1
|
Dankoski EC, Wightman RM. Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci 2013; 7:44. [PMID: 23760548 PMCID: PMC3672682 DOI: 10.3389/fnint.2013.00044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022] Open
Abstract
Serotonin modulates a variety of processes throughout the brain, but it is perhaps best known for its involvement in the etiology and treatment of depressive disorders. Microdialysis studies have provided a clear picture of how ambient serotonin levels fluctuate with regard to behavioral states and pharmacological manipulation, and anatomical and electrophysiological studies describe the location and activity of serotonin and its targets. However, few techniques combine the temporal resolution, spatial precision, and chemical selectivity to directly evaluate serotonin release and uptake. Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can detect minute changes in neurotransmitter concentration on the same temporal and spatial dimensions as extrasynaptic neurotransmission. Subsecond measurements both in vivo and in brain slice preparations enable us to tease apart the processes of release and uptake. These studies have particularly highlighted the significance of regulatory mechanisms to proper functioning of the serotonin system. This article will review the findings of FSCV investigations of serotonergic neurotransmission and discuss this technique's potential in future studies of the serotonin system.
Collapse
Affiliation(s)
- Elyse C Dankoski
- Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC, USA
| | | |
Collapse
|
2
|
Hashemi P, Dankoski EC, Wood KM, Ambrose RE, Wightman RM. In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. J Neurochem 2011; 118:749-59. [PMID: 21682723 PMCID: PMC3155665 DOI: 10.1111/j.1471-4159.2011.07352.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exploring the mechanisms of serotonin [5-hydroxytryptamine (5-HT)] in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized fast-scan cyclic voltammetry for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely because of increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR.
Collapse
Affiliation(s)
- Parastoo Hashemi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - Elyse C. Dankoski
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - Kevin M. Wood
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - R. Ellen Ambrose
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| |
Collapse
|
3
|
Leslie CP, Biagetti M, Bison S, Bromidge SM, Di Fabio R, Donati D, Falchi A, Garnier MJ, Jaxa-Chamiec A, Manchee G, Merlo G, Pizzi DA, Stasi LP, Tibasco J, Vong A, Ward SE, Zonzini L. Discovery of 1-(3-{2-[4-(2-Methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone (GSK163090), a Potent, Selective, and Orally Active 5-HT1A/B/D Receptor Antagonist. J Med Chem 2010; 53:8228-40. [DOI: 10.1021/jm100714c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Colin P. Leslie
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Matteo Biagetti
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Silvia Bison
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Steven M. Bromidge
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom
| | - Romano Di Fabio
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Daniele Donati
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Alessandro Falchi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Martine J. Garnier
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Albert Jaxa-Chamiec
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Gary Manchee
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Giancarlo Merlo
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Domenica A. Pizzi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Luigi P. Stasi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Jessica Tibasco
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| | - Antonio Vong
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom
| | - Simon E. Ward
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom
| | - Laura Zonzini
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline SpA, Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy
| |
Collapse
|
4
|
Monassier L, Laplante MA, Ayadi T, Doly S, Maroteaux L. Contribution of gene-modified mice and rats to our understanding of the cardiovascular pharmacology of serotonin. Pharmacol Ther 2010; 128:559-67. [PMID: 20828585 DOI: 10.1016/j.pharmthera.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review focuses on new insights provided by gene-modified animals into the cardiovascular pharmacology of serotonin. During their development, mice mutant for tryptophan hydroxylase 1 and lacking peripheral serotonin, or mutant for 5-HT(2B) receptors, display cardiac defects and dilated cardiomyopathy. The 5-HT(4) receptor is important for the maturation of cardiac conduction. In fact, transgenic approaches have revealed that adult cardiac status is strongly influenced by maternal serotonin. Serotonin has long been known to be a vasoconstrictor in adult physiology. Analysis of animals knocked-out for the serotonin transporter suggested a role in blood pressure control and revealed an effect of 5-HT(2B) receptor antagonists in hypertension. In the lung vasculature, mice lacking the 5-HT(2B) receptor gene that are exposed to chronic hypoxia are resistant to pulmonary hypertension, while 5-HT(1B) receptor and serotonin transporter mutant animals show partial resistance. In platelets, mutant mice revealed that serotonin transporter regulates not only the mechanisms by which serotonin is packaged and secreted but also platelet aggregation. Studies looking at adult cardiac remodeling showed that mice lacking the 5-HT(2B) receptor gene were protected from cardiac hypertrophy. Their fibroblasts were unable to secrete cytokines. Crossing these animals with mice overexpressing the receptor in cardiomyocytes revealed the contribution of cardiac fibroblasts and 5-HT(2B) receptors to cardiac hypertrophy. In mice lacking the monoamine oxidase-A gene, the role of serotonin degradation in cardiac hypertrophy was confirmed. Works with gene-modified animals has contributed strongly to the re-evaluation of the influence of serotonin on cardiovascular regulation, though several unknowns remain to be investigated.
Collapse
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Physiopathologie et Médecine Translationnelle EA 4438, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg, France.
| | | | | | | | | |
Collapse
|
5
|
Esteve JM, Launay JM, Kellermann O, Maroteaux L. Functions of serotonin in hypoxic pulmonary vascular remodeling. Cell Biochem Biophys 2008; 47:33-44. [PMID: 17406058 DOI: 10.1385/cbb:47:1:33] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.
Collapse
|
6
|
Thomas DR, Soffin EM, Roberts C, Kew JNC, de la Flor RM, Dawson LA, Fry VA, Coggon SA, Faedo S, Hayes PD, Corbett DF, Davies CH, Hagan JJ. SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 2006; 51:566-77. [PMID: 16846620 DOI: 10.1016/j.neuropharm.2006.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/10/2006] [Accepted: 04/28/2006] [Indexed: 11/16/2022]
Abstract
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.
Collapse
Affiliation(s)
- David R Thomas
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dawson LA, Hughes ZA, Starr KR, Storey JD, Bettelini L, Bacchi F, Arban R, Poffe A, Melotto S, Hagan JJ, Price GW. Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): In vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity. Neuropharmacology 2006; 50:975-83. [PMID: 16581092 DOI: 10.1016/j.neuropharm.2006.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/28/2005] [Accepted: 01/20/2006] [Indexed: 11/28/2022]
Abstract
The 5-HT1B receptor has attracted significant interest as a potential target for the development of therapeutics for the treatment of affective disorders such as anxiety and depression. Here we present the in vivo characterisation of a novel, selective and orally bioavailable 5-HT1B receptor antagonist, SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride). SB-616234-A reversed the 5-HT1/7 receptor agonist, SKF-99101H-induced hypothermia in guinea pigs in a dose related manner with an ED50 of 2.4 mg/kg p.o. Using in vivo microdialysis in freely moving guinea pigs, SB-616234-A (3-30 mg/kg p.o.) caused a dose-related increase in extracellular 5-HT in the dentate gyrus. Evaluation of antidepressant- and anxiolytic-like effects of this 5-HT1B receptor antagonist was performed in a variety of models and species. SB-616234-A produced a decrease in immobility time in the mouse forced swim test; an effect suggestive of antidepressant activity. Furthermore, SB-616234-A produced dose-related anxiolytic effects in both rat and guinea pig maternal separation-induced vocalisation models with an ED50 of 1.0 and 3.3 mg/kg i.p., respectively (vs fluoxetine treatment ED50 = 2.2 mg/kg i.p. in both species). Also a significant reduction in posturing behaviours was observed in the human threat test in marmosets; an effect indicative of anxiolytic activity. In summary, SB-616234-A is a novel, potent and orally bioavailable 5-HT1B receptor antagonist which exhibits a neurochemical and behavioural profile that is consistent with both anxiolytic- and antidepressant-like activity in a variety of species. Taken together these data suggest that SB-616234-A may have therapeutic efficacy in the treatment of affective disorders.
Collapse
Affiliation(s)
- Lee A Dawson
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Scott C, Langmead CJ, Clarke KL, Wyman P, Smith PW, Starr KR, Dawson LA, Price GW, Hagan JJ, Watson J. SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2'methyl-4'-(5-methyl-1,2,3-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): a novel, potent and selective 5-HT1B receptor antagonist. Neuropharmacology 2006; 50:984-90. [PMID: 16546225 DOI: 10.1016/j.neuropharm.2006.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 12/19/2005] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
SB-616234-A possesses high affinity for human 5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells (pKi 8.3+/-0.2), and is over 100-fold selective for a range of molecular targets except h5-HT1) receptors (pKi 6.6+/-0.1). Similarly, affinity (pKi) for rat and guinea pig striatal 5-HT1B receptors is 9.2+/-0.1. In [35S]-GTPgammaS binding studies in the human recombinant cell line, SB-616234-A acted as a high affinity antagonist with a pA2 value of 8.6+/-0.2 whilst providing no evidence of agonist activity in this system. In [35S]-GTPgammaS binding studies in rat striatal membranes, SB-616234-A acted as a high affinity antagonist with an apparent pKB of 8.4+/-0.5, again whilst providing no evidence of agonist activity in this system. SB-616234-A (1 microM) potentiated electrically stimulated [3H]-5-HT release from guinea pig and rat cortical slices (S2/S1) ratios of 1.8 and 1.6, respectively). SB-616234-A (0.3-30 mg kg(-1) p.o.) caused a dose-dependent inhibition of ex vivo [3H]-GR125743 binding to rat striatal 5-HT1B receptors with an ED50 of 2.83+/-0.39 mg kg(-1) p.o. Taken together these data suggest that SB-616234-A is a potent and selective 5-HT(1B) autoreceptor antagonist that occupies central 5-HT1B receptors in vivo following oral administration.
Collapse
Affiliation(s)
- Claire Scott
- Department of Biology, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Threlfell S, Cragg SJ, Kalló I, Turi GF, Coen CW, Greenfield SA. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci 2004; 24:8704-10. [PMID: 15470136 PMCID: PMC6729965 DOI: 10.1523/jneurosci.2690-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/18/2004] [Accepted: 08/20/2004] [Indexed: 11/21/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) plays a key role in basal ganglia function. Projections from multiple basal ganglia nuclei converge at the SNr to regulate nigrothalamic output. The SNr is also characterized by abundant aminergic input, including dopaminergic dendrites and axons containing 5-hydroxytryptamine (5-HT) or histamine (HA). The functions of HA in the SNr include motor control via HA H3 receptors (H3Rs), although the mechanism remains far from elucidated. In Parkinson's disease, there is an increase in H3Rs and the density of HA-immunoreactive axons in the SN. We explored the role of H3Rs in the regulation of 5-HT release in SNr using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in rat midbrain slices. Immunohistochemistry identified a similar distribution for histaminergic and serotonergic processes in the SNr: immunoreactive varicosities were observed in the vicinity of dopaminergic dendrites. Electrically evoked 5-HT release was dependent on extracellular Ca2+ and prevented by NaV+-channel blockade. Extracellular 5-HT concentration was enhanced by inhibition of uptake transporters for 5-HT but not dopamine. Selective H3R agonists (R)-(-)-alpha-methyl-histamine or immepip inhibited evoked 5-HT release by up to 60%. This inhibition was prevented by the H3R antagonist thioperamide but not by the 5-HT1B receptor antagonist isamoltane. H3R inhibition of 5-HT release prevailed in the presence of GABA or glutamate receptor antagonists (ionotropic and metabotropic), suggesting minimal involvement of GABA or glutamate synapses. The potent regulation of 5-HT by H3Rs reported here not only elucidates HA function in the SNr but also raises the possibility of novel targets for basal ganglia therapies.
Collapse
Affiliation(s)
- Sarah Threlfell
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Pullar IA, Boot JR, Broadmore RJ, Eyre TA, Cooper J, Sanger GJ, Wedley S, Mitchell SN. The role of the 5-HT1D receptor as a presynaptic autoreceptor in the guinea pig. Eur J Pharmacol 2004; 493:85-93. [PMID: 15189767 DOI: 10.1016/j.ejphar.2004.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 04/15/2004] [Accepted: 04/20/2004] [Indexed: 11/23/2022]
Abstract
The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.
Collapse
Affiliation(s)
- Ian A Pullar
- Eli Lilly and Company Limited, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Johnson DA, Gartside SE, Ingram CD. 5-HT1A receptor-mediated autoinhibition does not function at physiological firing rates: evidence from in vitro electrophysiological studies in the rat dorsal raphe nucleus. Neuropharmacology 2002; 43:959-65. [PMID: 12423665 DOI: 10.1016/s0028-3908(02)00116-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
5-HT(1A)-mediated autoinhibition of neurones in the dorsal raphe nucleus (DRN) is considered to be the principal inhibitory regulator of 5-HT neuronal activity. The activation of this receptor by endogenous 5-HT was investigated using electrophysiological recordings from the rat DRN in vitro. At a concentration which blocked the inhibitory effect of exogenous 5-HT, the 5-HT(1A) antagonist WAY 100635 did not alter basal firing rate or modulate the excitatory response to the alpha(1)-agonist phenylephrine. Blockade of 5-HT reuptake by a concentration of fluoxetine, which enhanced the inhibitory effect of exogenous 5-HT, lowered phenylephrine-induced basal firing presumably due to potentiation of the effect of endogenous 5-HT. However, this effect was not firing rate dependent and neither the proportional increase nor the time-course of the response to a higher concentration of phenylephrine were altered in the presence of fluoxetine. These data suggest that the inhibitory 5-HT(1A) receptor on raphe neurones is neither tonically activated nor plays any role in modulating the response to excitatory transmitters. Thus, at physiological firing rates this receptor does not appear to function as an autoreceptor of serotonergic neurones of the DRN.
Collapse
Affiliation(s)
- D A Johnson
- Psychobiology Research Group, University of Newcastle upon Tyne, School of Neurosciences and Psychiatry, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
13
|
Roberts C, Watson J, Price GW, Middlemiss DN. SB-236057-A: a selective 5-HT1B receptor inverse agonist. CNS DRUG REVIEWS 2001; 7:433-44. [PMID: 11830759 PMCID: PMC6741665 DOI: 10.1111/j.1527-3458.2001.tb00209.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
5-HT1B autoreceptors are involved in the control of extracellular 5-HT levels from both the terminal and cell body regions of serotonergic neurons. In this manuscript we review the pharmacological and pharmacokinetic data available for the selective and potent 5-HT1B receptor inverse agonist, SB-236057-A (1'-ethyl-5-(2'-methyl-4'-(5-methyl-1,3,4-oxadiazolyl-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro (furo[2,3-f]indole-3,4'-piperidine) hydrochloride). SB 236057-A has been shown to have high affinity for human 5-HT1B receptors (pK(i) = 8.2) and displays 80 or more fold selectivity for the human 5-HT1B receptor over other 5-HT receptors and a range of additional receptors, ion channels and enzymes. In functional studies at human 5-HT1B receptors SB-236057-A displayed inverse agonism (pA(2) = 8.9) using [(35)S]GTPgammaS binding, and silent antagonism (pA(2) = 9.2) using cAMP accumulation. SB-236057-A also acted as an antagonist at the 5-HT terminal autoreceptor as measured by [3H]5-HT release from electrically stimulated guinea pig and human cortical slices. In the guinea pig, pharmacokinetic analysis demonstrated that SB-236057-A was bioavailable and according to in vivo pharmacodynamic assays it enters brain and has a long duration of action. Importantly no side effect liability was evident at relevant doses from anxiogenic, cardiovascular, sedative or migraine viewpoints. In vivo microdialysis studies demonstrated that SB-236057-A is an antagonist in the guinea pig cortex but has no effect on extracellular 5-HT levels per se. In contrast, SB-236057-A increased extracellular 5-HT levels in the guinea pig dentate gyrus. This increase in 5-HT release was comparable to that observed after 14 days of paroxetine administration. SB-236057-A has been a useful tool in confirming that, in either guinea pigs or humans, the terminal 5-HT autoreceptor is of the 5-HT1B subtype. It appears that acute 5-HT1B receptor blockade, by virtue of increased 5-HT release in the dentate gyrus, may provide a rapidly acting antidepressant.
Collapse
Affiliation(s)
- C Roberts
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Ave., Harlow, Essex, CM19 5AW, UK.
| | | | | | | |
Collapse
|
14
|
Abstract
The existence of multiple 5-HT autoreceptors in the central nervous system is now firmly established and they have been pharmacologically identified as belonging to the 5-HT(1A), 5-HT(1B), and 5-HT(1D) receptor subtypes. In addition, 5-HT(1F), 5-HT(5A), and 5-HT(7) receptors remain as potential candidates for additional autoreceptors. The emergence of selective ligands, such as SB-224289 (5-HT(1B) receptor antagonist), BRL 15572 (5-HT(1D) receptor antagonist), GR 127935 (a mixed 5-HT(1B/1D) receptor antagonist), LY 334370 (5-HT(1F) receptor agonist), and SB-269970 (5-HT(7) receptor antagonist), has aided the characterisation of 5-HT autoreceptors and has highlighted the complexity of mechanisms which modulate the release of 5-HT.
Collapse
Affiliation(s)
- C Roberts
- Neuroscience Research, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | |
Collapse
|
15
|
Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001; 92:179-212. [PMID: 11916537 DOI: 10.1016/s0163-7258(01)00169-3] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) receptors have been divided into 7 subfamilies by convention, 6 of which include 13 different genes for G-protein-coupled receptors. Those subfamilies have been characterized by overlapping pharmacological properties, amino acid sequences, gene organization, and second messenger coupling pathways. Post-genomic modifications, such as alternative mRNA splicing or mRNA editing, creates at least 20 more G-protein-coupled 5-HT receptors, such that there are at least 30 distinct 5-HT receptors that signal through G-proteins. This review will focus on what is known about the signaling linkages of the G-protein-linked 5-HT receptors, and will highlight some fascinating new insights into 5-HT receptor signaling.
Collapse
Affiliation(s)
- J R Raymond
- The Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hopwood SE, Stamford JA. Multiple 5-HT(1) autoreceptor subtypes govern serotonin release in dorsal and median raphé nuclei. Neuropharmacology 2001; 40:508-19. [PMID: 11249960 DOI: 10.1016/s0028-3908(00)00192-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study investigated the possibility of multiple 5-HT(1) autoreceptor subtypes in the rostral raphé nuclei. Slices (350 microm) of rat dorsal or median raphé nucleus (DRN/MRN) were taken from male Wistar rats and superfused with artificial cerebrospinal fluid at 32 degrees C. Fast cyclic voltammetry at carbon fibre microelectrodes was used to monitor serotonin (5-HT) release following local electrical stimulation. In both DRN and MRN, 5-HT release on short trains was reduced by the selective 5-HT(1A) agonist 8-OH-DPAT (1 microM), an effect blocked by the selective 5-HT(1A) antagonist WAY 100635 (0.1 microM) but not by SB 216641 (0.05 and 0.2 microM) or BRL 15572 (0.5 microM), selective antagonists at the 5-HT(1B) and 5-HT(1D) receptors respectively. The selective 5-HT(1B) agonist CP 93129 (0.3 microM) also reduced 5-HT release in both nuclei. Its effect was blocked by SB 216641 but not by WAY 100635 or BRL 15572. The 5-HT(1D/1B) agonist sumatriptan (0.5 microM) decreased 5-HT release in both DRN and MRN. In DRN, the effect of sumatriptan was blocked by BRL 15572 but not by WAY 100635 or SB 216641. In MRN, the effect of sumatriptan was not blocked by any of the above antagonists. BRL 15572 increased 5-HT release on long stimulations in DRN and MRN while WAY 100635 had no effect. SB 216641 increased 5-HT release in MRN but not DRN. WAY 100635 potentiated the effect of SB 216641 in DRN but not MRN. The data suggest that 5-HT release in DRN is controlled by 5-HT(1A), 5-HT(1B) and 5-HT(1D) autoreceptors. 5-HT release in MRN is controlled by 5-HT(1A) and 5-HT(1B) autoreceptors and another, as yet unidentified mechanism.
Collapse
Affiliation(s)
- S E Hopwood
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, St Bartholomew's and The Royal London School of Medicine and Dentistry, Alexandra Wing, Royal London Hospital, Whitechapel, London E1 1BB, UK
| | | |
Collapse
|
17
|
Davidson C, Ellinwood EH, Douglas SB, Lee TH. Effect of cocaine, nomifensine, GBR 12909 and WIN 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine. J Neurosci Methods 2000; 101:75-83. [PMID: 10967364 DOI: 10.1016/s0165-0270(00)00264-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Electrochemical measurements using voltammetry or amperometry at carbon-fiber microelectrodes have been used in vitro and in vivo to examine regulatory mechanisms for the central dopamine system. In many of these experiments, dopamine efflux concentrations under control conditions are determined followed by their alterations in response to a drug treatment. The present study demonstrates that some drugs can affect dopamine measurements, not only by their expected pharmacological action but also by directly altering the microelectrode responsivity. The commonly used reuptake inhibitors GBR 12909 (10 microM) and nomifensine (5 microM) drastically reduce electrode sensitivity and, in the case of nomifensine, increase the time to reach a plateau in response to dopamine boluses (i.e. reduced 'frequency response'). Cocaine (10 microM) and WIN 35428 (2 microM) have negligible effect on these indices. This decrease in sensitivity was found in both nafion and non-nafion coated electrodes. Further, the reduction in sensitivity seen in non-nafion coated electrodes was not prevented by increasing the reversal potential (from +1.0 to +1.3 V) and voltage scan rate (from 350 to 450 V/s). These data suggest that care must be taken when interpreting data from voltammetric or amporometric experiments using carbon electrodes where GBR 12909 or nomifensine are used, especially at high concentrations. Furthermore, wherever possible, direct effects of a drug on electrode sensitivity and frequency response should be determined.
Collapse
Affiliation(s)
- C Davidson
- Department of Psychiatry, Box 3870, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
18
|
Chadha A, Sur C, Atack J, Duty S. The 5HT(1B) receptor agonist, CP-93129, inhibits [(3)H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. Br J Pharmacol 2000; 130:1927-32. [PMID: 10952684 PMCID: PMC1572281 DOI: 10.1038/sj.bjp.0703526] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study examined whether activation of 5HT(1B) receptors in the rodent globus pallidus (GP) could reduce GABA release in vitro and reverse reserpine-induced akinesia in vivo. Microdissected slices of GP from male Sprague Dawley rats (300-350 g) were preloaded with [(3)H]-GABA. During subsequent superfusion, 4 min fractions were collected for analysis of release. The effects of the 5HT(1B) receptor agonist, 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3, 2-b]pyrid-5-one (CP-93129), on 25 mM KCl-evoked release were examined using a standard dual stimulation paradigm. Male Sprague Dawley rats (270 - 290 g), stereotaxically cannulated above the GP, were rendered akinetic by injection of reserpine (5 mg kg(-1) s.c.). Eighteen hours later, the rotational behaviour induced by unilateral injection of CP-93129 was examined. CP-93129 (0.6-16.2 microM) produced a concentration-dependent inhibition of 25 mM KCl-evoked [(3)H]-GABA release reaching a maximum inhibition of 52.5+/-4.5%. The effect of a submaximal concentration of CP-93129 (5.4 microM) was fully inhibited by the 5HT(1B) receptor antagonist, isamoltane (10 microM). Following intrapallidal injection, CP-93129 (30-330 nmol in 0.5 microl) produced a dose-dependent increase in net contraversive rotations reaching a maximum of 197+/-32 rotations in 240 min at 330 nmol. Pre-treatment with isamoltane (10 nmol in 1 microl) inhibited the effects of a submaximal dose of CP-93129 (220 nmol) by 84+/-6%. These data suggest that at least some 5HT(1B) receptor function as heteroreceptors in the GP, reducing the release of GABA. Moreover, CP-93129-mediated activation of these receptors in the GP provides relief of akinesia in the reserpine-treated rat model of PD.
Collapse
Affiliation(s)
- Anita Chadha
- Neurodegenerative Disease Research Group, Wolfson Centre for Age-Related Diseases, Hodgkin Building, GKT School of Biomedical Sciences, King's College London, London SE1 1UL
| | - Cyrille Sur
- Department of Biochemistry, Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - John Atack
- Department of Biochemistry, Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR
| | - Susan Duty
- Neurodegenerative Disease Research Group, Wolfson Centre for Age-Related Diseases, Hodgkin Building, GKT School of Biomedical Sciences, King's College London, London SE1 1UL
- Author for correspondence:
| |
Collapse
|
19
|
Davidson C, Stamford JA. Effect of chronic paroxetine treatment on 5-HT1B and 5-HT1D autoreceptors in rat dorsal raphe nucleus. Neurochem Int 2000; 36:91-6. [PMID: 10676872 DOI: 10.1016/s0197-0186(99)00115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study reports the effect of chronic paroxetine (10 mg/kg p.o., 21 days) on 5-HT1B and 5-HT1D autoreceptors controlling stimulated 5-HT efflux in slices of rat dorsal raphe nucleus. Electrically evoked 5-HT (10 pulses, 200 Hz, 0.1 ms, 10 mA) was measured using fast cyclic voltammetry. 5-HT efflux was inhibited by CP 93129 (10 nM-10 microM) and by sumatriptan (1 nM-1 microM) agonists at 5-HT1B and 5-HT1D receptors, respectively. Chronic paroxetine did not, initially, appear to alter the sensitivity of the 5-HT1B autoreceptors to CP 93129. However, when constructed in the presence of WAY 100635 (10 nM) the selective and silent 5-HT1A antagonist, there was a significant (P < 0.001) rightward shift of the CP 93129 concentration-response curve in the paroxetine-treated rats but not in the controls, implying a desensitisation of the 5-HT1B autoreceptor by paroxetine. Chronic paroxetine did not affect the sumatriptan concentration-response curve, even with WAY 100635 present, implying that there was no (de)sensitisation of the 5-HT1D autoreceptor. These data suggest that chronic paroxetine treatment may desensitise 5-HT1B autoreceptors in the dorsal raphe nucleus but that this effect is unmasked only when the dominant 5-HT1A autoreceptor control is antagonised.
Collapse
Affiliation(s)
- C Davidson
- Academic Department of Anaesthesia and Intensive Care, St Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, London, UK
| | | |
Collapse
|
20
|
Roberts C, Boyd DF, Middlemiss DN, Routledge C. Enhancement of 5-HT1B and 5-HT1D receptor antagonist effects on extracellular 5-HT levels in the guinea-pig brain following concurrent 5-HT1A or 5-HT re-uptake site blockade. Neuropharmacology 1999; 38:1409-19. [PMID: 10471095 DOI: 10.1016/s0028-3908(99)00051-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of selective serotonin re-uptake inhibitor (SSRI), paroxetine, and 5-HT1A, 5-HT1B and 5-HT1B/1D receptor antagonists on in vivo extracellular 5-HT levels in the guinea-pig frontal cortex and dorsal hippocampus were investigated using the technique of microdialysis. The aim of the study was to further investigate the autoreceptor roles of the 5-HT1A, 5-HT1B and 5-HT1D receptors in the median vs dorsal raphe nuclei. In the frontal cortex, 5-HT1A (WAY 100635, 1 mg/kg i.p.) or 5-HT1B (SB-224289, 4 mg/kg i.p.) receptor antagonists had no effect on extracellular levels of 5-HT, whilst the mixed 5-HT1B/1D receptor antagonist (GR 127935, 0.3 mg/kg i.p) produced a significant decrease in extracellular 5-HT levels. Paroxetine (10 microM) significantly increased extracellular 5-HT levels when perfused locally into the cortex. Administration of SB-224289, followed 120 min later by WAY 100635, had no effect on extracellular 5-HT levels. In contrast, sequential administration of either WAY 100635 and GR 127935, or SB-224289 and paroxetine significantly increased extracellular 5-HT levels. In the dorsal hippocampus, whilst 5-HT1A receptor antagonism elicited by administration of WAY 100635 had no effect, both 5-HT1B and mixed 5-HT1B/1D receptor blockade significantly increased extracellular 5-HT levels. Administration of SB-224289 followed 120 min later with WAY 100635, or WAY 100635 followed 30 min later with GR 127935, potentiated the effect of the three compounds alone, significantly increasing extracellular 5-HT levels. These data demonstrate that to simultaneously increase extracellular 5-HT in both frontal cortex and dorsal hippocampus of the guinea-pig brain concurrent 5-HTA1A, 5-HT1B and 5-HT1D receptor blockade is required. Whereas in the dorsal hippocampus, 5-HT1B receptor blockade is sufficient to elicit an increase in extracellular 5-HT levels.
Collapse
Affiliation(s)
- C Roberts
- SmithKline Beecham Pharmaceuticals, Department of Neuroscience, New Frontiers Science Park, Harlow, Essex, UK. @INET
| | | | | | | |
Collapse
|
21
|
Hertel P, Nomikos GG, Svensson TH. The antipsychotic drug risperidone interacts with auto- and hetero-receptors regulating serotonin output in the rat frontal cortex. Neuropharmacology 1999; 38:1175-84. [PMID: 10462130 DOI: 10.1016/s0028-3908(99)00045-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously shown that the antipsychotic drug risperidone enhances serotonin (5-HT) output in the rat frontal cortex (FC), but the precise underlying mechanism has not been revealed. Consequently, the present study using in vivo microdialysis was undertaken to (i) characterize the effects of alpha2D, 5-HT1B and 5-HT1D receptor stimulation or blockade on 5-HT efflux in the FC given the purported regulatory role of these sites on 5-HT release, and (ii) to investigate the ability of risperidone to interfere with these receptors in order to examine their putative role in the facilitatory action or risperidone on cortical 5-HT output. Cortical perfusion with risperidone or the alpha2A/D, 5-HT1B and 5-HT1B/1D receptor antagonists idazoxan, isamoltane or GR 127,935, respectively, dose-dependently increased 5-HT efflux in the FC. Conversely, agonists at these receptors, i.e. clonidine, CP 93,129 or CP 135,807, respectively, decreased extracellular 5-HT concentrations. The agonist-induced decreases in 5-HT efflux were antagonized by coadministration of respective receptor antagonists. Risperidone attenuated the decrease in cortical 5-HT efflux elicited by clonidine or CP 135,807 but failed to affect the decrease elicited by CP 93,129. The present in vivo biochemical data indicate that the output of 5-HT in the FC is negatively regulated via alpha2D, 5-HT1B and tentatively also via 5-HT1D receptors located in the nerve terminal area. Moreover, the results indicate that risperidone acts as an antagonist at alpha2D and possibly 5-HT1D receptors in vivo, two properties which most likely contribute to its stimulatory effect on cortical 5-HT efflux. The facilitatory effect of risperidone on cortical serotonergic neurotransmission may be of significance for its therapeutic effect in schizophrenia, particularly when associated with affective symptomatology and/or intense anxiety. The effect may also contribute to alleviate signs of cortical dysfunction such as impaired cognition.
Collapse
Affiliation(s)
- P Hertel
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Bonaventure P, Langlois X, Leysen JE. Co-localization of 5-HT1B- and 5-HT1D receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphé nucleus: a double labeling in situ hybridization histochemistry study. Neurosci Lett 1998; 254:113-6. [PMID: 9779933 DOI: 10.1016/s0304-3940(98)00680-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In order to provide further details on the cellular localization of 5-HT1B- and 5-HT1D receptor mRNA in the dorsal raphé nucleus, we performed, in the same sections of guinea-pig dorsal raphé nucleus, double labeling in situ hybridization histochemistry for: (1) 5-HT1B receptor mRNA and 5-HT1D receptor mRNA, (2) 5-HT1B receptor mRNA and 5-HT transporter (5-HTT) mRNA as marker for serotonergic neurons and (3) 5-HT1D receptor mRNA and 5-HTT mRNA. The 5-HT1B receptor mRNA was present in all cells containing 5-HT1D receptor mRNA. Similarly, both 5-HT1B- and 5-HT1D receptor mRNA was present in all 5-HTT mRNA positive cells. The present study demonstrates that 5-HT1B- and 5-HT1D receptor mRNA is co-localized in serotonergic cell bodies of the guinea pig dorsal raphé nucleus.
Collapse
Affiliation(s)
- P Bonaventure
- Department of Biochemical Pharmacology, Janssen Research Foundation, Beerse, Belgium.
| | | | | |
Collapse
|
23
|
Roberts C, Belenguer A, Middlemiss DN, Routledge C. Differential effects of 5-HT1B/1D receptor antagonists in dorsal and median raphe innervated brain regions. Eur J Pharmacol 1998; 346:175-80. [PMID: 9652357 DOI: 10.1016/s0014-2999(98)00061-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of SB-224289 (2,3,6.7-tetrahydro-1'-methyl-5-¿2'-methyl-4'-[(5-methyl-1,2,4-oxadiazol e-3-yl)biphenyl-4-yl]carbonyl¿Furo[2,3-F]-indole-3-spiro-4'-piperidine oxalate) (4 mg/kg i.p., 5-HT1B receptor antagonist), GR 127935 (N-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-2'-methyl-4'-(5-me thyl-1,2,4-oxadiazole-3-yl)[1,1'-biphenyl]-carboxamide) (0.3 mg/kg i.p., 5-HT1B/1D receptor antagonist), and paroxetine (10 mg/kg p.o.) were investigated on extracellular 5-hydroxytryptamine (5-HT) levels in the frontal cortex, striatum and dentate gyrus of the freely moving guinea-pig with microdialysis. In the frontal cortex and striatum (dorsal raphe innervated areas), GR 127935 evoked a significant decrease in extracellular 5-HT, reaching minima of 41+/-12% and 32+/-6% of basal, respectively. This decrease may be explained by antagonism of inhibitory 5-HT1B/1D receptors on raphe cell bodies, leading to a local increase in 5-HT, which, in turn, stimulated 5-HT1A receptors to decrease cell firing, and hence 5-HT release from terminals. In contrast, SB-224289 had no effect on 5-HT levels in either region. In the dentate gyrus (median raphe innervated area), GR 127935 and SB-224289 significantly increased extracellular 5-HT, reaching maxima of 146+/-11% and 151+/-19% of basal, respectively. The ability of both compounds to increase 5-HT levels in the dentate gyrus suggests a lack of 5-HT1B/1D receptors in the median raphe nucleus. Paroxetine produced a small but non-significant increase in extracellular 5-HT in the frontal cortex, and a small decrease in the dentate gyrus. The lack of effect of paroxetine in terminal areas may be due to the limiting effects of cell body 5-HT autoreceptors. In summary, the above data demonstrate that 5-HT1B/1D receptor antagonists increase 5-HT levels in the dentate gyrus, implying that acute administration of 5-HT1B/1D receptor antagonists will achieve a similar effect to chronic selective serotonin re-uptake inhibitor treatment in median raphe innervated areas. This, in turn, suggests that such compounds may be efficacious in the treatment of depression.
Collapse
Affiliation(s)
- C Roberts
- SmithKline Beecham Pharmaceuticals, Department of of Neuroscience, New Frontiers Science Park, Harlow, Essex, UK. @inet
| | | | | | | |
Collapse
|
24
|
Davidson C, Stamford JA. Chronic paroxetine desensitises 5-HT1D but not 5-HT1B autoreceptors in rat lateral geniculate nucleus. Brain Res 1997; 760:238-42. [PMID: 9237540 DOI: 10.1016/s0006-8993(97)00289-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study examined the effect of chronic paroxetine (10 mg/kg p.o., 21 days) on the 5-HT1B and 5-HT1D autoreceptors controlling 5-HT efflux in slices of rat ventrolateral geniculate nucleus. Electrically stimulated 5-HT efflux (10 pulses, 200 Hz, 0.1 ms, 10 mA) was measured using fast cyclic voltammetry. Peak 5-HT efflux was greater (P < 0.01) after chronic paroxetine (22.2 +/- 1.4 nM, mean +/- S.E.M.) than water (15.8 +/- 1.4 nM). 5-HT efflux was inhibited by CP 93129 (1 nM-10 microM) and sumatriptan (1 nM-1 microM), agonists at 5-HT1B and 5-HT1D receptors, respectively. Chronic paroxetine did not affect the sensitivity of the 5-HT1B autoreceptor but shifted the sumatriptan concentration-response curve to the right (P < 0.05). These data suggest that chronic paroxetine increases evoked 5-HT efflux. This may be the result of desensitisation of 5-HT1D but not 5-HT1B autoreceptors.
Collapse
Affiliation(s)
- C Davidson
- Anaesthetics Unit (Neurotransmission Laboratory), St. Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, UK
| | | |
Collapse
|
25
|
Davidson C, Ho M, Price GW, Jones BJ, Stamford JA. (+)-WAY 100135, a partial agonist, at native and recombinant 5-HT1B/1D receptors. Br J Pharmacol 1997; 121:737-42. [PMID: 9208142 PMCID: PMC1564750 DOI: 10.1038/sj.bjp.0701197] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. We have studied the effects of the purportedly selective 5-HT1A receptor antagonist (+)-WAY 100135 on electrically stimulated 5-hydroxytryptamine (5-HT) efflux in the ventrolateral geniculate nucleus (vLGN), and its affinity at human 5-HT1B and 5-HT1D receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. On short 'pseudo single pulse' stimulations (20 pulses at 100 Hz, 190 ms train duration), (+)-WAY 100135 (1.0 microM) decreased 5-HT efflux in the vLGN to 68 +/- 8% of pre-drug values (P < 0.01). This decrease could be blocked by the 5-HT1D/1B receptor antagonist GR 127935 (50 nM). Conversely, when long stimulations (20 pulses at 20 Hz, 950 ms train) were used, (+)-WAY 100135 had no effect on 5-HT efflux (84 +/- 8% of pre-drug values) although both methiothepin (200 nM) and GR 127935 (50 nM) caused significant increases (to 175 +/- 18 and 130 +/- 10% of pre-drug values, respectively). 3. Paroxetine (100 nM), the selective 5-HT reuptake inhibitor, increased stimulated 5-HT efflux and reuptake half-life (to 145 +/- 18% and 649 +/- 121%, respectively) on pseudo single pulse stimulations. When (+)-WAY 100135 was added in combination with the uptake blocker, the effect of paroxetine on stimulated 5-HT efflux was potentiated to 282 +/- 48% (P < 0.01) without further effect on the 5-HT reuptake half-life. 4. The affinity and intrinsic activity of (+)-WAY 100135 were determined at recombinant human 5-HT1B and 5-HT1D receptors expressed in CHO cells, by use of radioligand binding and [35S]-GTP gamma S binding (+)-WAY 100135 was a partial agonist at human 5-HT1B and 5-HT1D receptors with moderately high affinity for 5-HT1D receptors (pEC50 = 7.61). 5. In conclusion, (+)-WAY 100135 was found to be not a selective 5-HT1A autoreceptor antagonist but may act as a partial agonist at the 5-HT1B/1D receptor, displaying agonist or antagonist properties depending on the stimulation protocol used and the resultant 5-HT 'tone' at the receptor.
Collapse
Affiliation(s)
- C Davidson
- Anaesthetics Unit (Neurotransmission Laboratory), St Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital
| | | | | | | | | |
Collapse
|
26
|
Roberts C, Price GW, Gaster L, Jones BJ, Middlemiss DN, Routledge C. Importance of h5-HT1B receptor selectivity for 5-HT terminal autoreceptor activity: an in vivo microdialysis study in the freely-moving guinea-pig. Neuropharmacology 1997; 36:549-57. [PMID: 9225280 DOI: 10.1016/s0028-3908(97)00026-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The importance of h5-HT1B receptor selectivity for 5-HT terminal autoreceptor activity was investigated with the selective h5-HT1B receptor ligands SB 219085, SB 220272, SB 224289 and SB 216641. The studies employed measurement of compound affinity and efficacy in vitro and the measurement of extracellular 5-HT in the frontal cortex of the freely-moving guinea-pig using in vivo microdialysis. All compounds had high affinity and selectivity for the h5-HT1B receptor, with SB 224289 the most selective for h5-HT1B over h5-HT1D receptors. Compounds exhibited a range of efficacies at both receptors: SB 224289 and SB 219085 were inverse agonists, SB 220272 was an antagonist and SB 216641 was a partial agonist. SB 220272, SB 216641 and SB 224289 had no effect on extracellular 5-HT following systemic administration, however, SB 219085 produced a significant increase. The SB 219085-induced increase in extracellular 5-HT was attributed to the compounds non-specific releasing properties as it was also demonstrated to increase basal release of [3H]5-HT from pre-loaded guinea-pig cortical slices. The lack of effect of the above h5-HT1B receptor selective compounds and the decrease in extracellular 5-HT elicited by the non-selective compounds GR 127935, GR125743 and methiothepin suggest that antagonism of 5-HT1D receptors may mediate this decrease in 5-HT levels. It is plausible that blockade of 5-HT1D receptors increases 5-HT levels in the raphe, this activates 5-HTtA receptors which results in an overall decrease in terminal 5-HT release. Definitive proof now awaits elucidation of the action of a selective 5-HT1D receptor antagonist.
Collapse
Affiliation(s)
- C Roberts
- Department of Psychiatry Research, SmithKline Beecham Pharmaceuticals, Harlow, Essex, U.K. @inet
| | | | | | | | | | | |
Collapse
|
27
|
Davidson C, Stamford JA. Synergism of 5-HT 1B/D antagonists with paroxetine on serotonin efflux in rat ventral lateral geniculate nucleus slices. Brain Res Bull 1997; 43:405-9. [PMID: 9241443 DOI: 10.1016/s0361-9230(97)00026-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) efflux in rat ventral lateral geniculate nucleus (vLGN) slices was evoked by electrical stimulation (20 pulses at 100 Hz, 10 mA, 190 ms train) and measured, along with 5-HT uptake, by fast cyclic voltammetry at implanted carbon fibre microelectrodes. Paroxetine (100 nM), a selective serotonin reuptake inhibitor (SSRI), increased stimulated 5-HT efflux to 194 +/- 25% of pre-drug values at maximum (mean +/- SEM, n = 5) and the half-life of uptake to 684 +/- 135%. When given alone, neither the selective 5-HT 1B antagonist isamoltane (1 microM) nor the 5-HT 1D/B antagonist GR 127935 (50 nM), affected 5-HT efflux or uptake under this stimulation paradigm. When added in combination with paroxetine, both isamoltane and GR 127935 significantly potentiated the effect of paroxetine on stimulated 5-HT efflux: isamoltane to 302 +/- 48% at maximum (p < 0.05 vs. paroxetine alone), GR 127935 to 318 +/- 95% (p < 0.05 vs. paroxetine alone) of pre-drug values. Neither isamoltane nor GR 127935 had any effect on 5-HT uptake. The selective 5-HT 1A antagonist WAY 100635 (10 nM) had no effect on 5-HT efflux or uptake, alone or in combination with paroxetine. These data suggest that, under these experimental conditions, paroxetine gives rise to tonic activation of the vLGN terminal 5-HT autoreceptors. Furthermore, these data show that 5-HT 1B and possibly 5-HT 1D antagonists block this inhibitory autoreceptor tone and may thus be a useful addition to SSRI treatment in the clinic.
Collapse
Affiliation(s)
- C Davidson
- Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, UK
| | | |
Collapse
|