1
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
2
|
Ma Z, Zhong J, Tu W, Li S, Chen J. The functions of apolipoproteins and lipoproteins in health and disease. MOLECULAR BIOMEDICINE 2024; 5:53. [PMID: 39465476 PMCID: PMC11513782 DOI: 10.1186/s43556-024-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Lipoproteins and apolipoproteins are crucial in lipid metabolism, functioning as essential mediators in the transport of cholesterol and triglycerides and being closely related to the pathogenesis of multiple systems, including cardiovascular. Lipoproteins a (Lp(a)), as a unique subclass of lipoproteins, is a low-density lipoprotein(LDL)-like particle with pro-atherosclerotic and pro-inflammatory properties, displaying high heritability. More and more strong evidence points to a possible link between high amounts of Lp(a) and cardiac conditions like atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis (AS), making it a risk factor for heart diseases. In recent years, Lp(a)'s role in other diseases, including neurological disorders and cancer, has been increasingly recognized. Although therapies aimed at low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) have achieved significant success, elevated Lp(a) levels remain a significant clinical management problem. Despite the limited efficacy of current lipid-lowering therapies, major clinical advances in new Lp(a)-lowering therapies have significantly advanced the field. This review, grounded in the pathophysiology of lipoproteins, seeks to summarize the wide-ranging connections between lipoproteins (such as LDL-C and HDL-C) and various diseases, alongside the latest clinical developments, special emphasis is placed on the pivotal role of Lp(a) in cardiovascular disease, while also examining its future potential and mechanisms in other conditions. Furthermore, this review discusses Lp(a)-lowering therapies and highlights significant recent advances in emerging treatments, advocates for further exploration into Lp(a)'s pathogenic mechanisms and its potential as a therapeutic target, proposing new secondary prevention strategies for high-risk individuals.
Collapse
Affiliation(s)
- Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wei Tu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiliang Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
3
|
Climent E, González-Guerrero A, Marco-Benedí V, García-Andreu MDM, Mediavilla-García JD, Suárez-Tembra M, Benaiges D, Pintó X, Pedro-Botet J. Resilient Older Subjects with Heterozygous Familial Hypercholesterolemia, Baseline Differences and Associated Factors. Int J Mol Sci 2024; 25:4831. [PMID: 38732050 PMCID: PMC11084769 DOI: 10.3390/ijms25094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite elevated low-density lipoprotein (LDL) cholesterol levels, some older subjects with heterozygous familial hypercholesterolemia (HeFH) do not develop atherosclerotic cardiovascular disease (ACVD) during their lifetime. The factors related to this resilient state have not been fully established. The aim of this study was to evaluate differential characteristics between older HeFH subjects with and without ACVD and factors associated with the presence of ACVD. Subjects were part of the Spanish Atherosclerosis Society Dyslipidemia Registry, and those ≥ 70 years old and with HeFH were included. Baseline characteristics of these subjects with and without ACVD were compared. A multivariate analysis was performed to assess factors associated with the presence of ACVD. A total of 2148 subjects with HeFH were included. Resilient subjects were mostly female, younger and presented fewer comorbidities with respect to the ACVD group. Subjects without ACVD had higher baseline high-density lipoprotein (HDL) cholesterol (55.8 ± 17.1 vs. 47.9 ± 15.4 mg/dL; p < 0.001) and lower lipoprotein(a) [Lp(a)] (53.4 ± 67.9 vs. 66.6 ± 85.6 mg/dL; p < 0.001) levels with respect to those in the ACVD group. Lp(a) and the presence of ≥3 risk factors were associated with the presence of ACVD.
Collapse
Affiliation(s)
- Elisenda Climent
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital del Mar, 08003 Barcelona, Spain (J.P.-B.)
| | | | - Victoria Marco-Benedí
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | | | | | | | - David Benaiges
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital del Mar, 08003 Barcelona, Spain (J.P.-B.)
| | - Xavier Pintó
- Lipid and Cardiovascular Risk Unit, Department of Internal Medicine, Hospital Universitario de Bellvitge, 08907 Barcelona, Spain;
| | - Juan Pedro-Botet
- Lipid and Vascular Risk Unit, Department of Endocrinology and Nutrition, Hospital del Mar, 08003 Barcelona, Spain (J.P.-B.)
| |
Collapse
|
4
|
Sanguino Otero J, Rodríguez-Jiménez C, Mostaza Prieto J, Rodríguez-Antolín C, Carazo Alvarez A, Arrieta Blanco F, Rodríguez-Nóvoa S. Functional Analysis of 3'UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia. Hum Mutat 2024; 2024:9964734. [PMID: 40225943 PMCID: PMC11918801 DOI: 10.1155/2024/9964734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 04/15/2025]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3'UTR regions of LDLR and PCSK9. However, 3'UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3'UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3'UTR-LDLR and 8 at 3'UTR-PCSK9. The variants' pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G > C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3'UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.
Collapse
Affiliation(s)
- Javier Sanguino Otero
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Ana Carazo Alvarez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Arrieta Blanco
- Department of Endocrinology and Nutrition, Hospital Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
5
|
Wang M, Hong L, Cai L, Zhang Z, Jiang N, Chen Y, Ying Q, Kong L, Wei Z, Xu Y, Jin L. Novel LDLR variants affecting low density lipoprotein metabolism identified in familial hypercholesterolemia. Mol Biol Rep 2024; 51:153. [PMID: 38236436 DOI: 10.1007/s11033-023-09169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant disease of lipid metabolism mainly caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Genetic detection of patients with FH help with precise diagnosis and treatment, thus reducing the risk of coronary heart disease (CHD) and other related diseases. The study aimed to identify the causative gene mutations in a Chinese FH family and reveal the pathogenicity and the mechanism of these mutations. METHODS AND RESULTS Whole exome sequencing was performed in a patient with severe lipid metabolism dysfunction seeking fertility guidance from a Chinese FH family. Two LDLR variants c.1875 C > G (p.N625K; novel variant) and c.1448G > A (p.W483*) were identified in the family. Wildtype and mutant LDLR constructs were established by the site-direct mutagenesis technique. Functional studies were carried out by cell transfection to evaluate the impact of detected variants on LDLR activity. The two variants were proven to affect LDL uptake and binding, resulting in cholesterol clearance reduction to different degrees. According to The American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines, the W483* variant was classified as "Pathogenic", while the N625K variant as "VUS". CONCLUSIONS Our results provide novel experimental evidence of functional alteration by LDLR variants identified in our study and expand the mutational spectrum of LDLR mutation induced FH.
Collapse
Affiliation(s)
- Miao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ling Hong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Luyi Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ningdong Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yijing Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lingpeng Kong
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Rodríguez-Jiménez C, de la Peña G, Sanguino J, Poyatos-Peláez S, Carazo A, Martínez-Hernández PL, Arrieta F, Mostaza JM, Gómez-Coronado D, Rodríguez-Nóvoa S. Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients. Int J Mol Sci 2023; 24:ijms24087635. [PMID: 37108800 PMCID: PMC10142790 DOI: 10.3390/ijms24087635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mutations in APOB are the second most frequent cause of familial hypercholesterolemia (FH). APOB is highly polymorphic, and many variants are benign or of uncertain significance, so functional analysis is necessary to ascertain their pathogenicity. Our aim was to identify and characterize APOB variants in patients with hypercholesterolemia. Index patients (n = 825) with clinically suspected FH were analyzed using next-generation sequencing. In total, 40% of the patients presented a variant in LDLR, APOB, PCSK9 or LDLRAP1, with 12% of the variants in APOB. These variants showed frequencies in the general population lower than 0.5% and were classified as damaging and/or probably damaging by 3 or more predictors of pathogenicity. The variants c.10030A>G;p.(Lys3344Glu) and c.11401T>A;p.(Ser3801Thr) were characterized. The p.(Lys3344Glu) variant co-segregated with high low-density lipoprotein (LDL)-cholesterol in 2 families studied. LDL isolated from apoB p.(Lys3344Glu) heterozygous patients showed reduced ability to compete with fluorescently-labelled LDL for cellular binding and uptake compared with control LDL and was markedly deficient in supporting U937 cell proliferation. LDL that was carrying apoB p.(Ser3801Thr) was not defective in competing with control LDL for cellular binding and uptake. We conclude that the apoB p.(Lys3344Glu) variant is defective in the interaction with the LDL receptor and is causative of FH, whereas the apoB p.(Ser3801Thr) variant is benign.
Collapse
Affiliation(s)
- Carmen Rodríguez-Jiménez
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Javier Sanguino
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Sara Poyatos-Peláez
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Ana Carazo
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Pedro L Martínez-Hernández
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Francisco Arrieta
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - José M Mostaza
- Lipid and Vascular Unit, Department of Internal Medicine, Hospital Carlos III-La Paz, Sinesio Delgado, 10, 28029 Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| |
Collapse
|
7
|
Leren TP, Bogsrud MP. Cascade screening for familial hypercholesterolemia should be organized at a national level. Curr Opin Lipidol 2022; 33:231-236. [PMID: 35942821 DOI: 10.1097/mol.0000000000000832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Patients with familial hypercholesterolemia (FH) have a markedly increased risk of premature cardiovascular disease. However, there are effective lipid-lowering therapies available to reduce the risk of cardiovascular disease. This makes it important to diagnose these patients. The most cost-effective strategy to diagnose patients with FH is to perform cascade screening. However, cascade screening as part of ordinary healthcare has not been very successful. Thus, there is a need to implement more efficient cascade screening strategies. RECENT FINDINGS Cascade screening for FH should be organized at a national level and should be run by dedicated health personnel such as genetic counsellors. As part of a national organization a national registry of patients with FH needs to be established. Moreover, for cascade screening to be effective, diagnosis of FH must be based on identifying the underlying mutation. There should preferably only be one genetics centre in each country for diagnosing FH, and this genetics centre should be an integrated part of the national cascade screening program. SUMMARY Cascade screening for FH is very effective and should be organized at a national level. Even a modest national cascade screening program can result in a large number of patients being identified.
Collapse
Affiliation(s)
- Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
8
|
Ghaleb Y, Elbitar S, Philippi A, El Khoury P, Azar Y, Andrianirina M, Loste A, Abou-Khalil Y, Nicolas G, Le Borgne M, Moulin P, Di-Filippo M, Charrière S, Farnier M, Yelnick C, Carreau V, Ferrières J, Lecerf JM, Derksen A, Bernard G, Gauthier MS, Coulombe B, Lütjohann D, Fin B, Boland A, Olaso R, Deleuze JF, Rabès JP, Boileau C, Abifadel M, Varret M. Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia. Metabolites 2022; 12:metabo12030262. [PMID: 35323704 PMCID: PMC8955453 DOI: 10.3390/metabo12030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.
Collapse
Affiliation(s)
- Youmna Ghaleb
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Sandy Elbitar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Anne Philippi
- Institut Cochin, Bâtiment Faculté Inserm U1016, Cnrs UMR8104, Université de Paris Faculté de Médecine, F-75014 Paris, France;
| | - Petra El Khoury
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Yara Azar
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Miangaly Andrianirina
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
| | - Alexia Loste
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Yara Abou-Khalil
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Gaël Nicolas
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
| | - Marie Le Borgne
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
| | - Philippe Moulin
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Mathilde Di-Filippo
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
- Hospices Civils de Lyon, Department of Biochemistry and Molecular Biology, F-69500 Bron, France
| | - Sybil Charrière
- Department of Endocrinology, Nutrition and Metabolic Diseases, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, F-69500 Bron, France; (P.M.); (S.C.)
- CarMen Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, F-69921 Oullins, France;
| | - Michel Farnier
- EA 7460 Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, F-21078 Dijon, France;
| | - Cécile Yelnick
- Département de Médecine Interne et Immunologie Clinique Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO) CHU de Lille, F-59037 Lille, France;
- U1167 Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm CHU de Lille, Lille University, F-59000 Lille, France
| | - Valérie Carreau
- Department of Endocrinology and Prevention of Cardiovascular Disease, Institute of Cardio Metabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, F-75005 Paris, France;
| | - Jean Ferrières
- Department of Cardiology, Toulouse Rangueil University Hospital, UMR 1295 INSERM, F-31400 Toulouse, France;
| | - Jean-Michel Lecerf
- Nutrition Department, Institut Pasteur de Lille, CEDEX, F-59019 Lille, France;
| | - Alexa Derksen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H3A 0G4, Canada; (A.D.); (G.B.)
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Pediatrics, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0G4, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Marie-Soleil Gauthier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (M.-S.G.); (B.C.)
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, F-53127 Bonn, Germany;
| | - Bertrand Fin
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Laboratory of Excellence GENMED (Medical Genomics), Paris-Saclay University, F-91057 Evry, France; (B.F.); (A.B.); (R.O.); (J.-F.D.)
- Centre d’Etude du Polymorphisme Humain, Fondation Jean Dausset, F-75019 Paris, France
| | - Jean-Pierre Rabès
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Department of Biochemistry and Molecular Genetics, Ambroise Paré University Hospital (APHP), Université Paris-Saclay, F-92104 Boulogne-Billancourt, France
- UFR (Unite de Formation et de Recherche) Simone Veil-Santé, Versailles-Saint-Quentin-en-Yvelines University, F-78180 Montigny-le-Bretonneux, France
| | - Catherine Boileau
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Genetic Department, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Marianne Abifadel
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé (PTS), Saint-Joseph University, Beirut 1004 2020, Lebanon
| | - Mathilde Varret
- INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; (Y.G.); (S.E.); (P.E.K.); (Y.A.); (M.A.); (A.L.); (Y.A.-K.); (M.L.B.); (J.-P.R.); (C.B.); (M.A.)
- Laboratory for Vascular Translational Science, Paris Cité University, Sorbonne Paris Nord University, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-1402-57521
| |
Collapse
|
9
|
Gálvez AS, Ramírez H, Placencia P, Rojas C, Urzúa X, Kalergis AM, Salazar LA, Escobar-Vera J. Single Nucleotide Polymorphisms in Apolipoprotein B, Apolipoprotein E, and Methylenetetrahydrofolate Reductase Are Associated With Serum Lipid Levels in Northern Chilean Subjects. A Pilot Study. Front Genet 2021; 12:640956. [PMID: 34616421 PMCID: PMC8488364 DOI: 10.3389/fgene.2021.640956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Characterization of allelic variants is relevant to demonstrate associations among genetic background and susceptibility to develop cardiovascular diseases, which are the main cause of death in Chile. Association of APOB, APOE, and MTHFR polymorphisms with higher lipid levels and the risk of developing hypertension and cardiovascular diseases have been described. Thus, the aim of this study was to assess genotype distribution and relative allelic frequency of ApoB rs693, ApoE rs7412, ApoE rs429358, MTHFR rs1801131, and MTHFR rs1801133 allelic variants and their effects on lipid profile in young healthy men and women from Northern Chile. A group of 193 healthy subjects were enrolled for this study. Genotyping of rs693 (APOB), rs7412 and rs429358 (APOE), and rs1801131 and rs1801133 (MTHFR) polymorphisms were performed by real time PCR. In addition, lipid profiles were determined and associated to genetic data. The genotype distribution was APOB rs693 (CC = 37%, CT = 41%, and TT = 22%), APOE rs7412/rs429358 (E4 = 0.06, E3 = 0.91, and E2 = 0.03), MTHFR rs1801131 (AA = 57%, AC = 30%, and CC = 13%), and MTHFR rs1801133 (CC = 20%, CT = 47%, and TT = 33%). The association of the genetic variants with plasma lipid levels showed that women, but not men, carrying APOB mutated allele (T) and Apo E4 allele presented lower values of total cholesterol when compared with C/C homozygous genotype or E3 allele, respectively (p < 0.05). In addition, a subgroup analysis revealed that ApoB C/C homozygous women exhibited higher values of HDL-C when compared with men carrying identical genotype (p < 0.01). On the other hand, women carrying E4 allele exhibited lower values of triglycerides when compared with male carrying identical genotype (p < 0.05). Finally, women carrying mutate allele (C) for MTHFR rs1801131 showed lower levels of triglycerides when compared with A/A homozygous genotype (p < 0.05) and lower levels of LDL-C for MTHFR rs1801133 in females carrying (T) allele when compared with males carrying identical genotype (p < 0.05). In summary, the present data showed that APOB, APOE, and MTHFR single nucleotide polymorphisms are associated to lipid levels in a gender-dependent manner among healthy subjects from Northern Chile, especially in women.
Collapse
Affiliation(s)
- Anita S Gálvez
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo Ramírez
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo Placencia
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudio Rojas
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Ximena Urzúa
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy (MIII), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Salazar
- Departamento de Ciencias Básicas, Facultad de Medicina, Centro de Biología Molecular & Farmacogenética, Universidad de La Frontera, Temuco, Chile
| | - Jorge Escobar-Vera
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
10
|
The importance of cascade genetic screening for diagnosing autosomal dominant hypercholesterolemia: Results from twenty years of a national screening program in Norway. J Clin Lipidol 2021; 15:674-681. [PMID: 34479846 DOI: 10.1016/j.jacl.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The most cost-effective strategy to diagnose patients with autosomal dominant hypercholesterolemia (ADH) is to perform cascade genetic screening. OBJECTIVE To present the cascade genetic screening program for ADH in Norway. METHODS A national cascade genetic screening program for ADH in Norway has been operating at Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital for twenty years. This program has been run by just one genetic counsellor. We now present the main findings of this cascade genetic screening program. RESULTS After genetic counselling, 8182 at-risk relatives have consented to genetic testing for the mutation that causes ADH in the family. Of these, 3076 (37.6%) relatives have tested positive. Among mutation-positive relatives 31.3% were on lipid-lowering therapy at the time of genetic testing. However, only 9.8% of these relatives had a value for low density lipoprotein (LDL) cholesterol below 2.5 mmol/l (97 mg/dl). At follow-up six months after genetic testing, reductions in the levels of total serum cholesterol and LDL cholesterol of 12% and 17%, respectively were observed. A total of 8811 ADH heterozygotes have been diagnosed in Norway. Thus, the number of patients diagnosed by this modest cascade genetic screening program constitutes 35% of all Norwegian ADH patients provided with a molecular genetic diagnosis. CONCLUSION Cascade genetic screening for ADH is very effective and should be organized at a national level. Even a modest cascade genetic screening program with small resources, can result in a large number of patients being identified.
Collapse
|
11
|
Pedro-Botet J, Climent E, Benaiges D. Familial Hypercholesterolemia: Do HDL Play a Role? Biomedicines 2021; 9:biomedicines9070810. [PMID: 34356876 PMCID: PMC8301335 DOI: 10.3390/biomedicines9070810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) in heterozygous familial hypercholesterolemia (HeFH), the most frequent monogenic disorder of human metabolism, is largely driven by low-density lipoprotein (LDL) cholesterol concentrations. Since the CVD rate differs considerably in this population, beyond the lifetime LDL cholesterol vascular accumulation, other classical risk factors are involved in the high cardiovascular risk of HeFH. Among other lipoprotein disturbances, alterations in the phenotype and functionality of high-density lipoproteins (HDL) have been described in HeFH patients, contributing to the presence and severity of CVD. In fact, HDL are the first defensive barrier against the burden of high LDL cholesterol levels owing to their contribution to reverse cholesterol transport as well as their antioxidant and anti-inflammatory properties, among others. In this context, the present narrative review aimed to focus on quantitative and qualitative abnormalities in HDL particles in HeFH, encompassing metabolic, genetic and epigenetic aspects.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-932483902; Fax: +34-932483254
| | - Elisenda Climent
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
12
|
Nikasa P, Tricot T, Mahdieh N, Baharvand H, Totonchi M, Hejazi MS, Verfaillie CM. Patient-Specific Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells as a Model to Study Autosomal Recessive Hypercholesterolemia. Stem Cells Dev 2021; 30:714-724. [PMID: 33938231 DOI: 10.1089/scd.2020.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autosomal recessive hypercholesterolemia (ARH) is a rare monogenic disorder caused by pathogenic variants in the low-density lipoprotein receptor (LDLR) adaptor protein 1 (LDLRAP1) gene, encoding for the LDLRAP1 protein, which impairs internalization of hepatic LDLR. There are variable responses of ARH patients to treatment and the pathophysiological mechanism(s) for this variability remains unclear. This is in part caused by absence of reliable cellular models to evaluate the effect of LDLRAP1 mutations on the LDLRAP1 protein function and its role in LDLR internalization. Here, we aimed to validate patient-specific induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) as an appropriate tool to model ARH disease. Fibroblasts from an ARH patient carrying the recently reported nonsense mutation, c.649G>T, were reprogrammed into hiPSCs using Sendai viral vectors. In addition, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create an LDLRAP1 gene (also known as ARH) knockout in two different human iPSC lines. ARH patient-derived iPSCs, ARH-knockout iPSC lines, and control iPSCs were efficiently differentiated into HLCs. Western blot analysis demonstrated the absence of LDLRAP1 in HLCs derived from patient and knockout iPSCs, and this was associated with a decreased low-density lipoprotein cholesterol (LDL-C) uptake in ARH-mutant/knockout HLCs compared to control HLCs. In conclusion, we determined that the recently described c.649G>T point mutation in LDLRAP1 induces absence of the LDLRAP1 protein, similar to what is seen following LDLRAP1 knockout. This causes a decreased, although not fully absent, LDL-uptake in ARH-mutant/knockout HLCs. As knockout of LDLRAP1 or presence of the c.649G>T point mutation results in absence of LDLRAP1 protein, residual LDL uptake might be regulated by LDLRAP1-independent internalization mechanisms. Patient-specific iPSC-derived HLCs can therefore be a powerful tool to further decipher LDLRAP1 mutations and function of the protein.
Collapse
Affiliation(s)
- Parisa Nikasa
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tine Tricot
- Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Catherine M Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium
| |
Collapse
|
13
|
Fantino M, Paquette M, Bernard S, Baass A. ANKS1A genotype predicts cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol 2021; 15:602-607. [PMID: 34130940 DOI: 10.1016/j.jacl.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The rs17609940 variant of the ANKS1A gene has been associated with coronary artery disease (CAD) risk in genome-wide association studies (GWAS), but no study has yet replicated this association in familial hypercholesterolemia (FH) population. OBJECTIVE The aim of this study is to validate the association between the rs17609940 genotype and incident major adverse cardiovascular events (MACE) in a cohort of genetically-confirmed FH patients. METHODS This association study includes 725 genetically-confirmed FH patients with a median observation period of 50 years (33 805 person-years). MACE were defined as either myocardial infarction (MI), stroke, coronary revascularization, hospital admission for unstable angina and cardiovascular disease (CVD) death. The rs17609940 genotype was imputed with an imputation quality of 0.831 following an exome chip genotyping method (Illumina). RESULTS The cohort comprised 469 subjects with GG genotype, 218 subjects with CG genotype and 38 subjects with CC genotype. All baseline characteristics were balanced between the three groups. The CC genotype of rs17609940 was associated with a significant lower risk of incident MACE compared to GG and GC carriers in a recessive model (HR 0.30, 95% CI 0.11-0.82, p=0.02). Even after correction for confounding cardiovascular risk factors, the association between the ANKS1A polymorphism and incident MACE remained strongly significant. CONCLUSIONS We demonstrated that the rs17609940 SNP of the ANKS1A gene is associated with the risk of incident MACE in FH subjects. The exact mechanism underlying this association remains to be clarified.
Collapse
Affiliation(s)
- Manon Fantino
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
| | - Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Division of Endocrinology, Université de Montreal, Québec, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec, Canada.
| |
Collapse
|
14
|
Climent E, Marco-Benedí V, Benaiges D, Pintó X, Suárez-Tembra M, Plana N, Lafuente H, Ortega-Martínez de Victoria E, Brea-Hernando Á, Vila À, Civeira F, Pedro-Botet J. Impact of statin therapy on LDL and non-HDL cholesterol levels in subjects with heterozygous familial hypercholesterolaemia. Nutr Metab Cardiovasc Dis 2021; 31:1594-1603. [PMID: 33744038 DOI: 10.1016/j.numecd.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular risk in heterozygous familial hypercholesterolaemia (HeFH) is driven by LDL cholesterol levels. Since lipid response to statin therapy presents individual variation, this study aimed to compare mean LDL and non-HDL cholesterol reductions and their variability achieved with different types and doses of the most frequently prescribed statins. METHODS AND RESULTS Among primary hypercholesterolaemia cases on the Spanish Arteriosclerosis Society registry, 2894 with probable/definite HeFH and complete information on drug therapy and lipid profile were included. LDL cholesterol reduction ranged from 30.2 ± 17.0% with simvastatin 10 mg to 48.2 ± 14.7% with rosuvastatin 40 mg. After the addition of ezetimibe, an additional 26, 24, 21 and 24% reduction in LDL cholesterol levels was obtained for rosuvastatin, 5, 10, 20 and 40 mg, respectively. Subjects with definite HeFH and a confirmed genetic mutation had a more discrete LDL cholesterol reduction compared to definite HeFH subjects with no genetic mutation. A suboptimal response (<15% or <30% reduction in LDL cholesterol levels, respectively with low-/moderate-intensity and high-intensity statin therapy) was observed in 13.5% and, respectively, 20.3% of the subjects. CONCLUSION According to the LDL cholesterol reduction in HeFH patients, the ranking for more to less potent statins was rosuvastatin, atorvastatin and simvastatin; however, at maximum dosage, atorvastatin and rosuvastatin were nearly equivalent. HeFH subjects with positive genetic diagnosis had a lower lipid-lowering response. Approximately 1 in 5 patients on high-intensity statin therapy presented a suboptimal response.
Collapse
Affiliation(s)
- Elisenda Climent
- Endocrinology and Nutrition Department. Hospital Del Mar; Paseo Marítimo, 25-29; E-08003, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona. Campus Universitari Mar; Dr. Aiguader, 80; E-08003, Barcelona, Spain
| | - Victoria Marco-Benedí
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Universidad de Zaragoza, Zaragoza, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department. Hospital Del Mar; Paseo Marítimo, 25-29; E-08003, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona. Campus Universitari Mar; Dr. Aiguader, 80; E-08003, Barcelona, Spain; Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80; E-08003, Barcelona, Spain
| | - Xavier Pintó
- Lipid and Vascular Risk Unit, Department of Internal Medicine, Hospital de Bellvitge, CIBEROBN, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan. IISPV, CIBERDEM, Universitat Rovira i Virgili, Reus, Spain
| | - Hannia Lafuente
- Lipid and Vascular Risk Unit, Department of Internal Medicine, Hospital de Bellvitge, CIBEROBN, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ángel Brea-Hernando
- Lipid Unit, Department of Internal Medicine, Hospital San Pedro, Logroño, Spain
| | - Àlex Vila
- Lipid Unit, Department of Internal Medicine, Hospital de Figueres, Figueres, Girona, Spain
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Pedro-Botet
- Endocrinology and Nutrition Department. Hospital Del Mar; Paseo Marítimo, 25-29; E-08003, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona. Campus Universitari Mar; Dr. Aiguader, 80; E-08003, Barcelona, Spain; Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80; E-08003, Barcelona, Spain.
| |
Collapse
|
15
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Leren TP, Bogsrud MP. Molecular genetic testing for autosomal dominant hypercholesterolemia in 29,449 Norwegian index patients and 14,230 relatives during the years 1993-2020. Atherosclerosis 2021; 322:61-66. [PMID: 33740630 DOI: 10.1016/j.atherosclerosis.2021.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS In this study, we present the status regarding molecular genetic testing for mutations in the genes encoding the low density lipoprotein receptor (LDLR), apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type 9 (PCSK9) as causes of autosomal dominant hypercholesterolemia (ADH) in Norway. METHODS We have extracted data from the laboratory information management system at Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital for the period 1993-2020. This laboratory is the sole laboratory performing molecular genetic testing for ADH in Norway. RESULTS A total of 29,449 unrelated hypercholesterolemic patients have been screened for mutations in the LDLR gene, in the APOB gene and in the PCSK9 gene. Of these, 2818 (9.6%) were heterozygotes and 11 were homozygotes or compound heterozygotes. Most of the 264 different mutations identified were found in the LDLR gene. Only two and three mutations were found in the APOB gene or in the PCSK9 gene, respectively. Several founder mutations were identified. After testing of 14,230 family members, a total of 8811 heterozygous patients have been identified. Of these, 94.0% had a mutation in the LDLR gene, 5.4% had a mutation in the APOB gene and 0.6% had a mutation in the PCSK9 gene. CONCLUSIONS A large proportion of Norwegian ADH patients have been provided with a molecular genetic diagnosis. Norway is probably only second to the Netherlands in this respect. A molecular genetic diagnosis may form the basis for starting proper preventive measures and for identifying affected family members by cascade genetic screening.
Collapse
Affiliation(s)
- Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Mariano C, Alves AC, Medeiros AM, Chora JR, Antunes M, Futema M, Humphries SE, Bourbon M. The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. Clin Genet 2021; 97:457-466. [PMID: 31893465 DOI: 10.1111/cge.13697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolaemia (FH) is a monogenic disorder characterised by high low-density lipoprotein cholesterol (LDL-C) concentrations and increased cardiovascular risk. However, in clinically defined FH cohorts worldwide, an FH-causing variant is only found in 40%-50% of the cases. The aim of this work was to characterise the genetic cause of the FH phenotype in Portuguese clinical FH patients. Between 1999 and 2017, 731 index patients (311 children and 420 adults) who met the Simon Broome diagnostic criteria had been referred to our laboratory. LDLR, APOB, PCSK9, APOE, LIPA, LDLRAP1, ABCG5/8 genes were analysed by polymerase chain reaction amplification and Sanger sequencing. The 6-SNP LDL-C genetic risk score (GRS) for polygenic hypercholesterolaemia was validated in the Portuguese population and cases with a GRS over the 25th percentile were considered to have a high likelihood of polygenic hypercholesterolaemia. An FH-causing mutation was found in 39% of patients (94% in LDLR, 5% APOB and 1% PCSK9), while at least 29% have polygenic hypercholesterolaemia and 1% have other lipid disorders. A genetic cause for the FH phenotype was found in 503 patients (69%). All known causes of the FH phenotype should be investigated in FH cohorts to ensure accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Cibelle Mariano
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Catarina Alves
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Margarida Medeiros
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Joana Rita Chora
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Marília Antunes
- Department of Statistics and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Centre of Statistics and its Applications - CEAUL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Mafalda Bourbon
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
18
|
Béland-Bonenfant S, Paquette M, Fantino M, Bourque L, Saint-Pierre N, Baass A, Bernard S. Montreal-FH-SCORE Predicts Coronary Artery Calcium Score in Patients With Familial Hypercholesterolemia. CJC Open 2021; 3:41-47. [PMID: 33458631 PMCID: PMC7801205 DOI: 10.1016/j.cjco.2020.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a monogenic disease characterized by a high concentration of low-density lipoprotein cholesterol. This population is considered to be at high cardiovascular risk; however, disease evolution remains heterogeneous among individuals. The coronary artery calcium (CAC) score is currently the best predictor of incidental major cardiovascular events in primary prevention in the general population. Few studies have described the CAC score in FH populations. METHODS The objective of our study was to determine the predictors of the CAC score in FH patients. We retrospectively studied FH patients followed at the Montreal Clinical Research Institute (IRCM) Lipid Clinic who had a cardiac scan for CAC score, using the Agatston method, between 2013 and 2019. RESULTS Final analysis included 62 FH patients. Mean age was 48 ± 14 years old, and 48% were men. Overall, 25 patients had a CAC score of 0 (40%), and 37 patients had a nonzero CAC score (60%). Sex, age, Montreal-FH-SCORE (MFHS), waist circumference, and statin exposure in years were significant predictors (P ≤ 0,05) of a nonzero CAC score in a univariate model. MFHS was the only factor that remained significant in a multivariate model (odds ratio 1.34, 95% confidence interval 1.11-1.61, P = 0.002). CONCLUSIONS In conclusion, we found that MFHS, which includes traditional cardiovascular risk factors, was a predictor of a nonzero CAC score in FH patients. This finding suggests that MFHS may play a role in determining the cardiovascular risk and therefore the intensity of treatment in FH patients.
Collapse
Affiliation(s)
- Sarah Béland-Bonenfant
- Department of Medicine, Division of Endocrinology, University of Montreal, Montreal, Quebec, Canada
| | - Martine Paquette
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Manon Fantino
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Lucienne Bourque
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Nathalie Saint-Pierre
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Alexis Baass
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Medicine, Divisions Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Sophie Bernard
- Department of Medicine, Division of Endocrinology, University of Montreal, Montreal, Quebec, Canada
- Lipids, nutrition and cardiovascular prevention clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Losik EA, Yakushina II, Skhirtladze MR, Balahonova NP, Kerchev VV, Garanina IA. [Clinical case of combined genetic pathology in a patient]. TERAPEVT ARKH 2020; 92:180-184. [PMID: 33720592 DOI: 10.26442/00403660.2020.12.200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
Family hypercholesterolemia (HSX) is a form of genetically deterministic increase in blood lipid levels associated with a high risk of cardiovascular disease, usually at a young age. HSX is a common genetic disease found in the general population in most countries in 1:500 people. Clinically xantomas are found in achilles tendor and wrist flexors, lipoid arc of the cornea, concentration of total cholesterol and low-density lipoproteins is 4.911.6 mmol/l. Gilberts syndrome is a hereditary benign hyperbilirubinium, associated with a decrease in the functional activity of the liver enzyme uridinfosfat-glucuronosil transferase. Clinically, this syndrome appers in intermittent jaundice, which is provoked by physical activity, consumption of alcoholic beverages, insulation and an increase in the level of indirect bilirubin within 20100 micromol/ml. The article presents a rare clinical case of genetic combination of HSC SSC and Gilbert syndrome a young patient has and discusses the elevated bilirubin levels protective role in the atherosclerosis progression in Gilbert syndrome.
Collapse
Affiliation(s)
- E A Losik
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I I Yakushina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M R Skhirtladze
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N P Balahonova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V V Kerchev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I A Garanina
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
20
|
Mohamadinarab M, Yekaninejad MS, Siassi F, Koohdani F. Association between dietary inflammatory index and lipid profiles with consideration of Apo B Ins/ Del SNP in type 2 diabetic patients. Meta Gene 2020; 26:100811. [DOI: 10.1016/j.mgene.2020.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
21
|
Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Front Genet 2020; 11:570355. [PMID: 33173538 PMCID: PMC7538668 DOI: 10.3389/fgene.2020.570355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal genetic disease characterized by high serum low-density lipoprotein (LDL) content leading to premature coronary artery disease. The main genetic and molecular causes of FH are mutations in low-density lipoprotein receptor gene (LDLR) resulting in the non-clearance of LDL from the blood by hepatocytes and consequently the formation of plaques. LDLR is synthesized and glycosylated in the endoplasmic reticulum (ER) and then transported to the plasma membrane via Golgi. It is estimated that more than 50% of reported FH-causing mutations in LDLR result in misfolded proteins that are transport-defective and hence retained in ER. ER accumulation of misfolded proteins causes ER-stress and activates unfolded protein response (UPR). UPR aids protein folding, blocks further protein synthesis, and eliminates misfolded proteins via ER-associated degradation (ERAD) to alleviate ER stress. Various studies demonstrated that ER-retained LDLR mutants are subjected to ERAD. Interestingly, chemical chaperones and genetic or pharmacological inhibition of ERAD have been reported to rescue the transport defective mutant LDLR alleles from ERAD and restore their ER-Golgi transport resulting in the expression of functional plasma membrane LDLR. This suggests the possibility of pharmacological modulation of proteostasis in the ER as a therapeutic strategy for FH. In this review, we picture a detailed analysis of UPR and the ERAD processes activated by ER-retained LDLR mutants associated with FH. In addition, we discuss and critically evaluate the potential role of chemical chaperones and ERAD modulators in the therapeutic management of FH.
Collapse
Affiliation(s)
- Deepu Oommen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Aseel A. Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
22
|
Stefanutti C, Mesce D, Pacella F, Di Giacomo S, Turchetti P, Forastiere M, Trovato Battagliola E, La Torre G, Smaldone G, Pacella E. Optical coherence tomography of retinal and choroidal layers in patients with familial hypercholesterolaemia treated with lipoprotein apheresis. ATHEROSCLEROSIS SUPP 2020; 40:49-54. [PMID: 31818450 DOI: 10.1016/j.atherosclerosissup.2019.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Detect and quantify morpho-functional alterations of the retina and choroid in patients affected by familial hypercholesterolemia (FH) treated with lipoprotein apheresis (LA) using optic coherence tomography (OCT) and optic coherence tomography-angriography (OCTA). DESIGN Observational study. SUBJECTS To be diagnosed: A group of 20 patients (40 eyes) being clinically and genetically diagnosed as FH and under treatment (FH-Group)", for at least 2 years, was compared to a control group of 20 healthy subjects (40 eyes), with a normal lipid profile and no ocular disease (CT-Group). METHODS Participants were studied with the slit lamp, binocular indirect fundoscopy, OCT and OCTA. MAIN OUTCOME MEASURES Best corrected visual acuity (BVCA), spherical equivalent (SE), intraocular pressure (IOP), central macular thickness (CMT), choroidal thickness (CHT), retinal nerve fiber layer in four quadrants (RNFL (Superior = Sup; Inferior = Inf; Nasal = Nas Temporal = Temp), and the mean value across the four quadrants (RNFL G), foveal avascular zone (FAZ) and vascular density (VD). RESULTS FH subjects had smaller RNFL superiorly (108 ± 19,38 μm OD/111 ± 16,56 μm OS FH-Group vs 127 ± 7,42 μm OD/129 ± 14,64 μm OS CT-Group; P < 0,001 for both OD and OS) and inferiorly (108 ± 23,58 μm OD/115 ± 17,33 μm OS FH-Group vs 128 ± 18,15 μm OD/133 ± 17,38 μm OS CT-Group; P = 0,002 OD; P = 0,001 OS). G RNFL was consequently smaller (93 ± 12,94 μm OD/94 ± 10,49 μm OS FH-Group vs 101 ± 9,01 μm OD/101 ± 10,20 μm OS CT-Group; P = 0,03 OD; P = 0,02 OS). FH subjects had a larger FAZ (0,31 ± 0,08 mm2 OD/0,33 ± 0,10 mm2 in OS FH-Group vs 0,21 ± 0,05 mm2 OD/0,21 ± 0,07 mm2 OS CT-Group; P < 0,001 OD; P = 0,002 OS). CONCLUSIONS Early signs of retinal vessel damage in FH patients can be detected and quantified with OCT and OCTA.
Collapse
Affiliation(s)
- Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, 'Umberto I' Hospital, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Dario Mesce
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, 'Umberto I' Hospital, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Fernanda Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy
| | - Serafina Di Giacomo
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, 'Umberto I' Hospital, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Paolo Turchetti
- National Institute for Health, Migration and Poverty (INMP/NIHMP), Rome, Italy
| | - Michele Forastiere
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy
| | | | - Giuseppe La Torre
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Italy
| | - Gianpaolo Smaldone
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy.
| |
Collapse
|
23
|
Alahakoon TI, Medbury HJ, Williams H, Lee VW. Lipid profiling in maternal and fetal circulations in preeclampsia and fetal growth restriction-a prospective case control observational study. BMC Pregnancy Childbirth 2020; 20:61. [PMID: 32000699 PMCID: PMC6993402 DOI: 10.1186/s12884-020-2753-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background While many risk factors for preeclampsia, such as increased body mass index, advanced maternal age, chronic hypertension, diabetes, are now established in clinical practice, maternal lipid profile has not been included in the risk assessment for preeclampsia. We aim to characterize the serum levels of Total Cholesterol (TC), High density lipoprotein (HDL), Low density lipoprotein (LDL), Triglycerides (TG), Apolipoprotein A1, Apolipoprotein B and their ratios TC/HDL and ApoB/ApoA1 in the maternal and fetal circulations of normal pregnancy, preeclampsia (PE), fetal growth restriction (FGR) and PE + FGR. Methods A prospective cross-sectional case control study was conducted measuring maternal and fetal lipid levels by enzymatic analysis and immune-turbidimetric enzymatic assays. FGR was defined by elevated umbilical artery Doppler resistance in association with estimated fetal weight < 10%. Kruskal Wallis non-parametric analysis of variance was used to test for homogeneity across the clinical groups for each of the variables, Mann-Whitney tests for pairwise comparisons and Spearman rank correlation were used to quantify gestational age-related changes. Results (1) TG levels were elevated in maternal PE and cord blood PE + FGR groups compared to normal pregnancies. (2) A statistically significant elevation of fetal ApoB levels was observed in PE, FGR and PE + FGR compared to normal pregnancies. Apolipoprotein levels A1 and B were not different between maternal groups. (3) TC, HDL, LDL and TC/HDL levels did not show any significant gestational variation or between clinical groups in the maternal or fetal circulation. Conclusions Elevation in maternal TG levels may have a role in the pathogenesis of PE. The implications of elevated maternal and fetal TG levels and elevated fetal Apolipoprotein B levels deserves further exploration of their role in long term cardiovascular risk in the mother as well as the offspring.
Collapse
Affiliation(s)
- Thushari I Alahakoon
- University of Sydney, Sydney Medical School, Sydney, NSW, Australia. .,Westmead Institute for Maternal and Fetal Medicine, Westmead Hospital, Westmead, NSW, Australia.
| | - Heather J Medbury
- University of Sydney, Sydney Medical School, Sydney, NSW, Australia.,Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Helen Williams
- University of Sydney, Sydney Medical School, Sydney, NSW, Australia.,Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Vincent W Lee
- University of Sydney, Sydney Medical School, Sydney, NSW, Australia.,Department of Renal Medicine, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
24
|
Perez-Calahorra S, Civeira F, Guallar-Castillón P, Pinto X, Banegas JR, Pedro-Botet J, Suarez-Tembra M, Mauri M, Soler C, Rodriguez-Artalejo F, Laclaustra M. Behavioural cardiovascular risk factors and prevalence of diabetes in subjects with familial hypercholesterolaemia. Eur J Prev Cardiol 2020; 27:1649-1660. [PMID: 31914797 DOI: 10.1177/2047487319896138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A low prevalence of type 2 diabetes mellitus has been reported in familial hypercholesterolaemia. Whether a healthier lifestyle could explain it has not been explored. This cross-sectional study determines the prevalence of lifestyle-related cardiovascular risk factors in heterozygous familial hypercholesterolaemia (HeFH) from the Dyslipidaemia Registry of the Spanish Atherosclerosis Society and in the ENRICA study, a representative sample of the adult Spanish general population, weighted to match the age and sex distribution of the HeFH sample. A total of 2185 HeFH patients and 11,856 individuals from ENRICA were included. HeFH had lower body mass index and fewer of them were smokers than in the reference population. A model adjusted for age, sex and body mass index showed that HeFH more frequently had cardiovascular disease (odds ratio (OR) 23.98; 95% confidence interval (CI) 18.40-31.23) and hypertension (OR 1.20; 95% CI 1.07-1.35), and took anti-hypertensive medication (OR 1.36; 95% CI 1.18-1.56) and anti-diabetic medication (OR 1.25; 95% CI 1.00-1.56), but less frequently were smokers (OR 0.79; 95% CI 0.71-0.89). In a HeFH subsample (n = 513) with complete blood glucose information, those patients without cardiovascular disease showed lower prevalence of smoking and type 2 diabetes mellitus, lower body mass index and glucose, and higher diastolic blood pressure than the Spanish population. The differences in type 2 diabetes mellitus were justified mostly by the difference in body mass index. Body mass index adjustment also showed higher prevalence of hypertension and use of anti-hypertensive drugs in HeFH. In summary, HeFH patients had lower body mass index, which may contribute to explaining the lower prevalence of diabetes, and lower current smoking but higher hypertension.
Collapse
Affiliation(s)
- Sofia Perez-Calahorra
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain.,Universidad de Zaragoza, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, University Autonoma of Madrid/Research Institute of University Hospital La Paz (IdiPAZ) and CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Xavier Pinto
- Lipid Unit and Vascular Risk Unit, Internal Medicine Service, Hospital de Bellvitge, CIBEROBN, Hospitalet de Llobregat, Barcelona, Spain
| | - José R Banegas
- Department of Preventive Medicine and Public Health, School of Medicine, University Autonoma of Madrid/Research Institute of University Hospital La Paz (IdiPAZ) and CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan Pedro-Botet
- Servicio Endocrinología y Nutrición, Hospital del Mar and Departamento de Medicina, Universitat Autònoma de Barcelona, Spain
| | | | - Marta Mauri
- Lipid Unit, Consorci Sanitari de Terrassa-Hospital de Terrassa, Spain
| | - Cristina Soler
- Internal Medicine Department, Hospital de Santa Caterina de Salt, Parc Hospitalari Martí i Julià, Girona, Spain
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, University Autonoma of Madrid/Research Institute of University Hospital La Paz (IdiPAZ) and CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Martín Laclaustra
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain.,Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
| |
Collapse
|
25
|
Morro B, Doherty MK, Balseiro P, Handeland SO, MacKenzie S, Sveier H, Albalat A. Plasma proteome profiling of freshwater and seawater life stages of rainbow trout (Oncorhynchus mykiss). PLoS One 2020; 15:e0227003. [PMID: 31899766 PMCID: PMC6941806 DOI: 10.1371/journal.pone.0227003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Mary K. Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | | | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
- NORCE AS, Universitetet i Bergen, Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, Universitetet i Bergen, Bergen, Norway
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
26
|
Garg A, Fazio S, Duell PB, Baass A, Udata C, Joh T, Riel T, Sirota M, Dettling D, Liang H, Garzone PD, Gumbiner B, Wan H. Molecular Characterization of Familial Hypercholesterolemia in a North American Cohort. J Endocr Soc 2019; 4:bvz015. [PMID: 31993549 DOI: 10.1210/jendso/bvz015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023] Open
Abstract
Background Familial hypercholesterolemia (FH) confers a very high risk of premature cardiovascular disease and is commonly caused by mutations in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9) and very rarely in LDLR adaptor protein 1 (LDLRAP1) genes. Objective To determine the prevalence of pathogenic mutations in the LDLR, APOB, and PCSK9 in a cohort of subjects who met Simon Broome criteria for FH and compare the clinical characteristics of mutation-positive and mutation-negative subjects. Methods Ninety-three men and 107 women aged 19 to 80 years from lipid clinics in the United States and Canada participated. Demographic and historical data were collected, physical examination performed, and serum lipids/lipoproteins analyzed. Targeted sequencing analyses of LDLR and PCSK9 coding regions and exon 26 of APOB were performed followed by detection of LDLR deletions and duplications. Results Disease-causing LDLR and APOB variants were identified in 114 and 6 subjects, respectively. Of the 58 LDLR variants, 8 were novel mutations. Compared with mutation-positive subjects, mutation-negative subjects were older (mean 49 years vs 57 years, respectively) and had a higher proportion of African Americans (1% vs 12.5%), higher prevalence of hypertension (21% vs 46%), and higher serum triglycerides (median 86 mg/dL vs 122 mg/dL) levels. Conclusions LDLR mutations were the most common cause of heterozygous FH in this North American cohort. A strikingly high proportion of FH subjects (40%) lacked mutations in known culprit genes. Identification of underlying genetic and environmental factors in mutation-negative patients is important to further our understanding of the metabolic basis of FH and other forms of severe hypercholesterolemia.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Sergio Fazio
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Alexis Baass
- Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | | | | | - Tom Riel
- Pfizer Inc., South San Francisco, California
| | | | | | - Hong Liang
- Pfizer Inc., South San Francisco, California
| | | | | | - Hong Wan
- Pfizer Inc., South San Francisco, California
| |
Collapse
|
27
|
Rodríguez-Jiménez C, Gómez-Coronado D, Frías Vargas M, Cerrato F, Lahoz C, Saban-Ruiz J, González-Nieto D, Lasunción MA, Mostaza JM, Rodríguez-Nóvoa S. A new variant (c.1A>G) in LDLRAP1 causing autosomal recessive hypercholesterolemia: Characterization of the defect and response to PCSK9 inhibition. Atherosclerosis 2019; 284:223-229. [PMID: 30777337 DOI: 10.1016/j.atherosclerosis.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/12/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS Autosomal recessive hypercholesterolemia (ARH) is a rare disorder caused by mutations in LDLRAP1, which impairs internalization of hepatic LDL receptor (LDLR). ARH patients respond relatively well to statins or the combination of statins and Ezetimibe, but scarce and variable data on treatment with PCSK9 inhibitors is available. We aimed to identify and characterize the defect in a hypercholesterolemic patient with premature cardiovascular disease and determine the response to lipid-lowering treatment. METHODS AND RESULTS Gene sequencing revealed a homozygous c.1A > G:p.? variant in LDLRAP1. Primary lymphocytes were isolated from the ARH patient, one control and two LDLR-defective subjects, one LDLR:p.(Cys352Ser) heterozygote and one LDLR:p.(Asn825Lys) homozygote. The patient had undetectable full-length ARH protein by Western blotting, but expressed a lower-than-normal molecular weight peptide. LDLR activity was measured by flow cytometry, which showed that LDL binding and uptake were reduced in lymphocytes from the ARH patient as compared to control lymphocytes, but were slightly higher than in those from the LDLR:p.(Cys352Ser) heterozygote. Despite the analogous internalization defect predicted in ARH and homozygous LDLR:p.(Asn825Lys) lymphocytes, LDL uptake was higher in the former than in the latter. LDL-cholesterol levels were markedly reduced by the successive therapy with Atorvastatin and Atorvastatin plus Ezetimibe, and the addition of Evolocumab biweekly decreased LDL-cholesterol by a further 39%. CONCLUSIONS The LDLRAP1:c.1A > G variant is associated with the appearance of an N-terminal truncated ARH protein and to reduced, although still significant, LDLR activity in lymphocytes. Residual LDLR activity may be relevant for the substantial response of the patient to Evolocumab.
Collapse
Affiliation(s)
- Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | | | - Francisca Cerrato
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Carlos Lahoz
- Department of Internal Medicine, Hospital Carlos III-La Paz, Madrid, Spain
| | - Jose Saban-Ruiz
- Endothelium and Cardiometabolic Medicine Unit, Department of Internal Medicine, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Photonics Technology and Bioengineering Department, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, and CIBERBBN, Spain
| | - Miguel A Lasunción
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - José M Mostaza
- Department of Internal Medicine, Hospital Carlos III-La Paz, Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Department of Genetics of Metabolic Diseases, Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Madrid, Spain.
| |
Collapse
|
28
|
PCSK9: from biology to clinical applications. Pathology 2019; 51:177-183. [DOI: 10.1016/j.pathol.2018.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023]
|
29
|
Phuong Kim T, Thuan Duc L, Thuy Ai HL. The Major Molecular Causes of Familial Hypercholesterolemia. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2018. [DOI: 10.18311/ajprhc/2018/20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
PHACTR1 genotype predicts coronary artery disease in patients with familial hypercholesterolemia. J Clin Lipidol 2018; 12:966-971. [DOI: 10.1016/j.jacl.2018.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 01/09/2023]
|
31
|
Turner AW, Wong D, Dreisbach CN, Miller CL. GWAS Reveal Targets in Vessel Wall Pathways to Treat Coronary Artery Disease. Front Cardiovasc Med 2018; 5:72. [PMID: 29988570 PMCID: PMC6026658 DOI: 10.3389/fcvm.2018.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of mortality worldwide and poses a considerable public health burden. Recent genome-wide association studies (GWAS) have revealed >100 genetic loci associated with CAD susceptibility in humans. While a number of these loci harbor gene targets of currently approved therapies, such as statins and PCSK9 inhibitors, the majority of the annotated genes at these loci encode for proteins involved in vessel wall function with no known drugs available. Importantly many of the associated genes linked to vascular (smooth muscle, endothelial, and macrophage) cell processes are now organized into distinct functional pathways, e.g., vasodilation, growth factor responses, extracellular matrix and plaque remodeling, and inflammation. In this mini-review, we highlight the most recently identified loci that have predicted roles in the vessel wall and provide genetic context for pre-existing therapies as well as new drug targets informed from GWAS. With the development of new modalities to target these pathways, (e.g., antisense oligonucleotides, CRISPR/Cas9, and RNA interference) as well as the computational frameworks to prioritize or reposition therapeutics, there is great opportunity to close the gap from initial genetic discovery to clinical translation for many patients affected by this common disease.
Collapse
Affiliation(s)
- Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Caitlin N Dreisbach
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
32
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
33
|
Paquette M, Dufour R, Baass A. ABO blood group is a cardiovascular risk factor in patients with familial hypercholesterolemia. J Clin Lipidol 2018; 12:383-389.e1. [DOI: 10.1016/j.jacl.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
|
34
|
Usefulness of the genetic risk score to identify phenocopies in families with familial hypercholesterolemia? Eur J Hum Genet 2018; 26:570-578. [PMID: 29374275 DOI: 10.1038/s41431-017-0078-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023] Open
Abstract
Familial hypercholesterolemia (FH) is caused by mutations in LDLR (low-density lipoprotein receptor), APOB (apolipoprotein B), PCSK9 (proprotein convertase subtilisin/kexin type 9), or APOE (apolipoprotein E) genes in approximately 80% of the cases. Polygenic forms of hypercholesterolemia may be present among patients clinically diagnosed with FH but with no identified mutation (FH mutation-negative (FH/M-)). To address whether polygenic forms may explain phenocopies in FH families, we calculated a 6-single-nucleotide polymorphism (SNP) genetic risk score (GRS) in all members from five French FH families where a mutation was identified (FH/M+) as well as some phenocopies (FH/M-). In two families, three FH/M- patients present a high GRS suggesting a polygenic hypercholesterolemia for these phenocopies. However, a high GRS is also observed in nine FH/M+ patients and in four unaffected relatives from three families. These observations indicate that the GRS does not seem to be a good diagnostic tool at the individual level. Nevertheless, the GRS seems to be a contributor of the severity of hypercholesterolemia since patients who cumulate a mutation and a high GRS exhibit higher low-density lipoprotein cholesterol levels when compared to patients with only FH (p = 0.054) or only polygenic hypercholesterolemia (p = 0.0039). In conclusion, the GRS can be used as a marker of the severity of hypercholesterolemia but does not seem to be a reliable tool to distinguish phenocopies within FH families.
Collapse
|
35
|
Ren L, Sun Y, Lu H, Ye D, Han L, Wang N, Daugherty A, Li F, Wang M, Su F, Tao W, Sun J, Zelcer N, Mullick AE, Danser AHJ, Jiang Y, He Y, Ruan X, Lu X. (Pro)renin Receptor Inhibition Reprograms Hepatic Lipid Metabolism and Protects Mice From Diet-Induced Obesity and Hepatosteatosis. Circ Res 2018; 122:730-741. [PMID: 29301853 DOI: 10.1161/circresaha.117.312422] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/18/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE An elevated level of plasma LDL (low-density lipoprotein) is an established risk factor for cardiovascular disease. Recently, we reported that the (pro)renin receptor ([P]RR) regulates LDL metabolism in vitro via the LDLR (LDL receptor) and SORT1 (sortilin-1), independently of the renin-angiotensin system. OBJECTIVES To investigate the physiological role of (P)RR in lipid metabolism in vivo. METHODS AND RESULTS We used N-acetylgalactosamine modified antisense oligonucleotides to specifically inhibit hepatic (P)RR expression in C57BL/6 mice and studied the consequences this has on lipid metabolism. In line with our earlier report, hepatic (P)RR silencing increased plasma LDL-C (LDL cholesterol). Unexpectedly, this also resulted in markedly reduced plasma triglycerides in a SORT1-independent manner in C57BL/6 mice fed a normal- or high-fat diet. In LDLR-deficient mice, hepatic (P)RR inhibition reduced both plasma cholesterol and triglycerides, in a diet-independent manner. Mechanistically, we found that (P)RR inhibition decreased protein abundance of ACC (acetyl-CoA carboxylase) and PDH (pyruvate dehydrogenase). This alteration reprograms hepatic metabolism, leading to reduced lipid synthesis and increased fatty acid oxidation. As a result, hepatic (P)RR inhibition attenuated diet-induced obesity and hepatosteatosis. CONCLUSIONS Collectively, our study suggests that (P)RR plays a key role in energy homeostasis and regulation of plasma lipids by integrating hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Liwei Ren
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yuan Sun
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Hong Lu
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Dien Ye
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Lijuan Han
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Na Wang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Alan Daugherty
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Furong Li
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Miaomiao Wang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Fengting Su
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Wenjun Tao
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Jie Sun
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Noam Zelcer
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Adam E Mullick
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - A H Jan Danser
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yizhou Jiang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yongcheng He
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Xiongzhong Ruan
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.).
| | - Xifeng Lu
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.).
| |
Collapse
|
36
|
Paquette M, Dufour R, Baass A. Scavenger Receptor LOX1 Genotype Predicts Coronary Artery Disease in Patients With Familial Hypercholesterolemia. Can J Cardiol 2017; 33:1312-1318. [DOI: 10.1016/j.cjca.2017.07.480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
|
37
|
Abstract
Familial hypercholesterolaemia (FH) is a relatively common autosomal dominant genetic condition leading to premature ischaemic vascular disease and mortality if left untreated. Currently, a universal consensus on the diagnostic criteria of FH does not exist but the diagnosis of FH largely relies on the evaluation of low density lipoprotein-cholesterol (LDL-C) levels, a careful documentation of family history, and the identification of clinical features. Diagnosis based purely on lipid levels remains common but there are several limitations to this method of diagnosis both practically and in the proportion of false-negatives and false-positives detected, resulting in substantial under-diagnosis of FH. In some countries, diagnostic algorithms are supplemented with genetic testing of the index case as well as genetic and lipid testing of relatives of the index case. Such "cascade" screening of families following identification of index cases appears to not only improve the rate of diagnosis but is also cost-effective. Currently, we observe a great variation in the excess mortality among patients with FH, which likely reflects a combination of additional genetic and environmental effects on risk overlaid on the risk associated with FH. Current accepted drug therapies for FH include statins and PSCK9 inhibitors. Further work is required to evaluate the cardiovascular disease risk in patients with genetically diagnosed FH and to determine whether a risk-based approach to the treatment of FH is appropriate.
Collapse
Affiliation(s)
- D P Hughes
- Department Metabolic Medicine/Chemical Pathology, Lister Hospital, Stevenage, SG1 4AB, UK
| | - A Viljoen
- Department Metabolic Medicine/Chemical Pathology, Lister Hospital, Stevenage, SG1 4AB, UK.
| | - A S Wierzbicki
- Department Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| |
Collapse
|
38
|
|
39
|
Paquette M, Chong M, Thériault S, Dufour R, Paré G, Baass A. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J Clin Lipidol 2017; 11:725-732.e5. [PMID: 28456682 DOI: 10.1016/j.jacl.2017.03.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although familial hypercholesterolemia (FH) is a severe monogenic disease, it has been shown that clinical risk factors and common genetic variants can modify cardiovascular disease (CVD) risk. OBJECTIVE The aim of the study was to evaluate the polygenic contribution to lipid traits and CVD in FH using genetic risk scores (GRSs). METHODS Among the 20,434 subjects attending the lipid clinic, we identified and included 725 individuals who carried an FH causing mutation in this retrospective cohort study. We evaluated the association of GRSs for several traits including coronary artery disease (CAD; GRSCAD) as well as plasma concentrations of low-density lipoprotein cholesterol (LDL-C; GRSLDL-C), high-density lipoprotein cholesterol (GRSHDL-C) and triglycerides (GRSTG). RESULTS A total of 32% (n = 231) of FH subjects presented a CVD event before their first visit. Patients in the highest GRSLDL-C tertile presented an LDL-C 0.4 mmol/L (15.5 mg/dL) higher than the subjects in the lowest tertile (P = .01). The GRSCAD was strongly associated with CVD events (odds ratio 1.80; 95% confidence interval 1.14-2.85; P = .01) even after adjustment for cardiovascular risk factors. Compared with subjects in the first tertile, those in the third GRSCAD tertile had a significantly higher prevalence of events (40.9% vs 24.7%, P < .0001) and a significantly higher number of events (average 0.97 vs 0.57 [P = .0001] events per individual). CONCLUSION These results indicate that even in the context of a severe monogenic disease such as FH, common genetic variants can significantly modify the disease phenotype. The use of the 192-SNPs GRSCAD may refine CVD risk prediction in FH patients and this could lead to a more personalized approach to therapy.
Collapse
Affiliation(s)
- Martine Paquette
- Nutrition, Metabolism and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal, Québec, Canada
| | - Michael Chong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital, Ontario, Canada
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Robert Dufour
- Nutrition, Metabolism and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal, Québec, Canada; Department of Nutrition, Université de Montréal, Québec, Canada
| | - Guillaume Paré
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital, Ontario, Canada; Population Genomics Program, Department of Clinical Epidemiology and Biostatistics, McMaster University, Ontario, Canada; The Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Ontario, Canada
| | - Alexis Baass
- Nutrition, Metabolism and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Québec, Canada; Division of Medical Biochemistry, Department of Medicine, McGill University, Québec, Canada.
| |
Collapse
|
40
|
The 9p21.3 locus and cardiovascular risk in familial hypercholesterolemia. J Clin Lipidol 2017; 11:406-412. [DOI: 10.1016/j.jacl.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
|
41
|
Paquette M, Dufour R, Baass A. The Montreal-FH-SCORE: A new score to predict cardiovascular events in familial hypercholesterolemia. J Clin Lipidol 2017; 11:80-86. [DOI: 10.1016/j.jacl.2016.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
42
|
Alkindi M, Siminovitch KA, Gupta M, Genest J. Monoclonal Antibodies for the Treatment of Hypercholesterolemia: Targeting PCSK9. Can J Cardiol 2016; 32:1552-1560. [DOI: 10.1016/j.cjca.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
|
43
|
Andersen LH, Miserez AR, Ahmad Z, Andersen RL. Familial defective apolipoprotein B-100: A review. J Clin Lipidol 2016; 10:1297-1302. [DOI: 10.1016/j.jacl.2016.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/12/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023]
|
44
|
Martin R, Latten M, Hart P, Murray H, Bailie DA, Crockard M, Lamont J, Fitzgerald P, Graham CA. Genetic diagnosis of familial hypercholesterolaemia using a rapid biochip array assay for 40 common LDLR, APOB and PCSK9 mutations. Atherosclerosis 2016; 254:8-13. [PMID: 27680772 DOI: 10.1016/j.atherosclerosis.2016.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/13/2016] [Accepted: 09/16/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolaemia (FH) leads to a lifelong increase in plasma LDL levels with subsequent increase in premature vascular disease. Early diagnosis and treatment is the key to effective management of this condition. This research aims to produce a simple and cost effective genetic test which could identify the majority (71%) of mutations causing FH in the UK and Ireland. METHODS The Randox Biochip Array Technology was used to detect 40 point mutations in LDLR, APOB and PCSK9 genes, over two 5 × 5 arrays. This technology uses multiplex allele specific PCR and biochip array hybridisation, followed by a chemiluminescence detection system and software for automated mutation calling. RESULTS The FH biochip array assay was validated in the Belfast Genetics Laboratory using 199 cascade screening samples previously sequenced for known FH causing family mutations, the overall sensitivity was 98%. The assay was then used for routine testing of 663 patients with possible FH, from clinics across the UK and Ireland. A total of 49 (7.4%) mutation positive individuals were identified, however, for the clinics in England the detection rate was 12.9%. Further analysis of 120 biochip negative patients, using DNA sequencing, did not identify any false negatives. CONCLUSIONS The FH biochip array provides a rapid and reliable genetic test for the majority of FH causing point mutations in the UK and Ireland. A total of 32 samples can be run in 3 h. This allows clinics to evaluate additional patients for a possible diagnosis of FH such as patients with high LDL, patients with early onset coronary disease, and patients with relatives known to have FH.
Collapse
Affiliation(s)
- Rosalind Martin
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Mark Latten
- Randox Laboratories Ltd., Crumlin, Northern Ireland, UK
| | - Padraig Hart
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Helena Murray
- Randox Laboratories Ltd., Crumlin, Northern Ireland, UK
| | - Deborah A Bailie
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | | | - John Lamont
- Randox Laboratories Ltd., Crumlin, Northern Ireland, UK
| | | | - Colin A Graham
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK; Randox Laboratories Ltd., Crumlin, Northern Ireland, UK; Centre for Public Health, Queens University, Belfast, Northern Ireland, UK.
| |
Collapse
|
45
|
Andersen LH, Andersen RL, Miserez AR. Familial defective apolipoprotein B-100: a tale of twin mutations. J Clin Lipidol 2016; 10:1050-1051. [DOI: 10.1016/j.jacl.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
|
46
|
Pavloušková J, Réblová K, Tichý L, Freiberger T, Fajkusová L. Functional analysis of the p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. Atherosclerosis 2016; 250:9-14. [DOI: 10.1016/j.atherosclerosis.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/04/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
47
|
Children with hypercholesterolemia of unknown cause: Value of genetic risk scores. J Clin Lipidol 2016; 10:851-859. [DOI: 10.1016/j.jacl.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 11/17/2022]
|
48
|
Mollaki V, Drogari E. Genetic causes of monogenic familial hypercholesterolemia in the Greek population: Lessons, mistakes, and the way forward. J Clin Lipidol 2016; 10:748-756. [DOI: 10.1016/j.jacl.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
49
|
[PCSK9 - "missing link" in familial hypercholesterolemia : New therapeutic options in hypercholesterolemia and coronary artery disease]. Herz 2016; 41:281-9. [PMID: 27215417 DOI: 10.1007/s00059-016-4435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lowering plasma low-density lipoprotein cholesterol (LDL-C) levels to individual therapeutic goals is one of the most effective measures for the prevention of cardiovascular disease. Besides dietary measures, this can be achieved pharmaceutically by inhibition of hepatic cholesterol synthesis with statins or inhibition of intestinal cholesterol absorption (e.g., ezetimibe and bile acid sequestrants). Decisive for lowering LDL is an increased hepatic uptake of circulating LDL via an increase in LDL receptors (LDLR) in hepatic cell membranes. The formation of new LDLR and recirculation of existing LDLR play a decisive role in this process. An important modulator of LDLR is proprotein convertase subtilisin/kexin type 9 (PCSK9). In the last years genetic studies have identified several mutations in the PCSK9 gene leading to a gain of function and carriers of these mutations suffer from autosomal dominant hypercholesterolemia. In contrast, carriers of PCSK9 loss of function mutations show very low plasma LDL-C concentrations and a markedly reduced risk for coronary artery disease. These fundamental discoveries have sparked the development of a completely novel therapeutic approach to treating hypercholesterolemia. At present, inhibition of PCSK9 by monoclonal antibodies presents the most promising therapeutic approach. First human antibodies were recently approved as the first immunotherapeutic agents for the treatment of severe hypercholesterolemia and in patients with statin intolerance. An additional PCSK9 antibody is presently being studied in phase III clinical trials.
Collapse
|
50
|
Andersen R, Testa H, Davis T, Ibarra J, Andersen L. Treatment Of A Patient Homozygous For Familial Defective Apolipoprotein B-100 With Evolocumab: A Case Study. J Clin Lipidol 2016. [DOI: 10.1016/j.jacl.2016.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|