinemia results due to mutation in the mttp gene and is characterized by the virtual absence of apoB-containing lipoproteins in the plasma. Patients suffer from neurologic disorders, visual impairment, and exhibit acanthocytosis. CM retention disease, an inherited recessive disorder, is characterized by chronic diarrhea with steatorrhea in infancy, abdominal distention and failure to thrive. It is caused by a specific defect in the secretion of intestinal lipoproteins; secretion of lipoproteins by the liver is not affected. Besides human disorders, mice that do not assemble intestinal lipoproteins have been developed. These mice are normal at birth, but defective in fat and fat-soluble vitamin absorption, and fail to thrive. Thus, fat and fat-soluble vitamin transport by the intestinal lipoproteins is essential for proper growth and development of neonates. Recently, differentiated Caco-2 cells and rabbit primary enterocytes have been described that synthesize and secrete CM. These cells can be valuable in distinguishing between the two different models proposed for the assembly of CM. In the first model, the assembly of VLDL and CM is proposed to occur by two 'independent' pathways. Second, CM assembly is proposed to be a product of 'core expansion' that results in the synthesis of lipoproteins of different sizes. According to this model, intestinal lipoprotein assembly begins with the synthesis of 'primordial' lipoprotein particles and involves release of the nascent apoB with PL derived from the endoplasmic reticulum (ER) membrane. In addition, TG-rich 'lipid droplets' of different sizes are formed independent of apoB synthesis. The fusion of lipid droplets and primordial lipoproteins results in the formation of different size lipoproteins due to the 'core expansion' of the primordial lipoproteins.
Collapse
Affiliation(s)
- M M Hussain
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, PA 19129, USA.
| |
Collapse
|