1
|
de Oliveira JGCG, Miranda CH. Doxycycline protects against sepsis-induced endothelial glycocalyx shedding. Sci Rep 2024; 14:10477. [PMID: 38714743 PMCID: PMC11076551 DOI: 10.1038/s41598-024-60919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024] Open
Abstract
Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.
Collapse
Affiliation(s)
- João Gabriel Craveiro Gonçalves de Oliveira
- Division of Emergency Medicine, Department of Internal Medicine, Vascular Biology Laboratory, Ribeirão Preto School of Medicine, São Paulo University, Avenue Bandeirantes, 3900 Anexo B, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Vascular Biology Laboratory, Ribeirão Preto School of Medicine, São Paulo University, Avenue Bandeirantes, 3900 Anexo B, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
2
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
3
|
Zeng N, Jian Z, Xu J, Zheng S, Fan Y, Xiao F. DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs. J Mol Histol 2023; 54:655-664. [PMID: 37759133 DOI: 10.1007/s10735-023-10161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a serious inflammatory disease caused by bacterial infection. Cardiovascular dysfunction and remodeling are serious complications of sepsis, which can significantly affect sepsis patients' mortality. Delta-like homologue 1 (DLK1) has been reported could inhibit cardiac myofibroblast differentiation. However, the function of DLK1 in sepsis is unknown. In the present study, the DLK1 expression was first identified based on the online dataset GSE79962 analysis and cecal ligation and puncture (CLP)-induced sepsis mouse model. DLK1 expression was significantly reduced in septic heart tissues. In septic mouse heart, CLP operation decreased the fractional shortening (EF) (%) and ejection fraction (FS) (%) and caused significant edema, disordered myofilament arrangement, and degradation and necrosis in myocardial cells; CLP operation also increased collagen deposition and elevated the protein levels of fibrotic markers (α-SMA and F-actin). DLK1 overexpression in septic mice could effectively increase EF (%) and FS (%), attenuate CLP-caused ECM degradation and deposition and partially inhibit the CLP-induced TGF-β1/Smad signaling activation. In conclusion, DLK1 expression was poorly expressed in the CLP-induced septic mouse heart. DLK1 overexpression partially alleviated sepsis-induced cardiac dysfunction and fibrosis, with the involvement of the TGF-β1/Smad3 signaling pathway and MMPs.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zaijin Jian
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sijia Zheng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Ma J, Wang X, Gu R, Guo D, Shi C, Kollisch-Singule M, Suo L, Luo J, Meng Q, Cooney RN. PROPHYLACTIC n CMT-3 ATTENUATES SEPSIS-INDUCED ACUTE KIDNEY INJURY IN ASSOCIATION WITH NLRP3 INFLAMMASOME ACTIVATION AND APOPTOSIS. Shock 2023; 59:922-929. [PMID: 36939682 PMCID: PMC10205665 DOI: 10.1097/shk.0000000000002118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACT Background: The kidney is the most common extrapulmonary organ injured in sepsis. The current study examines the ability of aerosolized nanochemically modified tetracycline 3 (nCMT-3), a pleiotropic anti-inflammatory agent, to attenuate acute kidney injury (AKI) caused by intratracheal LPS. Methods: C57BL/6 mice received aerosolized intratracheal nCMT-3 (1 mg/kg) or saline, followed by intratracheal LPS (2.5 mg/kg) to induce acute lung injury-induced AKI. Tissues were harvested at 24 h. The effects of nCMT-3 and LPS on AKI were assessed by plasma/tissue levels of serum urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, and renal histology. Renal matrix metalloproteinase (MMP) level/activity, cytochrome C, Bax, Bcl-2, caspase-3, p38 mitogen-activated protein kinase activation, NLRP3, and caspase-1 were also measured. Apoptotic cells in kidney were determined by TUNEL assay. Renal levels of IL-1β and IL-6 were measured to assess inflammation. Results: Acute lung injury-induced AKI was characterized by increased plasma blood urea nitrogen, creatinine, injury biomarkers (neutrophil gelatinase-associated lipocalin, kidney injury molecule 1), and histologic evidence of renal injury. Lipopolysaccharide-treated mice demonstrated renal injury with increased levels of inflammatory cytokines (IL-1β, IL-6), active MMP-2 and MMP-9, proapoptotic proteins (cytochrome C, Bax/Bcl-2 ratio, cleaved caspase-3), apoptotic cells, inflammasome activation (NLRP3, caspase-1), and p38 signaling. Intratracheal nCMT-3 significantly attenuated all the measured markers of renal injury, inflammation, and apoptosis. Conclusions: Pretreatment with aerosolized nCMT-3 attenuates LPS-induced AKI by inhibiting renal NLRP3 inflammasome activation, renal inflammation, and apoptosis.
Collapse
Affiliation(s)
- Julia Ma
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Xiaojing Wang
- Department Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Raymond Gu
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Dandan Guo
- Department Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Changying Shi
- Department Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Liye Suo
- Department Pathology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Juntao Luo
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
Sauer A, Putensen C, Bode C. Immunomodulation by Tetracyclines in the Critically Ill: An Emerging Treatment Option? Crit Care 2022; 26:74. [PMID: 35337355 PMCID: PMC8951664 DOI: 10.1186/s13054-022-03909-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Garrido-Mesa J, Adams K, Galvez J, Garrido-Mesa N. Repurposing tetracyclines for acute respiratory distress syndrome (ARDS) and severe COVID-19: A critical discussion of recent publications. Expert Opin Investig Drugs 2022; 31:475-482. [PMID: 35294307 PMCID: PMC9115781 DOI: 10.1080/13543784.2022.2054325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Drug repurposing can be a successful approach to deal with the scarcity of cost-effective therapies in situations such as the COVID-19 pandemic. Tetracyclines have previously shown efficacy in preclinical acute respiratory distress syndrome (ARDS) models and initial predictions and experimental reports suggest a direct antiviral activity against SARS-CoV2. Furthermore, a few clinical reports indicate their potential in COVID-19 patients. In addition to the scarcity and limitations of the scientific evidence, the effectiveness of tetracyclines in experimental ARDS has been proven extensively, counteracting the overt inflammatory reaction and fibrosis sequelae due to a synergic combination of pharmacological activities. Areas covered This paper discusses the scientific evidence behind the application of tetracyclines for ARDS/COVID-19. Expert Opinion The benefits of their multi-target pharmacology and their safety profile overcome the limitations, such as antibiotic activity and low commercial interest. Immunomodulatory tetracyclines and novel chemically modified non-antibiotic tetracyclines have therapeutic potential. Further drug repurposing studies in ARDS and severe COVID-19 are necessary.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK
| | - Kate Adams
- Department of Bioscience, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Julio Galvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, AND Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natividad Garrido-Mesa
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry. Kingston University, London, UK
| |
Collapse
|
7
|
Ahmed MM, Zaki A, Alhazmi A, Alsharif KF, Bagabir HA, Haque S, Manda K, Ahmad S, Ali SM, Ishrat R. Identification and Validation of Pathogenic Genes in Sepsis and Associated Diseases by Integrated Bioinformatics Approach. Genes (Basel) 2022; 13:genes13020209. [PMID: 35205254 PMCID: PMC8872348 DOI: 10.3390/genes13020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a clinical syndrome with high mortality and morbidity rates. In sepsis, the abrupt release of cytokines by the innate immune system may cause multiorgan failure, leading to septic shock and associated complications. In the presence of a number of systemic disorders, such as sepsis, infections, diabetes, and systemic lupus erythematosus (SLE), cardiorenal syndrome (CRS) type 5 is defined by concomitant cardiac and renal dysfunctions Thus, our study suggests that certain mRNAs and unexplored pathways may pave a way to unravel critical therapeutic targets in three debilitating and interrelated illnesses, namely, sepsis, SLE, and CRS. Sepsis, SLE, and CRS are closely interrelated complex diseases likely sharing an overlapping pathogenesis caused by erroneous gene network activities. We sought to identify the shared gene networks and the key genes for sepsis, SLE, and CRS by completing an integrative analysis. Initially, 868 DEGs were identified in 16 GSE datasets. Based on degree centrality, 27 hub genes were revealed. The gProfiler webtool was used to perform functional annotations and enriched molecular pathway analyses. Finally, core hub genes (EGR1, MMP9, and CD44) were validated using RT-PCR analysis. Our comprehensive multiplex network approach to hub gene discovery is effective, as evidenced by the findings. This work provides a novel research path for a new research direction in multi-omics biological data analysis.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Almaz Zaki
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, SMIRES for Consultation in Specialized, Jazan University, Jazan 45142, Saudi Arabia;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hala Abubaker Bagabir
- Department of Medical Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 21589, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Kailash Manda
- Institute of Nuclear Medicine and Applied Sciences, Defense Research Development Organization, New Delhi 110054, India;
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
| | - Syed Mansoor Ali
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
- Correspondence: (S.M.A.); (R.I.)
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: (S.M.A.); (R.I.)
| |
Collapse
|
8
|
Sauer A, Peukert K, Putensen C, Bode C. Antibiotics as immunomodulators: a potential pharmacologic approach for ARDS treatment. Eur Respir Rev 2021; 30:210093. [PMID: 34615700 PMCID: PMC9489085 DOI: 10.1183/16000617.0093-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
First described in the mid-1960s, acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure with an overall mortality rate of approximately 40%. Despite significant advances in the understanding and treatment of ARDS, no substantive pharmacologic therapy has proven to be beneficial, and current management continues to be primarily supportive. Beyond their antibacterial activity, several antibiotics such as macrolides and tetracyclines exert pleiotropic immunomodulatory effects that might be able to rectify the dysregulated inflammatory response present in patients with ARDS. This review aims to provide an overview of preclinical and clinical studies that describe the immunomodulatory effects of antibiotics in ARDS. Moreover, the underlying mechanisms of their immunomodulatory properties will be discussed. Further studies are necessary to investigate their full therapeutic potential and to identify ARDS phenotypes which are most likely to benefit from their immunomodulatory effects.
Collapse
Affiliation(s)
- Andrea Sauer
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Konrad Peukert
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Zhang H, Dong W, Li S, Zhang Y, Lv Z, Yang L, Jiang L, Wu T, Wang Y. Salidroside protects against ventilation-induced lung injury by inhibiting the expression of matrix metalloproteinase-9. PHARMACEUTICAL BIOLOGY 2021; 59:760-768. [PMID: 34517742 PMCID: PMC8439245 DOI: 10.1080/13880209.2021.1967409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Salidroside, a compound extracted from Rhodiola rosea L. (Crassulaceae), possesses many beneficial pathological effects. OBJECTIVE To explore the effect of salidroside on ventilator-induced lung endothelial dysfunction in vivo and in vitro. MATERIALS AND METHODS In vivo, male ICR mice were divided into sham, ventilation, salidroside, and ventilation plus salidroside groups. The mice were ventilated for 4 h, salidroside (50 mg/kg) was administrated intraperitoneally before ventilation, dexamethasone (Dex) (5 mg/kg) was used as a positive control. In vitro, mouse lung vascular endothelial cells (MLVECs) were treated with salidroside, MMP-9 siRNA, and BAY11-7082 (10 μM), and then exposed to cyclic stretch for 4 h. Afterward, lung tissues and MLVECs were collected for further analysis. RESULTS Salidroside pre-treatment significantly reversed the expression of vascular endothelial cadherin (VE-cadherin) and zonula occluden-1 (ZO-1) proteins in cyclic stretch-treated MLVECs (0.46 ± 0.09 vs. 0.80 ± 0.14, 0.49 ± 0.05 vs. 0.88 ± 0.08) and ventilated lung tissues (0.56 ± 0.06 vs. 0.83 ± 0.46, 0.49 ± 0.08 vs. 0.80 ± 0.12). The results further indicated that salidroside inhibited the expression of matrix metalloproteinase-9 (MMP-9), whereas knockdown of its expression restored the expression levels of VE-cadherin (0.37 ± 0.08 vs. 0.85 ± 0.74) and ZO-1 (0.48 ± 0.08 vs. 0.81 ± 0.11) in stretched MLVECs. Meanwhile, salidroside inhibited the NF-κB signalling pathway and alleviated lung injury. CONCLUSIONS Salidroside protected against stretch-induced endothelial barrier function, improving lung injury after ventilation. Thus, salidroside may be a promising therapeutic agent for patients with MV-induced lung injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Yang
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Wu
- School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Itagaki K, Riça I, Konecna B, Kim HI, Park J, Kaczmarek E, Hauser CJ. Role of Mitochondria-Derived Danger Signals Released After Injury in Systemic Inflammation and Sepsis. Antioxid Redox Signal 2021; 35:1273-1290. [PMID: 33847158 PMCID: PMC8905257 DOI: 10.1089/ars.2021.0052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a major public health concern, with high mortality and morbidity, especially among patients undergoing trauma. It is characterized by a systemic inflammatory response syndrome (SIRS) occurring in response to infection. Although classically associated with pathogens, many patients with SIRS do not have infection. The variability of the disease course cannot be fully explained by our current understanding of its pathogenesis. Thus, other factors are likely to play key roles in the development and progression of SIRS/sepsis. Recent Advances: Circulating levels of damage-associated molecular patterns (DAMPs) seem to correlate with SIRS/sepsis morbidity and mortality. Of the known DAMPs, those of mitochondrial (mt) origin have been of particular interest, since their DNA (mtDNA) and formyl peptides (mtFPs) resemble bacterial DNA and peptides, and hence, when released, may be recognized as "danger signals." Critical Issues: mtDAMPs released after tissue injury trigger immune responses similar to those induced by pathogens. Thus, they can result in systemic inflammation and organ damage, similar to that observed in SIRS/sepsis. We will discuss recent findings on the roles of mtDAMPs, particularly regarding the less recognized mtFPs, in the activation of inflammatory responses and development of SIRS/sepsis. Future Directions: There are no established methods to predict the course of SIRS/sepsis, but clinical studies reveal that plasma levels of mtDAMPs may correlate with the outcome of the disease. We propose that non-pathogen-initiated, mtDAMPs-induced SIRS/sepsis events need further studies aimed at early clinical recognition and better treatment of this disease.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Elzbieta Kaczmarek
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Cardoso EOC, Fine N, Glogauer M, Johnson F, Goldberg M, Golub LM, Tenenbaum HC. The Advent of COVID-19; Periodontal Research Has Identified Therapeutic Targets for Severe Respiratory Disease; an Example of Parallel Biomedical Research Agendas. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.674056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pathophysiology of SARS-CoV-2 infection is characterized by rapid virus replication and aggressive inflammatory responses that can lead to acute respiratory distress syndrome (ARDS) only a few days after the onset of symptoms. It is suspected that a dysfunctional immune response is the main cause of SARS-CoV-2 infection-induced lung destruction and mortality due to massive infiltration of hyperfunctional neutrophils in these organs. Similarly, neutrophils are recruited constantly to the oral cavity to combat microorganisms in the dental biofilm and hyperfunctional neutrophil phenotypes cause destruction of periodontal tissues when periodontitis develops. Both disease models arise because of elevated host defenses against invading organisms, while concurrently causing host damage/disease when the immune cells become hyperfunctional. This represents a clear nexus between periodontal and medical research. As researchers begin to understand the link between oral and systemic diseases and their potential synergistic impact on general health, we argue that translational research from studies in periodontology must be recognized as an important source of information that might lead to different therapeutic options which can be effective for the management of both oral and non-oral diseases. In this article we connect concepts from periodontal research on oral inflammation while exploring host modulation therapy used for periodontitis as a potential strategy for the prevention of ARDS a deadly outcome of COVID-19. We suggest that host modulation therapy, although developed initially for management of periodontitis, and which inhibits proteases, cytokines, and the oxidative stress that underlie ARDS, will provide an effective and safe treatment for COVID-19.
Collapse
|
12
|
Zhang H, Mao YF, Zhao Y, Xu DF, Wang Y, Xu CF, Dong WW, Zhu XY, Ding N, Jiang L, Liu YJ. Upregulation of Matrix Metalloproteinase-9 Protects against Sepsis-Induced Acute Lung Injury via Promoting the Release of Soluble Receptor for Advanced Glycation End Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889313. [PMID: 33628393 PMCID: PMC7889353 DOI: 10.1155/2021/8889313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ying Zhao
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chu-Fan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Ning Ding
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
13
|
Tong Y, Yu Z, Chen Z, Zhang R, Ding X, Yang X, Niu X, Li M, Zhang L, Billiar TR, Pitt BR, Li Q. The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9. Cell Death Dis 2021; 12:67. [PMID: 33431821 PMCID: PMC7798387 DOI: 10.1038/s41419-020-03320-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Imbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response. However, whether MMP-9 could regulate macrophage polarization and inhibit by SQV is still unknown. We focused on the important role of macrophage polarization in CLP (cecal ligation puncture)-mediated ALI and determined the ability of SQV to maintain M2 over M1 phenotype partially through the inhibition of MMP-9. We also performed a limited clinical study to determine if MMP-9 is a biomarker of sepsis. Lipopolysaccharide (LPS) increased MMP-9 expression and recombinant MMP-9 (rMMP-9) exacerbated LPS-mediated M1 switching. Small interfering RNA to MMP-9 inhibited LPS-mediated M1 phenotype and SQV inhibition of this switching was reversed with rMMP-9, suggesting an important role for MMP-9 in mediating LPS-induced M1 phenotype. MMP-9 messenger RNA levels in peripheral blood mononuclear cells of these 14 patients correlated with their clinical assessment. There was a significant dose-dependent decrease in mortality and ALI after CLP with SQV. SQV significantly inhibited LPS-mediated M1 phenotype and increased M2 phenotype in cultured RAW 264.7 and primary murine bone marrow-derived macrophages as well as lung macrophages from CLP-treated mice. This study supports an important role for MMP-9 in macrophage phenotypic switching and suggests that SQV-mediated inhibition of MMP-9 may be involved in suppressing ALI during systemic sepsis.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200000, Shanghai, China
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Renlingzi Zhang
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xibing Ding
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xiaohu Yang
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xiaoyin Niu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Mengzhu Li
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Lingling Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, PA, 15219, USA
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China.
| |
Collapse
|
14
|
Idowu TO, Etzrodt V, Seeliger B, Bolanos-Palmieri P, Thamm K, Haller H, David S. Identification of specific Tie2 cleavage sites and therapeutic modulation in experimental sepsis. eLife 2020; 9:e59520. [PMID: 32838837 PMCID: PMC7447424 DOI: 10.7554/elife.59520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial Tie2 signaling plays a pivotal role in vascular barrier maintenance at baseline and after injury. We previously demonstrated that a sharp drop in Tie2 expression observed across various murine models of critical illnesses is associated with increased vascular permeability and mortality. Matrix metalloprotease (MMP)-14-mediated Tie2 ectodomain shedding has recently been recognized as a possible mechanism for Tie2 downregulation in sepsis. Here, we identified the exact MMP14-mediated Tie2 ectodomain cleavage sites and could show that pharmacological MMP14 blockade in experimental murine sepsis exerts barrier protective and anti-inflammatory effects predominantly through the attenuation of Tie2 cleavage to improve survival both in a pre-treatment and rescue approach. Overall, we show that protecting Tie2 shedding might offer a new therapeutic opportunity for the treatment of septic vascular leakage.
Collapse
Affiliation(s)
- Temitayo O Idowu
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Valerie Etzrodt
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical SchoolHannoverGermany
| | - Patricia Bolanos-Palmieri
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
- Department of Nephrology and Hypertension, University Hospital of ErlangenErlangenGermany
| | - Kristina Thamm
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
- Institute for Intensive Care, University Hospital ZurichZurichSwitzerland
| |
Collapse
|
15
|
Nuti E, Rossello A, Cuffaro D, Camodeca C, Van Bael J, van der Maat D, Martens E, Fiten P, Pereira RVS, Ugarte-Berzal E, Gouwy M, Opdenakker G, Vandooren J. Bivalent Inhibitor with Selectivity for Trimeric MMP-9 Amplifies Neutrophil Chemotaxis and Enables Functional Studies on MMP-9 Proteoforms. Cells 2020; 9:cells9071634. [PMID: 32645949 PMCID: PMC7408547 DOI: 10.3390/cells9071634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting approach to control inflammation. We evaluated the potential of a bivalent carboxylate inhibitor to selectively inhibit the trimeric proteoform of MMP-9 and compared this with a corresponding monovalent inhibitor. The bivalent inhibitor efficiently inhibited trimeric MMP-9 (IC50 = 0.1 nM), with at least 500-fold selectivity for MMP-9 trimers over monomers. Surprisingly, in a mouse model for chemotaxis, the bivalent inhibitor amplified leukocyte influxes towards lipopolysaccharide-induced inflammation. We verified by microscopic and flow cytometry analysis increased amounts of neutrophils. In a mouse model for endotoxin shock, mice treated with the bivalent inhibitor had significantly increased levels of MMP-9 in plasma and lungs, indicative for increased inflammation. In conclusion, we propose a new role for MMP-9 trimers in tempering excessive neutrophil migration. In addition, we have identified a small molecule inhibitor with a high selectivity for the trimeric proteoform of MMP-9, which will allow further research on the functions of MMP-9 proteoforms.
Collapse
Affiliation(s)
- Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.N.); (A.R.); (D.C.); (C.C.)
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.N.); (A.R.); (D.C.); (C.C.)
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.N.); (A.R.); (D.C.); (C.C.)
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.N.); (A.R.); (D.C.); (C.C.)
| | - Jens Van Bael
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Dries van der Maat
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium;
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Herestraat 49-bus 1044, B-3000 Leuven, Belgium; (J.V.B.); (D.v.d.M.); (E.M.); (P.F.); (R.V.S.P.); (E.U.-B.); (G.O.)
- Correspondence: ; Tel.: +32-16-32-22-95
| |
Collapse
|
16
|
Abstract
With the recognition in the 1960s and 1970s of the periodontopathic importance of the microbial biofilm and its specific anaerobic microorganisms, periodontitis was treated as an infectious disease (more recently, as a dysbiosis). Subsequently, in the 1980s, host-response mechanisms were identified as the mediators of the destruction of the collagen-rich periodontal tissues (gingiva, periodontal ligament, alveolar bone), and the periodontopathogens were now regarded as the "trigger" of the inflammatory/collagenolytic response that characterizes actively destructive periodontitis. Also at this time a new pharmacologic strategy emerged, entitled "host-modulation therapy", based on 2 major findings: (1) that the ability of tetracycline antibiotics to inhibit periodontal breakdown was due (in large part) to their previously unrecognized ability to inhibit the host-derived matrix metalloproteinases (notably, the collagenases, gelatinases, macrophage metalloelastase), and by mechanisms unrelated to the antimicrobial properties of these medications; and (2) that nonsteroidal anti-inflammatory drugs, such as flurbiprofen, again by nonantimicrobial mechanisms, could reduce the severity of periodontitis (however, the adverse effects of long-term therapy precluded their development as safe and effective host-modulatory agents). Additional mechanistic studies resulted in the development of novel nonantimicrobial formulations (Periostat® [now generic] and Oracea®) and compositions of tetracyclines (notably chemically modified tetracycline-3) as host-modulator drugs for periodontitis, arthritis, cardiovascular and pulmonary diseases, cancer, and, more recently, for local and systemic bone loss in postmenopausal women. Identification of the cation-binding active site in the tetraphenolic chemically modified tetracycline molecules drove the development of a new category of matrix metalloproteinase-inhibitor compounds, with a similar active site, the biphenolic chemically modified curcumins. A lead compound, chemically modified curcumin 2.24, has demonstrated safety and efficacy in vitro, in cell culture, and in vivo in mouse, rat, rabbit, and dog models of disease. In conclusion, novel host-modulation compounds have shown significant promise as adjuncts to traditional local therapy in the clinical management of periodontal disease; appear to reduce systemic complications of this all-too-common "inflammatory/collagenolytic" disease; and Oracea® is now commonly prescribed for inflammatory dermatologic diseases.
Collapse
Affiliation(s)
- Lorne M. Golub
- Department of Oral Biology & PathologySchool of Dental MedicineStony Brook UniversityStony BrookNew York, USA
| | - Hsi‐Ming Lee
- Department of Oral Biology & PathologySchool of Dental MedicineStony Brook UniversityStony BrookNew York, USA
| |
Collapse
|
17
|
Zinter MS, Delucchi KL, Kong MY, Orwoll BE, Spicer AS, Lim MJ, Alkhouli MF, Ratiu AE, McKenzie AV, McQuillen PS, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Early Plasma Matrix Metalloproteinase Profiles. A Novel Pathway in Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:181-189. [PMID: 30114376 PMCID: PMC6353006 DOI: 10.1164/rccm.201804-0678oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
RATIONALE MMPs (Matrix metalloproteinases) and their endogenous tissue inhibitors may contribute to lung injury through extracellular matrix degradation and modulation of inflammation and fibrosis. OBJECTIVES To test for an association between MMP pathway proteins and inflammation, endothelial dysfunction, and clinical outcomes. METHODS We measured MMPs in plasma collected on acute respiratory distress syndrome (ARDS) Day 1 from 235 children at five hospitals between 2008 and 2017. We used latent class analysis to identify patients with distinct MMP profiles and then associated those profiles with markers of inflammation (IL-1RA, -6, -8, -10, and -18; macrophage inflammatory protein-1α and -1β; tumor necrosis factor-α and -R2), endothelial injury (angiopoietin-2, von Willebrand factor, soluble thrombomodulin), impaired oxygenation (PaO2/FiO2 [P/F] ratio, oxygenation index), morbidity, and mortality. MEASUREMENTS AND MAIN RESULTS In geographically distinct derivation and validation cohorts, approximately one-third of patients demonstrated an MMP profile characterized by elevated MMP-1, -2, -3, -7, and -8 and tissue inhibitor of metalloproteinase-1 and -2; and depressed active and total MMP-9. This MMP profile was associated with multiple markers of inflammation, endothelial injury, and impaired oxygenation on Day 1 of ARDS, and conferred fourfold increased odds of mortality or severe morbidity independent of the P/F ratio and other confounders (95% confidence interval, 2.1-7.6; P < 0.001). Logistic regression using both the P/F ratio and MMP profiles was superior to the P/F ratio alone in prognosticating mortality or severe morbidity (area under the receiver operating characteristic curve, 0.75; 95% confidence interval, 0.68-0.82 vs. area under the receiver operating characteristic curve, 0.66; 95% confidence interval, 0.58-0.73; P = 0.009). CONCLUSIONS Pediatric patients with ARDS have specific plasma MMP profiles associated with inflammation, endothelial injury, morbidity, and mortality. MMPs may play a role in the pathobiology of children with ARDS.
Collapse
Affiliation(s)
| | | | - Michele Y. Kong
- Division of Critical Care Medicine, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama; and
| | | | | | - Michelle J. Lim
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | - Anna E. Ratiu
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | | | - Christopher C. Dvorak
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, Department of Pediatrics, Benioff Children’s Hospital
| | - Carolyn S. Calfee
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Michael A. Matthay
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Anil Sapru
- Division of Critical Care and
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
18
|
Sapoznikov A, Gal Y, Falach R, Sagi I, Ehrlich S, Lerer E, Makovitzki A, Aloshin A, Kronman C, Sabo T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins. Am J Physiol Lung Cell Mol Physiol 2019; 316:L255-L268. [DOI: 10.1152/ajplung.00300.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irrespective of its diverse etiologies, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) leads to increased permeability of the alveolar-capillary barrier, which in turn promotes edema formation and respiratory failure. We investigated the mechanism of ALI/ARDS lung hyperpermeability triggered by pulmonary exposure of mice to the highly toxic plant-derived toxin ricin. One prominent hallmark of ricin-mediated pulmonary intoxication is the rapid and massive influx of neutrophils to the lungs, where they contribute to the developing inflammation yet may also cause tissue damage, thereby promoting ricin-mediated morbidity. Here we show that pulmonary exposure of mice to ricin results in the rapid diminution of the junction proteins VE-cadherin, claudin 5, and connexin 43, belonging, respectively, to the adherens, tight, and gap junction protein families. Depletion of neutrophils in ricin-intoxicated mice attenuated the damage caused to these junction proteins, alleviated pulmonary edema, and significantly postponed the time to death of the intoxicated mice. Inhibition of matrix metalloproteinase (MMP) activity recapitulated the response to neutrophil depletion observed in ricin-intoxicated mice and was associated with decreased insult to the junction proteins and alveolar-capillary barrier. However, neutrophil-mediated MMP activity was not the sole mechanism responsible for pulmonary hyperpermeability, as exemplified by the ricin-mediated disruption of claudin 18, via a neutrophil-independent mechanism involving tyrosine phosphorylation. This in-depth study of the early stage mechanisms governing pulmonary tissue integrity during ALI/ARDS is expected to facilitate the tailoring of novel therapeutic approaches for the treatment of these diseases.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
19
|
Mao M, Hao L, Wang Y, Liu QQ. Transplantation of Endothelial Progenitor Cells Attenuates Lipopolysaccharide-Induced Lung Injury via Inhibiting the Inflammatory Secretion of Neutrophils in Rats. Am J Med Sci 2018; 357:49-56. [PMID: 30611320 DOI: 10.1016/j.amjms.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are special types of stem cells and are a potential novel therapeutic approach in acute lung injury (ALI). Transplantation of EPCs can ameliorate the inflammatory state by reducing adhesion and exudation of inflammatory cells. However, the mechanism underlying the effect of EPCs on inflammatory response modulation remains unclear. The aim of the present study was to investigate the effect of EPCs on the modulation of neutrophils in vitro and in vivo. MATERIALS AND METHODS EPCs were cocultured with neutrophils after lipopolysaccharide stimulation in vitro or transplanted into ALI rats, and neutrophil inflammatory mediators including tumor necrosis factor-α, interleukin-1β, neutrophil elastase, myeloperoxidase and matrix metalloproteinases-9 were detected by enzyme-linked immunosorbent assay, an myeloperoxidase detection kits, reverse transcription-polymerase chain reaction and western blotting. RESULTS The results showed that EPCs significantly downregulated the expression of inflammatory mediators when cocultured with neutrophils in vitro or in vivo. CONCLUSIONS These findings demonstrated that EPCs contributed to lung injury in ALI rats by downregulating neutrophil inflammatory mediators.
Collapse
Affiliation(s)
- Mei Mao
- Department of Geriatrics, No 958 Hospital of PLA, Chongqing, China.
| | - Lei Hao
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Department of Respiratory Medicine, the Sixth People's Hospital of Ji'nan City Affiliated to Jining Medical College, Jinan, China
| | - Qiu-Qian Liu
- Department of Infection Prevention and Control, No.958 Hospital of PLA, Chongqing, China
| |
Collapse
|
20
|
Abstract
Edema is typically presented as a secondary effect from injury, illness, disease, or medication, and its impact on patient wellness is nested within the underlying etiology. Therefore, it is often thought of more as an amplifier to current preexisting conditions. Edema, however, can be an independent risk factor for patient deterioration. Improper management of edema is costly not only to the patient, but also to treatment and care facilities, as mismanagement of edema results in increased lengths of hospital stay. Direct tissue trauma, disease, or inappropriate resuscitation and/or ventilation strategies result in edema formation through physical disruption and chemical messenger-based structural modifications of the microvascular barrier. Derangements in microvascular barrier function limit tissue oxygenation, nutrient flow, and cellular waste removal. Recent studies have sought to elucidate cellular signaling and structural alterations that result in vascular hyperpermeability in a variety of critical care conditions to include hemorrhage, burn trauma, and sepsis. These studies and many others have highlighted how multiple mechanisms alter paracellular and/or transcellular pathways promoting hyperpermeability. Roles for endothelial glycocalyx, extracellular matrix and basement membrane, vesiculo-vacuolar organelles, cellular junction and cytoskeletal proteins, and vascular pericytes have been described, demonstrating the complexity of microvascular barrier regulation. Understanding these basic mechanisms inside and out of microvessels aid in developing better treatment strategies to mitigate the harmful effects of excessive edema formation.
Collapse
|
21
|
Hamid U, Krasnodembskaya A, Fitzgerald M, Shyamsundar M, Kissenpfennig A, Scott C, Lefrancais E, Looney MR, Verghis R, Scott J, Simpson AJ, McNamee J, McAuley DF, O'Kane CM. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS. Thorax 2017; 72:971-980. [PMID: 28082531 PMCID: PMC5858553 DOI: 10.1136/thoraxjnl-2016-208571] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 11/24/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. OBJECTIVE To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. METHODS Healthy volunteers were randomised to receive placebo or aspirin 75 or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. RESULTS In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. CONCLUSIONS These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the prevention and treatment of ARDS. TRIAL REGISTRATION NUMBER NCT01659307 Results.
Collapse
Affiliation(s)
- U Hamid
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - A Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - M Fitzgerald
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - M Shyamsundar
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - A Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - C Scott
- School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - E Lefrancais
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - M R Looney
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - R Verghis
- Northern Ireland Clinical Trials Unit, Royal Victoria Hospital, Belfast, UK
| | - J Scott
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle-upon Tyne, UK
| | - A J Simpson
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle-upon Tyne, UK
| | - J McNamee
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - D F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - C M O'Kane
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
22
|
Vandooren J, Swinnen W, Ugarte-Berzal E, Boon L, Dorst D, Martens E, Opdenakker G. Endotoxemia shifts neutrophils with TIMP-free gelatinase B/MMP-9 from bone marrow to the periphery and induces systematic upregulation of TIMP-1. Haematologica 2017; 102:1671-1682. [PMID: 28775117 PMCID: PMC5622851 DOI: 10.3324/haematol.2017.168799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023] Open
Abstract
Lipopolysaccharides or endotoxins elicit an excessive host inflammatory response and lead to life-threatening conditions such as endotoxemia and septic shock. Lipopolysaccharides trigger mobilization and stimulation of leukocytes and exaggerated production of pro-inflammatory molecules including cytokines and proteolytic enzymes. Matrix metalloproteinase-9 (MMP-9) or gelatinase B, a protease stored in the tertiary granules of polymorphonuclear leukocytes, has been implicated in such inflammatory reactions. Moreover, several studies even pinpointed MMP-9 as a potential target molecule to counter excessive inflammation in endotoxemia. Whereas the early effect of lipopolysaccharide-induced inflammation in vivo on the expression of MMP-9 in various peripheral organs has been described, the effects on the bone marrow and during late stage endotoxemia remain elusive. We demonstrate that TIMP-free MMP-9 is a major factor in bone marrow physiology and pathology. By using a mouse model for late-stage endotoxemia, we show that lipopolysaccharides elicited a depletion of neutrophil MMP-9 in the bone marrow and a shift of MMP-9 and MMP-9-containing cells towards peripheral organs, a pattern which was primarily associated with a relocation of CD11bhighGr-1high cells. In contrast, analysis of the tissue inhibitors of metalloproteinases was in line with a natural, systematic upregulation of TIMP-1, the main tissue inhibitor of TIMP-free MMP-9, and a general shift toward control of matrix metalloproteinase activity by tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Wannes Swinnen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Daphne Dorst
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium.
| |
Collapse
|
23
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
24
|
|
25
|
Petroni RC, Biselli PJC, de Lima TM, Theobaldo MC, Caldini ET, Pimentel RN, Barbeiro HV, Kubo SA, Velasco IT, Soriano FG. Hypertonic Saline (NaCl 7.5%) Reduces LPS-Induced Acute Lung Injury in Rats. Inflammation 2016; 38:2026-35. [PMID: 25962375 DOI: 10.1007/s10753-015-0183-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe lung inflammatory manifestation and has no effective therapy nowadays. Sepsis is one of the main illnesses among ARDS causes. The use of fluid resuscitation is an important treatment for sepsis, but positive fluid balance may induce pulmonary injury. As an alternative, fluid resuscitation with hypertonic saline ((HS) NaCl 7.5%) has been described as a promising therapeutical agent in sepsis-induced ARDS by the diminished amount of fluid necessary. Thus, we evaluated the effect of hypertonic saline in the treatment of LPS-induced ARDS. We found that hypertonic saline (NaCl 7.5%) treatment in rat model of LPS-induced ARDS avoided pulmonary function worsening and inhibited type I collagen deposition. In addition, hypertonic saline prevented pulmonary injury by decreasing metalloproteinase 9 (MMP-9) activity in tissue. Focal adhesion kinase (FAK) activation was reduced in HS group as well as neutrophil infiltration, NOS2 expression and NO content. Our study shows that fluid resuscitation with hypertonic saline decreases the progression of LPS-induced ARDS due to inhibition of pulmonary remodeling that is observed when regular saline is used.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil.
- Faculdade de Medicina da USP, LIM-51, Av. Dr. Arnaldo, 455, 3 andar, sala 3189, Cerqueira César, 01246-903, São Paulo, SP, Brazil.
| | | | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Elia Tamaso Caldini
- Laboratory of Cell Biology, Department of Pathology, Medical School, University of Sao Paulo, São Paulo, Brazil
| | | | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | - Suely Ariga Kubo
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | - Irineu Tadeu Velasco
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
26
|
Kinetics and Role of Plasma Matrix Metalloproteinase-9 Expression in Acute Lung Injury and the Acute Respiratory Distress Syndrome. Shock 2016; 44:128-36. [PMID: 26009816 DOI: 10.1097/shk.0000000000000386] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Primed neutrophils that are capable of releasing matrix metalloproteinases (MMPs) into the circulation are thought to play a significant role in the pathophysiology of acute respiratory distress syndrome (ARDS). We hypothesized that direct measurement of plasma MMP-9 activity may be a predictor of incipient tissue damage and subsequent lung injury, which was investigated in both an animal model of ARDS and a small cohort of 38 critically ill human patients. In a mouse model of ARDS involving instillation of intratracheal lipopolysaccharide (LPS) to induce lung inflammation, we measured neutrophil-mediated inflammation, along with MMP-9 activity in the airways and lung tissue and MMP-9 expression in the plasma. Neutrophil recruitment, inflammation, and MMP-9 activity in the airways and lung tissue increased throughout the 72 h after LPS instillation, whereas plasma MMP-9 expression was greatest at 12 to 24 h after LPS instillation. The results suggest that the peak in plasma MMP-9 activity may precede the peak of neutrophil inflammation in the airways and lung tissue in the setting of ARDS. Based on this animal study, a retrospective observational cohort study involving 38 patients admitted to a surgical intensive care unit at a tertiary care university hospital with acute respiratory failure requiring intubation and mechanical ventilation was conducted. Plasma samples were collected daily, and MMP-9 activity was compared with lung function as determined by the PaO2/FiO2 ratio. In patients who developed ARDS, a notable increase in plasma MMP-9 activity on a particular day correlated with a decrease in the PaO2/FiO2 ratio on the following day (r = -0.503, P < 0.006). Taken together, these results suggest that plasma MMP-9 activity changes, as a surrogate for primed neutrophils may have predictive value for the development of ARDS in a selected subset of critically ill patients.
Collapse
|
27
|
Liu X, Wang N, Wei G, Fan S, Lu Y, Zhu Y, Chen Q, Huang M, Zhou H, Zheng J. Consistency and pathophysiological characterization of a rat polymicrobial sepsis model via the improved cecal ligation and puncture surgery. Int Immunopharmacol 2016; 32:66-75. [PMID: 26802602 DOI: 10.1016/j.intimp.2015.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
Sepsis is the leading cause of death for critical ill patients and an essential focus in immunopharmacological research. The cecal ligation and puncture (CLP) model is regarded as a golden standard model for sepsis study. However, this animal model is easily affected by variability problems and dramatically affects pharmacological evaluation of anti-sepsis therapies, which requires standardized procedures and stable outcomes. Herein, the traditional syringe needle based puncture method was used as the major unstable factor for CLP models. Syringe needles created varied mortality in parallel experimental groups of CLP rats; they were inconsistent for severity control as mortality in CLP rats was not correlated with change in punctures, ligation lengths, or needle sizes. Moreover, the use of drainage tubes or strips, which was supposed to strengthen drainage stability, also failed to improve consistency of traditional syringe needles. To solve the consistency problem, an improved design of CLP surgery by puncture with newly-developed three-edged needles was described herein. In contrast to traditional syringe needles, these three-edged needles ensured more stable outcomes in repetitive groups. Furthermore, increased severity was found to be consistent with the enlarged needle size, as shown by the elevated mortality, increased proinflammatory cytokines, abnormal coagulation, worsen acidosis and more severe acute lung injury. In conclusion, application of the newly-developed three-edged needles provides a simple and feasible method to improve stability when conducting CLP surgery, which is significant for pharmacological studies on sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Guo Wei
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Min Huang
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China
| | - Hong Zhou
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing, 400038, PR China.
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
28
|
de Souza P, Schulz R, da Silva-Santos JE. Matrix metalloproteinase inhibitors prevent sepsis-induced refractoriness to vasoconstrictors in the cecal ligation and puncture model in rats. Eur J Pharmacol 2015; 765:164-70. [PMID: 26297976 DOI: 10.1016/j.ejphar.2015.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the loss of contractility in aortas from lipopolysaccharide (LPS)-treated rats is related to intracellular activation of matrix metalloproteinase (MMPs). However, the role of MMPs in the vascular refractoriness to vasoconstrictors has not been investigated in a model of polymicrobial sepsis. We evaluated the effects of the oral administration of the MMP inhibitors doxycycline or ONO-4817 in the in vitro vascular reactivity of aortic rings from rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both doxycycline and ONO-4817 did not change vascular responses in sham-operated rats, but fully prevented hyporeactivity to KCl, phenylephrine and angiotensin II in vessels from CLP rats. This protective effect was not associated with changes in hematological parameters or blood nitrate and nitrite. The refractoriness to contractile agents was accompanied by enhanced activity of MMP-2 in aorta from CLP rats, which was abrogated by MMP inhibitors. CLP-induced sepsis did not impair the levels of MMP-2 in aorta, but significantly reduced calponin-1, a regulatory protein of vascular contraction. In addition, augmented levels of TIMP-1 were found in vessels from CLP rats. All these differences were prevented by either doxycycline or ONO-4817. Our study shows, for the first time in the CLP rat model of sepsis, that the vascular refractoriness to different contractile agents induced by polymicrobial sepsis is associated with increased activity of MMP-2 and reduced amounts of calponin-1 in the aorta. These findings reinforce the importance of the enhanced activity of MMPs for vascular failure in septic shock.
Collapse
Affiliation(s)
- Priscila de Souza
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Richard Schulz
- Departments of Pediatrics & Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
29
|
Berthold T, Schubert N, Muschter S, Rohr M, Wesche J, Reil A, Bux J, Bakchoul T, Greinacher A. HNA antibody-mediated neutrophil aggregation is dependent on serine protease activity. Vox Sang 2015; 109:366-74. [PMID: 26084778 DOI: 10.1111/vox.12292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Transfusion-related acute lung injury (TRALI) is often caused by antibodies against human neutrophil alloantigen-2 (HNA-2) and HNA-3a. Neutrophil aggregation is considered as a major cause of TRALI, but little is known about how HNA antibodies initiate this process. We explored mechanisms involved in neutrophil aggregation induced by HNA-2 and HNA-3a antibodies. MATERIALS AND METHODS Isolated neutrophils were pretreated with broad-spectrum or specific inhibitors against different cell functions or proteases. Granulocyte agglutination test (GAT) was performed with serially diluted anti-HNA-2 and anti-HNA-3a plasmas or control plasma, and reactivity was evaluated microscopically. Reactive oxygen species (ROS) production in neutrophils was investigated using a lucigenin-based chemiluminescence assay. RESULTS HNA-2 and HNA-3a antibody-mediated neutrophil aggregation was inhibited by pretreatment with formaldehyde, iodoacetamide and the serine protease inhibitors Pefabloc-SC, N-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and Nα-tosyl-L-lysine chloromethyl ketone hydrochloride (TLCK). In contrast, inhibition of actin polymerization, respiratory burst, cysteine proteases, metalloproteases or aspartic proteases did not affect neutrophil aggregation. Furthermore, HNA-3a antibodies did not directly cause ROS production in neutrophils. CONCLUSION Aggregation of neutrophils induced by HNA-2 and HNA-3a antibodies is an active process and depends on trypsin- or chymotrypsin-like serine proteases but is not dependent on the production of ROS. These findings may open new prospects for the pharmacologic prevention of neutrophil-associated acute lung injury.
Collapse
Affiliation(s)
- T Berthold
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - N Schubert
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - S Muschter
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - M Rohr
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - J Wesche
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Reil
- Deutsches Rotes Kreuz - Blutspendedienst West, Hagen, Germany
| | - J Bux
- Ruhr Universität Bochum, Bochum, Germany
| | - T Bakchoul
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Sharp C, Millar AB, Medford ARL. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89:420-434. [PMID: 25925331 DOI: 10.1159/000381102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of acute lung injury (ALI) occurs as a result of an initial acute systemic inflammatory response. This can be consequent to a plethora of insults, either direct to the lung or indirect. The insult results in increased epithelial permeability, leading to alveolar flooding with a protein-rich oedema fluid. The resulting loss of gas exchange leads to acute respiratory failure and typically catastrophic illness, termed acute respiratory distress syndrome (ARDS), requiring ventilatory and critical care support. There remains a significant disease burden, with some estimates showing 200,000 cases each year in the USA with a mortality approaching 50%. In addition, there is a significant burden of morbidity in survivors. There are currently no disease-modifying therapies available, and the most effective advances in caring for these patients have been in changes to ventilator strategy as a result of the ARDS network studies nearly 15 years ago. Here, we will give an overview of more recent advances in the understanding of the cellular biology of ALI and highlight areas that may prove fertile for future disease-modifying therapies.
Collapse
Affiliation(s)
- Charles Sharp
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Westbury-on-Trym, UK
| | | | | |
Collapse
|
31
|
Tomita K, Takashina M, Mizuno N, Sakata K, Hattori K, Imura J, Ohashi W, Hattori Y. Cardiac fibroblasts: contributory role in septic cardiac dysfunction. J Surg Res 2015; 193:874-87. [DOI: 10.1016/j.jss.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 01/31/2023]
|
32
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 644] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Villalta PC, Rocic P, Townsley MI. Role of MMP2 and MMP9 in TRPV4-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L652-9. [PMID: 25150065 DOI: 10.1152/ajplung.00113.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ca(2+) entry through transient receptor potential vanilloid 4 (TRPV4) results in swelling, blebbing, and detachment of the epithelium and capillary endothelium in the intact lung. Subsequently, increased permeability of the septal barrier and alveolar flooding ensue. In this study, we tested the hypothesis that TRPV4 activation provides a Ca(2+) source necessary for proteolytic disruption of cell-cell or cell-matrix adhesion by matrix metalloproteinases (MMPs) 2 and 9, thus increasing septal barrier permeability. In our study, C57BL/6 or TRPV4(-/-) mouse lungs were perfused with varying doses of the TRPV4 agonist GSK-1016790A (Sigma) and then prepared for Western blot. Lung injury, assessed by increases in lung wet-to-dry weight ratios and total protein levels in the bronchoalveolar lavage fluid, was increased in a dose-dependent fashion in TRPV4(+/+) but not TRPV4(-/-) lungs. In concert with lung injury, we detected increased active MMP2 and MMP9 isoforms, suggesting that TRPV4 can provide the Ca(2+) source necessary for increased MMP2/9 activation. Furthermore, tissue inhibitor of metalloproteinases (TIMP) 2 levels in the TRPV4-injured lungs were decreased, suggesting that TRPV4 activation increases the availability of these active MMPs. We then determined whether MMP2 and MMP9 mediate TRPV4-induced lung injury. Pharmacological blockade (SB-3CT, 1 μM; Sigma) of MMP2 and MMP9 resulted in protection against TRPV4-induced lung injury. We conclude that TRPV4 activation and the subsequent Ca(2+) transient initiates a rapid cascade of events leading to release and activation of the gelatinase MMPs, which then contribute to lung injury.
Collapse
Affiliation(s)
- Patricia C Villalta
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Mary I Townsley
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; and
| |
Collapse
|
34
|
Matone J, Moretti AIS, Apodaca-Torrez FR, Goldenberg A. Ethyl-pyruvate reduces lung injury matrix metalloproteinases and cytokines and improves survival in experimental model of severe acute pancreatitis. Acta Cir Bras 2013; 28:559-67. [DOI: 10.1590/s0102-86502013000800002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/22/2013] [Indexed: 01/14/2023] Open
|
35
|
Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost 2013; 11:1385-98. [PMID: 23617547 DOI: 10.1111/jth.12273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/12/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Platelet-derived CD40L is known to regulate neutrophil recruitment and lung damage in sepsis. However, the mechanism regulating shedding of CD40L from activated platelets is not known. We hypothesized that matrix metalloproteinase (MMP)-9 might cleave surface-expressed CD40L and regulate pulmonary accumulation of neutrophils in sepsis. METHODS Abdominal sepsis was induced by cecal ligation and puncture (CLP) in wild-type and MMP-9-deficient mice. Edema formation, CXC chemokine levels, myeloperoxidase levels, neutrophils in the lung and plasma levels of CD40L and MMP-9 were quantified. RESULTS CLP increased plasma levels of MMP-9 but not MMP-2. The CLP-induced decrease in platelet surface CD40L and increase in soluble CD40L levels were significantly attenuated in MMP-9 gene-deficient mice. Moreover, pulmonary myeloperoxidase (MPO) activity and neutrophil infiltration in the alveolar space, as well as edema formation and lung injury, were markedly decreased in septic mice lacking MMP-9. In vitro studies revealed that inhibition of MMP-9 decreased platelet shedding of CD40L. Moreover, recombinant MMP-9 was capable of cleaving surface-expressed CD40L on activated platelets. In human studies, plasma levels of MMP-9 were significantly increased in patients with septic shock as compared with healthy controls, although MMP-9 levels did not correlate with organ injury score. CONCLUSIONS Our novel data propose a role of MMP-9 in regulating platelet-dependent infiltration of neutrophils and tissue damage in septic lung injury by controlling CD40L shedding from platelets. We conclude that targeting MMP-9 may be a useful strategy to limit acute lung injury in abdominal sepsis.
Collapse
Affiliation(s)
- M Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
OBJECTIVES Matrix metalloproteinase-8 messenger RNA expression was previously found to be increased in whole blood of children with septic shock. The impact of this finding on the severity and inflammatory response to sepsis is unknown. Here, we investigate the relationship between matrix metalloproteinase-8 and disease severity in children with septic shock. We further corroborate the role of matrix metalloproteinase-8 in sepsis in a murine model. DESIGN Retrospective observational clinical study and randomized controlled laboratory experiments. SETTING Pediatric intensive care units and an animal research facility at an academic children's hospital. PATIENTS AND SUBJECTS Patients age ≤10 yrs admitted to the intensive care unit with a diagnosis of septic shock. For laboratory studies, we utilized male mice deficient for matrix metalloproteinase-8 and male wild-type C57BL/6J mice. INTERVENTIONS Blood from children with septic shock was analyzed for matrix metalloproteinase-8 messenger RNA expression and matrix metalloproteinase-8 activity, and correlated with disease severity based on mortality and degree of organ failure. A murine model of sepsis was used to explore the effect of genetic and pharmacologic inhibition of matrix metalloproteinase-8 on the inflammatory response to sepsis. Finally, activation of nuclear factor-κB was assessed both in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS Increased matrix metalloproteinase-8 mRNA expression and activity in septic shock correlates with decreased survival and increased organ failure in pediatric patients. Genetic and pharmacologic inhibition of matrix metalloproteinase-8 leads to improved survival and a blunted inflammatory profile in a murine model of sepsis. We also identify matrix metalloproteinase-8 as a direct in vitro activator of the proinflammatory transcription factor, nuclear factor-κB. CONCLUSIONS Matrix metalloproteinase-8 is a novel modulator of inflammation during sepsis and a potential therapeutic target.
Collapse
|
37
|
Castro MM, Cena J, Cho WJ, Walsh MP, Schulz R. Matrix metalloproteinase-2 proteolysis of calponin-1 contributes to vascular hypocontractility in endotoxemic rats. Arterioscler Thromb Vasc Biol 2012; 32:662-8. [PMID: 22199370 DOI: 10.1161/atvbaha.111.242685] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Matrix metalloproteinase (MMP)-2 is activated in aorta during endotoxemia and plays a role in the hypocontractility to vasoconstrictors. Calponin-1 is a regulator of vascular smooth muscle tone with similarities to troponin, a cardiac myocyte protein that is cleaved by MMP-2 in myocardial oxidative stress injuries. We hypothesized that calponin-1 may be proteolyzed by MMP-2 in endotoxemia-induced vascular hypocontractility. METHODS AND RESULTS Rats were given a nonlethal dose of bacterial lipopolysaccharide (LPS) or vehicle. Some rats were given the MMP inhibitors ONO-4817 or doxycycline. Six hours later, plasma nitrate+nitrite increased >15-fold in LPS-treated rats, an effect unchanged by doxycycline. Both ONO-4817 and doxycycline prevented LPS-induced aortic hypocontractility to phenylephrine. LPS activated MMP-2 in the aorta by S-glutathiolation. Calponin-1 levels decreased by 25% in endotoxemic aortae, which was prevented by doxycycline. Calponin-1 and MMP-2 coimmunoprecipitated and both exhibited uniform cytosolic staining in medial vascular smooth muscle cells. In vitro incubation of calponin-1 with MMP-2 led to calponin-1 degradation and appearance of its cleavage product. CONCLUSION Calponin-1 is a target of MMP-2, which contributes to endotoxemia-induced vascular hypocontractility.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
38
|
Rahman M, Roller J, Zhang S, Syk I, Menger MD, Jeppsson B, Thorlacius H. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res 2012; 61:571-9. [DOI: 10.1007/s00011-012-0446-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/28/2012] [Indexed: 11/30/2022] Open
|
39
|
Gu Y, Lee HM, Simon SR, Golub LM. Chemically modified tetracycline-3 (CMT-3): A novel inhibitor of the serine proteinase, elastase. Pharmacol Res 2011; 64:595-601. [DOI: 10.1016/j.phrs.2011.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Wygrecka M, Wilhelm J, Jablonska E, Zakrzewicz D, Preissner KT, Seeger W, Guenther A, Markart P. Shedding of Low-Density Lipoprotein Receptor–related Protein-1 in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2011; 184:438-48. [DOI: 10.1164/rccm.201009-1422oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 2011; 19:198-208. [PMID: 21296575 DOI: 10.1016/j.tim.2011.01.001] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/27/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022]
Abstract
Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis. Here we summarize the role of several immune components in the pathogenesis of sepsis induced by CLP. However, several therapies proposed on the basis of promising results obtained by CLP could not be translated to the clinic. This demonstrates that experimental sepsis models do not completely mimic human sepsis. We propose several strategies to narrow the gap between experimental sepsis models and clinical sepsis, including targeting factors that contribute to the immunosuppressive phase of sepsis, and reproducing the heterogeneity of human patients.
Collapse
|
42
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
43
|
Matrix metalloproteinases: from tadpole tails to critical illness. Crit Care Med 2011; 39:413-4. [PMID: 21248528 DOI: 10.1097/ccm.0b013e318205c327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2010; 17:293-307. [PMID: 21046059 DOI: 10.2119/molmed.2010.00138] [Citation(s) in RCA: 1013] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.
Collapse
Affiliation(s)
- Jochen Grommes
- Department of Vascular Surgery, University Hospital, RWTH Aachen, Germany.
| | | |
Collapse
|
45
|
A Tetracycline Analog Improves Acute Respiratory Distress Syndrome Survival in an Ovine Model. Ann Thorac Surg 2010; 90:419-26. [DOI: 10.1016/j.athoracsur.2010.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/22/2022]
|
46
|
Shiomi T, Lemaître V, D’Armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 2010; 60:477-96. [PMID: 20594269 PMCID: PMC3745773 DOI: 10.1111/j.1440-1827.2010.02547.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellular functions within tissues are strictly regulated by the tissue microenvironment which comprises extracellular matrix and extracellular matrix-deposited factors such as growth factors, cytokines and chemokines. These molecules are metabolized by matrix metalloproteinases (MMP), a disintegrin and metalloproteinases (ADAM) and ADAM with thrombospondin motifs (ADAMTS), which are members of the metzincin superfamily. They function in various pathological conditions of both neoplastic and non-neoplastic diseases by digesting different substrates under the control of tissue inhibitors of metalloproteinases (TIMP) and reversion-inducing, cysteine-rich protein with Kazal motifs (RECK). In neoplastic diseases MMP play a central role in cancer cell invasion and metastases, and ADAM are also important to cancer cell proliferation and progression through the metabolism of growth factors and their receptors. Numerous papers have described the involvement of these metalloproteinases in non-neoplastic diseases in nearly every organ. In contrast to the numerous review articles on their roles in cancer cell proliferation and progression, there are very few articles discussing non-neoplastic diseases. This review therefore will focus on the properties of MMP, ADAM and ADAMTS and their implications for non-neoplastic diseases of the cardiovascular system, respiratory system, central nervous system, digestive system, renal system, wound healing and infection, and joints and muscular system.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Vincent Lemaître
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jeanine D’Armiento
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
47
|
Lorente L, Martín MM, Labarta L, Díaz C, Solé-Violán J, Blanquer J, Orbe J, Rodríguez JA, Jiménez A, Borreguero-León JM, Belmonte F, Medina JC, Llimiñana MC, Ferrer-Agüero JM, Ferreres J, Mora ML, Lubillo S, Sánchez M, Barrios Y, Sierra A, Páramo JA. Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R158. [PMID: 19799791 PMCID: PMC2784384 DOI: 10.1186/cc8115] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/01/2009] [Accepted: 10/02/2009] [Indexed: 02/07/2023]
Abstract
Introduction Matrix metalloproteinases (MMPs) play a role in infectious diseases through extracellular matrix (ECM) degradation, which favors the migration of immune cells from the bloodstream to sites of inflammation. Although higher levels of MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) have been found in small series of patients with sepsis, MMP-10 levels have not been studied in this setting. The objective of this study was to determine the predictive value of MMP-9, MMP-10, and TIMP-1 on clinical severity and mortality in a large series of patients with severe sepsis. Methods This was a multicenter, observational, and prospective study carried out in six Spanish Intensive Care Units. We included 192 (125 surviving and 67 nonsurviving) patients with severe sepsis and 50 age- and sex-matched healthy controls in the study. Serum levels of MMP-9, MMP-10, TIMP-1, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-10 were measured in patients with severe sepsis at the time of diagnosis and in healthy controls. Results Sepsis patients had higher levels of MMP-10 and TIMP-1, higher MMP-10/TIMP-1 ratios, and lower MMP-9/TIMP-1 ratios than did healthy controls (P < 0.001). An association was found between MMP-9, MMP-10, TIMP-1, and MMP-9/TIMP-1 ratios and parameters of sepsis severity, assessed by the SOFA score, the APACHE-II score, lactic acid, platelet count, and markers of coagulopathy. Nonsurviving sepsis patients had lower levels of MMP-9 (P = 0.037), higher levels of TIMP-1 (P < 0.001), lower MMP-9/TIMP-1 ratio (P = 0.003), higher levels of IL-10 (P < 0.001), and lower TNF-α/IL-10 ratio than did surviving patients. An association was found between MMP-9, MMP-10, and TIMP-1 levels, and TNF-α and IL-10 levels. The risk of death in sepsis patients with TIMP-1 values greater than 531 ng/ml was 80% higher than that in patients with lower values (RR = 1.80; 95% CI = 1.13 to 2.87;P = 0.01; sensitivity = 0.73; specificity = 0.45). Conclusions The novel findings of our study on patients with severe sepsis (to our knowledge, the largest series reporting data about MMP levels in sepsis) are that reduced MMP-9/TIMP-1 ratios and increased MMP-10 levels may be of great pathophysiologic significance in terms of severity and mortality, and that TIMP-1 levels may represent a biomarker to predict the clinical outcome of patients with sepsis.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, 38320 Santa Cruz de Tenerife, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev 2009; 22:224-39, Table of Contents. [PMID: 19366913 DOI: 10.1128/cmr.00047-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian immune system is optimized to cope effectively with the constant threat of pathogens. However, when the immune system overreacts, sepsis, severe sepsis, or septic shock can develop. Despite extensive research, these conditions remain the leading cause of death in intensive care units. The matrix metalloproteinases (MMPs) constitute a family of proteases that are expressed in developmental, physiological, and pathological processes and also in response to infections. Studies using MMP inhibitors and MMP knockout mice indicate that MMPs play essential roles in infection and in the host defense against infection. This review provides a brief introduction to some basic concepts of infections caused by gram-negative bacteria and reviews reports describing MMP expression and inhibition, as well as studies with MMP-deficient mice in models of infection caused by gram-negative bacteria and of septic shock. We discuss whether MMPs should be considered novel drug targets in infection and septic shock.
Collapse
|
49
|
|
50
|
Acute pancreatitis: hypertonic saline increases heat shock proteins 70 and 90 and reduces neutrophil infiltration in lung injury. Pancreas 2009; 38:507-14. [PMID: 19346995 DOI: 10.1097/mpa.0b013e31819fef75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Acute pancreatitis (AP) protease release induces lung parenchymal destruction via matrix metalloproteinases (MMPs), a neutrophil (polymorphonuclear leukocyte)-dependent process. Recent studies in hemorrhagic shock revealed that hypertonic saline (HTS) has an anti-inflammatory effect and can inhibit a variety of neutrophil functions. The aim of this study was to determine whether HTS and its actions in the pathway of neutrophil migration, MMPs, and heat shock proteins (HSPs) are effective in protecting the lung from injury associated with AP. METHODS We determined neutrophil infiltration and expressions of MMPs and HSPs in the lung tissue after AP induced by retrograde infusion of 2.5% of sodium taurocholate. RESULTS Animals submitted to AP that received HTS compared with those who received normal saline presented with increased HSP70 and HSP90 expressions and reduced myeloperoxidase levels and MMP-9 expression and activity. CONCLUSIONS Our data raised the hypothesis that a sequence of HTS lung protection events increases HSP70 and HSP90, inhibiting infiltration of neutrophils and their protease actions in the lung.
Collapse
|