1
|
Zachariou V, Pappas C, Bauer CE, Seago ER, Gold BT. Exploring the links among brain iron accumulation, cognitive performance, and dietary intake in older adults: A longitudinal MRI study. Neurobiol Aging 2025; 145:1-12. [PMID: 39447489 PMCID: PMC11578767 DOI: 10.1016/j.neurobiolaging.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
This study evaluated longitudinal brain iron accumulation in older adults, its association with cognition, and the role of specific nutrients in mitigating iron accumulation. MRI-based, quantitative susceptibility mapping estimates of brain iron concentration were acquired from seventy-two healthy older adults (47 women, ages 60-86) at a baseline timepoint (TP1) and a follow-up timepoint (TP2) 2.5-3.0 years later. Dietary intake was evaluated at baseline using a validated questionnaire. Cognitive performance was assessed at TP2 using the uniform data set (Version 3) neuropsychological tests of episodic memory (MEM) and executive function (EF). Voxel-wise, linear mixed-effects models, adjusted for longitudinal gray matter volume alterations, age, and several non-dietary lifestyle factors revealed brain iron accumulation in multiple subcortical and cortical brain regions, which was negatively associated with both MEM and EF performance at T2. However, consumption of specific dietary nutrients at TP1 was associated with reduced brain iron accumulation. Our study provides a map of brain regions showing iron accumulation in older adults over a short 2.5-year follow-up and indicates that certain dietary nutrients may slow brain iron accumulation.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
3
|
Graf K, Jamous R, Mückschel M, Bluschke A, Beste C. Delayed modulation of alpha band activity increases response inhibition deficits in adolescents with AD(H)D. Neuroimage Clin 2024; 44:103677. [PMID: 39362044 PMCID: PMC11474224 DOI: 10.1016/j.nicl.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| |
Collapse
|
4
|
Ozel-Kizil ET, Bastug G, Kirici S, Dinc K, Gursay M. Modified Dead-Alive Test for the assessment of semantic and episodic memory performance of older patients with neurocognitive disorder. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-7. [PMID: 39096205 DOI: 10.1080/23279095.2024.2378869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
The aim of this study is to provide a test that allows for evaluation of both semantic memory (SM) and episodic memory (EM). The study sought to examine psychometric characteristics of the Modified Dead-Alive Test (M-DAT) in patients with neurocognitive disorders and the healthy elderly (HE). The M-DAT consists of 45 names of celebrities who have died in the remote past (15), died in the last five years (15), and are still alive (15), and participants are asked whether they are alive or dead. The M-DAT performances of patients with Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) major neurocognitive disorder due to Alzheimer's Disease (MND-AD) (n = 69) and patients with minor neurocognitive disorder (MiND) (n = 27) who were admitted to a geriatric psychiatry clinic and healthy controls (HC) (n = 29) were compared. Age and level of education were taken as covariates, and an analysis of covariance (ANCOVA) was performed since the MND-AD group was older and less educated. The MND-AD group had lower performance in EM and SM scores of the M-DAT. M-DAT failed to differentiate between MiND and HE. Both subscale scores of the M-DAT were associated with other neuropsychological test performances as well as the level of education. The results suggest that M-DAT is a valid and reliable tool that examines both EM and SM performances. M-DAT is an alternative for the assessment of SM evaluated by verbal fluency or naming tests. Evaluating EM and SM together is an important advantage; however, M-DAT is influenced by education, and the items require updating.
Collapse
Affiliation(s)
| | - Gulbahar Bastug
- Ankara University Vocational School of Health Services; Ankara University Institute of Forensic Sciences, Forensic Psychology Program, Ankara, Turkey
| | - Sevinc Kirici
- Ankara University Institute of Forensic Sciences, Forensic Psychology Program; Ankara University School of Medicine, Psychiatry Department, Ankara, Turkey
| | - Kubra Dinc
- Ankara University Institute of Forensic Sciences, Forensic Psychology Program, Ankara, Turkey
| | - Muge Gursay
- Ankara University Institute of Forensic Sciences, Forensic Psychology Program, Ankara, Turkey
| |
Collapse
|
5
|
Zachariou V, Pappas C, Bauer CE, Shao X, Liu P, Lu H, Wang DJJ, Gold BT. Regional differences in the link between water exchange rate across the blood-brain barrier and cognitive performance in normal aging. GeroScience 2024; 46:265-282. [PMID: 37713089 PMCID: PMC10828276 DOI: 10.1007/s11357-023-00930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (kw) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between kw and cognition have reported different directions of association. Here, we begin to investigate the direction of associations between kw and cognition in different brain regions, and their possible underpinnings, by evaluating links between kw, cognitive performance, and MRI markers of cerebrovascular dysfunction and/or damage. Forty-seven healthy older adults (age range 61-84) underwent neuroimaging to obtain whole-brain measures of kw, cerebrovascular reactivity (CVR), and white matter hyperintensity (WMH) volumes. Additionally, participants completed uniform data set (Version 3) neuropsychological tests of executive function (EF) and episodic memory (MEM). Voxel-wise linear regressions were conducted to test associations between kw and cognitive performance, CVR, and WMH volumes. We found that kw in the frontoparietal brain regions was positively associated with cognitive performance but not with CVR or WMH volumes. Conversely, kw in the basal ganglia was negatively associated with cognitive performance and CVR and positively associated with regional, periventricular WMH volume. These regionally dependent associations may relate to different physiological underpinnings in the relationships between kw and cognition in neocortical versus subcortical brain regions in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peiying Liu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Kim JS, Lee SA. Hippocampal orchestration of associative and sequential memory networks for episodic retrieval. Cell Rep 2023; 42:112989. [PMID: 37581985 DOI: 10.1016/j.celrep.2023.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Episodic memory involves the recollection of contextual details replayed mentally across time. Here, we propose the association-sequence network (ASN) model, characterizing complementary cortico-hippocampal networks underlying the retrieval of simultaneously associated and sequentially ordered events. Participants viewed objects, presented singly or in pairs, and later reported whether two objects were shown simultaneously, consecutively, or farther apart in time. Behavioral results and hippocampal activation reveal a correlation between the two sequential conditions but not the simultaneous condition, despite the temporal proximity of consecutive pairs. We also find that anterior hippocampal activity is modulated by temporal distance. Distinct cortical networks are engaged during simultaneous and sequential memory (prefrontal cortex and angular gyrus for association; supplementary motor cortex and precuneus for sequence); notably, these regions show differential connectivity with the hippocampus. The ASN model provides a comprehensive framework for how we reconstruct memories that are both rich in associative detail and temporally dynamic in nature.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
7
|
Brunswick CA, Baldwin DJ, Bodinayake KK, McKenna AR, Lo CY, Bellfy L, Urban MW, Stuart EM, Murakami S, Smies CW, Kwapis JL. The clock gene Per1 is necessary in the retrosplenial cortex-but not in the suprachiasmatic nucleus-for incidental learning in young and aging male mice. Neurobiol Aging 2023; 126:77-90. [PMID: 36958103 PMCID: PMC10106450 DOI: 10.1016/j.neurobiolaging.2023.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.
Collapse
Affiliation(s)
- Chad A Brunswick
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Derek J Baldwin
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Kasuni K Bodinayake
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | | | - Chen-Yu Lo
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Lauren Bellfy
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Mark W Urban
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Emily M Stuart
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Shoko Murakami
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA.
| |
Collapse
|
8
|
Sweatman H, Lewis-de los Angeles CP, Zhang J, de los Angeles C, Ofen N, Gabrieli JDE, Chai XJ. Development of the neural correlates of recollection. Cereb Cortex 2023; 33:6028-6037. [PMID: 36520501 PMCID: PMC10183736 DOI: 10.1093/cercor/bhac481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Recollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience. Successful recall was associated with activations in regions of the core recollection network and frontoparietal network. Adults exhibited greater successful recall activations compared with children in the precuneus and right angular gyrus. In contrast, similar levels of successful recall activations were observed in both age groups in the mPFC. Group differences were also seen in the hippocampus and lateral frontal regions. These findings suggest that the engagement of the mPFC in episodic retrieval may be relatively early maturing, whereas the contribution to episodic retrieval of more posterior regions such as the precuneus and angular gyrus undergoes more protracted maturation.
Collapse
Affiliation(s)
- Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - C Paula Lewis-de los Angeles
- Department of Pediatrics, Hasbro Children’s Hospital, Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, United States
| | - Jiahe Zhang
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carlo de los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Noa Ofen
- Department of Psychology and the Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 524 Main Street, Cambridge, MA 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, United States
| | - Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
9
|
Siestrup S, Jainta B, El-Sourani N, Trempler I, Wurm MF, Wolf OT, Cheng S, Schubotz RI. What Happened When? Cerebral Processing of Modified Structure and Content in Episodic Cueing. J Cogn Neurosci 2022; 34:1287-1305. [PMID: 35552744 DOI: 10.1162/jocn_a_01862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Episodic memories are not static but can change on the basis of new experiences, potentially allowing us to make valid predictions in the face of an ever-changing environment. Recent research has identified prediction errors during memory retrieval as a possible trigger for such changes. In this study, we used modified episodic cues to investigate whether different types of mnemonic prediction errors modulate brain activity and subsequent memory performance. Participants encoded episodes that consisted of short toy stories. During a subsequent fMRI session, participants were presented videos showing the original episodes, or slightly modified versions thereof. In modified videos, either the order of two subsequent action steps was changed or an object was exchanged for another. Content modifications recruited parietal, temporo-occipital, and parahippocampal areas reflecting the processing of the new object information. In contrast, structure modifications elicited activation in right dorsal premotor, posterior temporal, and parietal areas, reflecting the processing of new sequence information. In a post-fMRI memory test, the participants' tendency to accept modified episodes as originally encoded increased significantly when they had been presented modified versions already during the fMRI session. After experiencing modifications, especially those of the episodes' structure, the recognition of originally encoded episodes was impaired as well. Our study sheds light onto the neural processing of different types of episodic prediction errors and their influence on subsequent memory recall.
Collapse
|
10
|
Trask S, Fournier DI. Examining a role for the retrosplenial cortex in age-related memory impairment. Neurobiol Learn Mem 2022; 189:107601. [PMID: 35202816 DOI: 10.1016/j.nlm.2022.107601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Aging is often characterized by changes in the ability to form and accurately recall episodic memories, and this is especially evident in neuropsychiatric conditions including Alzheimer's disease and dementia. Memory impairments and cognitive decline associated with aging mirror the impairments observed following damage to the retrosplenial cortex, suggesting that this region might be important for continued cognitive function throughout the lifespan. Here, we review lines of evidence demonstrating that degeneration of the retrosplenial cortex is critically involved in age-related memory impairment and suggest that preservation of function in this region as part of a larger circuit that supports memory maintenance will decrease the deleterious effects of aging on memory processing.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue University, United States.
| | | |
Collapse
|
11
|
Garofalo G, Riggio L. Influence of colour on object motor representation. Neuropsychologia 2022; 164:108103. [PMID: 34861284 DOI: 10.1016/j.neuropsychologia.2021.108103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Colour conveys specific information about the status/quality of an object; whereas its role in object recognition has been widely studied, little is known about its role in sensorimotor processes. We performed three experiments to assess whether colour influences the motor representation of graspable objects. In Experiment 1, we used a grasp compatibility task, in which participants categorized each object as natural or artifact, by performing reach-to-grasp movements. Response grasps could be compatible or incompatible with the ones normally used to manipulate the objects. Results showed faster reaction times for natural objects displayed in the correct colour compared with both opposite colour and correct colour artifact objects. In Experiment 2, to directly assess the effect of colour on object motor representation, we used an interference task in which an irrelevant object was shown while performing a pre-specified reach-to-grasp movement (i.e., verbal cues: small vs. large). Results highlighted a reversed compatibility effect when objects were shown in their correct colour, but only at the beginning of the movement (10 ms SOA). Finally, we run a third experiment using the same task as in Experiment 2. In this experiment, we compared the grasp compatibility effect driven by natural objects with the grasp compatibility effect driven by dangerous natural objects (e.g., cactus), which are objects that should not elicit a grasping program. The results of Experiment 3 confirm those of Experiment 2, highlighting also specific processes related to dangerous objects. Taken together, these results revealed that colour can be significant for the motor system, highlighting the close link between colour and shape, and also specific processes related to dangerous objects.
Collapse
Affiliation(s)
| | - Lucia Riggio
- Department of Medicine and Surgery, University of Parma, Italy.
| |
Collapse
|
12
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
13
|
Garofalo G, Marino BFM, Bellelli S, Riggio L. Adjectives Modulate Sensorimotor Activation Driven by Nouns. Cogn Sci 2021; 45:e12953. [PMID: 33755244 DOI: 10.1111/cogs.12953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
We performed three experiments to investigate whether adjectives can modulate the sensorimotor activation elicited by nouns. In Experiment 1, nouns of graspable objects were used as stimuli. Participants had to decide if each noun referred to a natural or artifact, by performing either a precision or a power reach-to-grasp movement. Response grasp could be compatible or incompatible with the grasp typically used to manipulate the objects to which the nouns referred. The results revealed faster reaction times (RTs) in compatible than in incompatible trials. In Experiment 2, the nouns were combined with adjectives expressing either disadvantageous information about object graspability (e.g., sharp) or information about object color (e.g., reddish). No difference in RTs between compatible and incompatible conditions was found when disadvantageous adjectives were used. Conversely, a compatibility effect occurred when color adjectives were combined with nouns referring to natural objects. Finally, in Experiment 3 the nouns were combined with adjectives expressing tactile or shape proprieties of the objects (e.g., long or smooth). Results revealed faster RTs in compatible than in incompatible condition for both noun categories. Taken together, our findings suggest that adjectives can shape the sensorimotor activation elicited by nouns of graspable objects, highlighting that language simulation goes beyond the single-word level.
Collapse
Affiliation(s)
- Gioacchino Garofalo
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma.,Department of Medicine and Surgery, University of Parma
| | | | | | - Lucia Riggio
- Department of Medicine and Surgery, University of Parma
| |
Collapse
|
14
|
Perrier J, Viard A, Levy C, Morel N, Allouache D, Noal S, Joly F, Eustache F, Giffard B. Longitudinal investigation of cognitive deficits in breast cancer patients and their gray matter correlates: impact of education level. Brain Imaging Behav 2020; 14:226-241. [PMID: 30406352 DOI: 10.1007/s11682-018-9991-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive deficits are a major complaint in breast cancer patients, even before chemotherapy. Comprehension of the cerebral mechanisms related to cognitive impairment in breast cancer patients remains difficult due to the scarcity of studies investigating both cognitive and anatomical imaging changes. Furthermore, only some of the patients experienced cognitive decline following chemotherapy, yet few studies have identified risk factors for cognitive deficits in these patients. It has been shown that education level could impact cognitive abilities during the recovery phase following chemotherapy. Our main aim was to longitudinally evaluate cognitive and anatomical changes associated with cancer and chemotherapy in breast cancer patients. Our secondary aim was to assess the impact of education level on cognitive performances and gray matter (GM) atrophy in these patients. Twenty patients were included before chemotherapy (T1), 1 month (T2) and 1 year (T3) after chemotherapy. Twenty-seven controls without a history of cancer were assessed at T1 and T3 only. Cluster groups based on education level were defined for both groups and were further compared. Comparison between patients and controls revealed deficits in patients on verbal episodic memory retrieval at T1 and T3 and on executive functions at T3. After chemotherapy, breast cancer patients had GM atrophy that persisted or recovered 1 year after chemotherapy depending on the cortical areas. Increase in GM volumes from T1 to T3 were also found in both groups. At T2, patients with a higher level of education compared to lower level exhibited higher episodic memory retrieval and state anxiety scores, both correlating with cerebellar volume. This higher level of education group exhibited hippocampal atrophy. Our results suggest that, before chemotherapy, cancer-related processes impact cognitive functioning and that this impact seems exacerbated by the effect of chemotherapy on certain brain regions. Increase in GM volumes after chemotherapy were unexpected and warrant further investigations. Higher education level was associated, 1 month after the end of chemotherapy, with greater anxiety and hippocampal atrophy despite a lack of cognitive deficits. These results suggest, for the first time, the occurrence of compensation mechanisms that may be linked to cognitive reserve in relationship to state anxiety. This identification of factors, which may compensate cognitive impairment following chemotherapy, is critical for patient care and quality of life.
Collapse
Affiliation(s)
- Joy Perrier
- Normandie Univ, UNICAEN, PSL University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| | - Armelle Viard
- Normandie Univ, UNICAEN, PSL University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Christelle Levy
- Breast Committee Department, Centre François Baclesse, Caen, France
| | - Nastassja Morel
- Normandie Univ, UNICAEN, PSL University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | | | - Sabine Noal
- Breast Committee Department, Centre François Baclesse, Caen, France
| | - Florence Joly
- Clinical Research Department, Caen, France.,Medical Oncology Department, CHU de Caen, Caen, France.,INSERM, U1086, ANTICIPE, Caen, France.,Cancer & Cognition, Platform, Ligue Contre le Cancer, CHU de Caen, Caen, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Bénédicte Giffard
- Normandie Univ, UNICAEN, PSL University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.,Cancer & Cognition, Platform, Ligue Contre le Cancer, CHU de Caen, Caen, France
| |
Collapse
|
15
|
Recognition-induced forgetting is caused by episodic, not semantic, memory retrieval tasks. Atten Percept Psychophys 2020; 82:1539-1547. [PMID: 32034720 DOI: 10.3758/s13414-020-01987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recognition-induced forgetting is a within-category forgetting effect that results from accessing memory representations. Advantages of this paradigm include the possibility of testing the memory of young children using visual objects before they can read, the testing of multiple types of stimuli, and use with animal models. Yet it is unknown whether just episodic memory tasks (Have you seen this before?) or also semantic memory tasks (Is this bigger than a loaf of bread?) will lead to this forgetting effect. This distinction will be critical in establishing a model of recognition-induced forgetting. Here, we implemented a design in which both these tasks were used in the same experiment to determine which was leading to recognition-induced forgetting. We found that episodic memory tasks, but not semantic memory tasks, created within-category forgetting. These results show that the difference-of-Gaussian forgetting function of recognition-induced forgetting is triggered by episodic memory tasks and is not driven by the same underlying memory signal as semantic memory.
Collapse
|
16
|
Park SE, Kim BC, Yang JC, Jeong GW. MRI-Based Multimodal Approach to the Assessment of Clinical Symptom Severity of Obsessive-Compulsive Disorder. Psychiatry Investig 2020; 17:777-785. [PMID: 32777920 PMCID: PMC7449838 DOI: 10.30773/pi.2020.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/31/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE This study assessed the associations of the abnormal brain activation and functional connectivity (FC) during memory processing and brain volume alteration in conjunction with psychiatric symptom severity in patients with obsessive-compulsive disorder (OCD). METHODS Twenty-OCD patients and 20-healthy controls (HC) underwent T1-weighted and functional imaging underlying explicit memory task. RESULTS In memory encoding, OCD patients showed higher activities in right/left (Rt./Lt.) inferior temporal gyrus (ITG), medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), compared with HC. In task-based FC, caudate (Cd) was positively connected with DLPFC and ITG in OCD, while HC showed different connectivities of Cd-ACC and Rt.-Lt. ITG. In memory retrieval, only Cd was activated in OCD patients. Cd was positively connected with DLPFC and vmPFC in OCD, but negatively connected between same brain areas in HC. OCD patients showed increased gray matter (GM) volumes of cerebellum, DLPFC, orbitofrontal cortex (OFC), hippocampus, Cd and ITG, and concurrently, increased white matter volumes of DLPFC. In OCD patients, GM volumes of Cd and OFC were positively correlated with HAMA and Y-BOCS. Functional activity changes of Cd in OCD were positively correlated with Y-BOCS. CONCLUSION Our findings support to accessing clinical symptom and its severity linked by brain structural deformation and functional abnormality in OCD patients.
Collapse
Affiliation(s)
- Shin-Eui Park
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Byeong-Chae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea
| | - Gwang-Woo Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep 2020; 10:4002. [PMID: 32152383 PMCID: PMC7062718 DOI: 10.1038/s41598-020-60937-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is implicated on navigation and contextual memory. Lesions studies showed that the RSC shares functional similarities with the hippocampus (HP). Here we evaluated the role of the anterior RSC (aRSC) in the “what” and “where” components of recognition memory and contrasted it with that of the dorsal HP (dHP). Our behavioral and molecular findings show functional differences between the aRSC and the dHP in recognition memory. The inactivation of the aRSC, but not the dHP, impairs the consolidation and expression of the “what” memory component. In addition, object recognition task is accompanied by c-Fos levels increase in the aRSC. Interestingly, we found that the aRSC is recruited to process the “what” memory component only if it is active during acquisition. In contrast, both the aRSC and dHP are required for encoding the “where” component, which correlates with c-Fos levels increase. Our findings introduce a novel role of the aRSC in recognition memory, processing not only the “where”, but also the “what” memory component.
Collapse
|
18
|
Zhang J, Andreano JM, Dickerson BC, Touroutoglou A, Barrett LF. Stronger Functional Connectivity in the Default Mode and Salience Networks Is Associated With Youthful Memory in Superaging. Cereb Cortex 2020; 30:72-84. [PMID: 31058917 PMCID: PMC7029690 DOI: 10.1093/cercor/bhz071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
"Superagers" are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Joseph M Andreano
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alexandra Touroutoglou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
19
|
Default network contributions to episodic and semantic processing during divergent creative thinking: A representational similarity analysis. Neuroimage 2019; 209:116499. [PMID: 31887423 DOI: 10.1016/j.neuroimage.2019.116499] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
Cognitive and neuroimaging evidence suggests that episodic and semantic memory-memory for autobiographical events and conceptual knowledge, respectively-support different aspects of creative thinking, with a growing number of studies reporting activation of brain regions within the default network during performance on creative thinking tasks. The present research sought to dissociate neural contributions of these memory processes by inducing episodic or semantic retrieval orientations prior to performance on a divergent thinking task during fMRI. We conducted a representational similarity analysis (RSA) to identify multivoxel patterns of neural activity that were similar across induction (episodic and semantic) and idea generation. At the behavioral level, we found that semantic induction was associated with increased idea originality, assessed via computational estimates of semantic distance between concepts. RSA revealed that multivoxel patterns during semantic induction and subsequent idea generation were more similar (compared to episodic induction) within the left angular gyrus (AG), posterior cingulate cortex (PCC), and left anterior inferior parietal lobe (IPL). Conversely, activity patterns during episodic induction and subsequent generation were more similar within left parahippocampal gyrus and right anterior IPL. Together, the findings point to dissociable contributions of episodic and semantic memory processes to creative cognition and suggest that distinct regions within the default network support specific memory-related processes during divergent thinking.
Collapse
|
20
|
Gilmore AW, Nelson SM, Laumann TO, Gordon EM, Berg JJ, Greene DJ, Gratton C, Nguyen AL, Ortega M, Hoyt CR, Coalson RS, Schlaggar BL, Petersen SE, Dosenbach NUF, McDermott KB. High-fidelity mapping of repetition-related changes in the parietal memory network. Neuroimage 2019; 199:427-439. [PMID: 31175969 PMCID: PMC6688913 DOI: 10.1016/j.neuroimage.2019.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023] Open
Abstract
fMRI studies of human memory have identified a "parietal memory network" (PMN) that displays distinct responses to novel and familiar stimuli, typically deactivating during initial encoding but robustly activating during retrieval. The small size of PMN regions, combined with their proximity to the neighboring default mode network, makes a targeted assessment of their responses in highly sampled subjects important for understanding information processing within the network. Here, we describe an experiment in which participants made semantic decisions about repeatedly-presented stimuli, assessing PMN BOLD responses as items transitioned from experimentally novel to repeated. Data are from the highly-sampled subjects in the Midnight Scan Club dataset, enabling a characterization of BOLD responses at both the group and single-subject level. Across all analyses, PMN regions deactivated in response to novel stimuli and displayed changes in BOLD activity across presentations, but did not significantly activate to repeated items. Results support only a portion of initially hypothesized effects, in particular suggesting that novelty-related deactivations may be less susceptible to attentional/task manipulations than are repetition-related activations within the network. This in turn suggests that novelty and familiarity may be processed as separable entities within the PMN.
Collapse
Affiliation(s)
- Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, 76711, USA; Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, 76711, USA; Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Jeffrey J Berg
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caterina Gratton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Catherine R Hoyt
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven E Petersen
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
21
|
Tepmongkol S, Hemrungrojn S, Dupont P, Tunvirachaisakul C, Aniwattanapong D, Likitjareon Y, Supasitthumrong T, Tawankanjanachot I, Siritranon N, Chuchuen P, Natsawang B, Tangwongchai S. Early prediction of donepezil cognitive response in Alzheimer's disease by brain perfusion single photon emission tomography. Brain Imaging Behav 2019; 13:1665-1673. [PMID: 31432319 DOI: 10.1007/s11682-019-00182-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, there is no effective means to evaluate donepezil response. We evaluated brain perfusion change at 4 h after donepezil administration (4 h DNPZ) to predict cognitive responses after 6 months of medication. CERAD neuropsychological assessment battery was used to define cognitive response at 6 months. We compared 4 h DNPZ to baseline single photon emission tomography (SPECT) by statistical parametric mapping to identify perfusion changes in responders (N = 16) and non-responders (N = 7). In responders, there were significant relatively increase in perfusion in left parietal lobe (BA39, 7, 1), right superior frontal gyrus (BA6) and right middle occipital gyrus (BA39). In the non-responders, perfusion was relatively increase in the left parietal lobe (BA39) only. In an explorative analysis, we found a significant correlation between perfusion changes in right BA6 and CERAD score changes at 6 months. Different SPECT perfusion changes at 4 h after donepezil administration were demonstrated in the group of responders and non-responders with potential correlation with CERAD score change. Thus, 4 h DNPZ brain perfusion SPECT can be used to predict donepezil response at 6 months.
Collapse
Affiliation(s)
- Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok, 10330, Thailand. .,Chulalongkorn University Biomedical Imaging Group (CUBIG), Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yuttachai Likitjareon
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Supasitthumrong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Itthipol Tawankanjanachot
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Natakorn Siritranon
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Buntipa Natsawang
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
22
|
Benuzzi F, Ballotta D, Handjaras G, Leo A, Papale P, Zucchelli M, Molinari MA, Lui F, Cecchetti L, Ricciardi E, Sartori G, Pietrini P, Nichelli PF. Eight Weddings and Six Funerals: An fMRI Study on Autobiographical Memories. Front Behav Neurosci 2018; 12:212. [PMID: 30279649 PMCID: PMC6153347 DOI: 10.3389/fnbeh.2018.00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
“Autobiographical memory” (AM) refers to remote memories from one's own life. Previous neuroimaging studies have highlighted that voluntary retrieval processes from AM involve different forms of memory and cognitive functions. Thus, a complex and widespread brain functional network has been found to support AM. The present functional magnetic resonance imaging (fMRI) study used a multivariate approach to determine whether neural activity within the AM circuit would recognize memories of real autobiographical events, and to evaluate individual differences in the recruitment of this network. Fourteen right-handed females took part in the study. During scanning, subjects were presented with sentences representing a detail of a highly emotional real event (positive or negative) and were asked to indicate whether the sentence described something that had or had not really happened to them. Group analysis showed a set of cortical areas able to discriminate the truthfulness of the recalled events: medial prefrontal cortex, posterior cingulate/retrosplenial cortex, precuneus, bilateral angular, superior frontal gyri, and early visual cortical areas. Single-subject results showed that the decoding occurred at different time points. No differences were found between recalling a positive or a negative event. Our results show that the entire AM network is engaged in monitoring the veracity of AMs. This process is not affected by the emotional valence of the experience but rather by individual differences in cognitive strategies used to retrieve AMs.
Collapse
Affiliation(s)
- Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Handjaras
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Andrea Leo
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Paolo Papale
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | | | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Cecchetti
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | | | - Pietro Pietrini
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| |
Collapse
|
23
|
Skokowski P. Temperature, Color and the Brain: An Externalist Reply to the Knowledge Argument. ACTA ACUST UNITED AC 2018; 9:287-299. [PMID: 29904436 PMCID: PMC5986842 DOI: 10.1007/s13164-017-0358-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is argued that the knowledge argument fails against externalist theories of mind. Enclosing Mary and cutting her off from some properties denies part of the physical world to Mary, which has the consequence of denying her certain kinds of physical knowledge. The externalist formulation of experience is shown to differ in vehicle, content, and causal role from the internalist version addressed by the knowledge argument, and is supported by results from neuroscience. This means that though the knowledge argument has some force against material internalists, it misses the mark entirely against externalist accounts.
Collapse
Affiliation(s)
- Paul Skokowski
- St Edmund Hall, Oxford University, Queen's Lane, Oxford, OX1 4AR United Kingdom
| |
Collapse
|
24
|
Individual differences in math anxiety and math self-concept promote forgetting in a directed forgetting paradigm. LEARNING AND INDIVIDUAL DIFFERENCES 2018. [DOI: 10.1016/j.lindif.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Sugiura L, Hata M, Matsuba-Kurita H, Uga M, Tsuzuki D, Dan I, Hagiwara H, Homae F. Explicit Performance in Girls and Implicit Processing in Boys: A Simultaneous fNIRS-ERP Study on Second Language Syntactic Learning in Young Adolescents. Front Hum Neurosci 2018; 12:62. [PMID: 29568265 PMCID: PMC5853835 DOI: 10.3389/fnhum.2018.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Learning a second language (L2) proceeds with individual approaches to proficiency in the language. Individual differences including sex, as well as working memory (WM) function appear to have strong effects on behavioral performance and cortical responses in L2 processing. Thus, by considering sex and WM capacity, we examined neural responses during L2 sentence processing as a function of L2 proficiency in young adolescents. In behavioral tests, girls significantly outperformed boys in L2 tests assessing proficiency and grammatical knowledge, and in a reading span test (RST) assessing WM capacity. Girls, but not boys, showed significant correlations between L2 tests and RST scores. Using functional near-infrared spectroscopy (fNIRS) and event-related potential (ERP) simultaneously, we measured cortical responses while participants listened to syntactically correct and incorrect sentences. ERP data revealed a grammaticality effect only in boys in the early time window (100–300 ms), implicated in phrase structure processing. In fNIRS data, while boys had significantly increased activation in the left prefrontal region implicated in syntactic processing, girls had increased activation in the posterior language-related region involved in phonology, semantics, and sentence processing with proficiency. Presumably, boys implicitly focused on rule-based syntactic processing, whereas girls made full use of linguistic knowledge and WM function. The present results provide important fundamental data for learning and teaching in L2 education.
Collapse
Affiliation(s)
- Lisa Sugiura
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| | - Masahiro Hata
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroko Matsuba-Kurita
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Minako Uga
- Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan.,Department of Welfare and Psychology, Health Science University, Yamanashi, Japan
| | - Daisuke Tsuzuki
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroko Hagiwara
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| | - Fumitaka Homae
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
26
|
Lee JC. Episodic memory retrieval in adolescents with and without developmental language disorder (DLD). INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2018; 53:271-281. [PMID: 29119716 PMCID: PMC5835159 DOI: 10.1111/1460-6984.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND Two reasons may explain the discrepant findings regarding declarative memory in developmental language disorder (DLD) in the literature. First, standardized tests are one of the primary tools used to assess declarative memory in previous studies. It is possible they are not sensitive enough to subtle memory impairment. Second, the system underlying declarative memory is complex, and thus results may vary depending on the types of encoding and retrieval processes measured (e.g., item specific or relational) and/or task demands (e.g., recall or recognition during memory retrieval). AIMS To adopt an experimental paradigm to examine episodic memory functioning in adolescents with and without DLD, with the focus on memory recognition of item-specific and relational information. METHODS & PROCEDURES Two groups of adolescents, one with DLD (n = 23; mean age = 16.73 years) and the other without (n = 23; mean age = 16.75 years), participated in the study. The Relational and Item-Specific Encoding (RISE) paradigm was used to assess the effect of different encoding processes on episodic memory retrieval in DLD. The advantage of using the RISE task is that both item-specific and relational encoding/retrieval can be examined within the same learning paradigm. OUTCOMES & RESULTS Adolescents with DLD and those with typical language development showed comparable engagement during the encoding phase. The DLD group showed significantly poorer item recognition than the comparison group. Associative recognition was not significantly different between the two groups; however, there was a non-significant trend for to be poorer in the DLD group than in the comparison group, suggesting a possible impairment in associative recognition in individuals with DLD, but to a lesser magnitude. CONCLUSIONS & IMPLICATIONS These results indicate that adolescents with DLD have difficulty with episodic memory retrieval when stimuli are encoded and retrieved without support from contextual information. Associative recognition is relatively less affected than item recognition in adolescents with DLD.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Fang J, Rüther N, Bellebaum C, Wiskott L, Cheng S. The Interaction between Semantic Representation and Episodic Memory. Neural Comput 2018; 30:293-332. [DOI: 10.1162/neco_a_01044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.
Collapse
Affiliation(s)
- Jing Fang
- Mercator Research Group “Structure of Memory,” Institute for Neural Computation, and Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Naima Rüther
- Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Ruhr University Bochum, Bochum 44801, Germany
| | - Sen Cheng
- Mercator Research Group “Structure of Memory” and Institute for Neural Computation, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
28
|
Hernández-Briones ZS, García-Bañuelos P, Hernández ME, López ML, Chacón AM, Carrillo P, Coria-Avila G, Manzo J, García LI. Olfactory stimulation induces cerebellar vermis activation during sexual learning in male rats. Neurobiol Learn Mem 2017; 146:31-36. [PMID: 29104177 DOI: 10.1016/j.nlm.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/27/2017] [Accepted: 11/01/2017] [Indexed: 02/02/2023]
Abstract
The cerebellum is a complex structure mainly recognized for its participation in motor activity and balance, and less understood for its role in olfactory processing. Herein, we assessed Fos immunoreactivity (Fos-IR) in the cerebellar vermis following exposure to different odors during sexual training in male rats. Males were allowed to copulate for either one, three or five sessions. One day after the corresponding session they were exposed during 60 min to woodshaving that was either: clean (Control), sprayed with almond scent (Alm) or from cages of sexually receptive females (RF). The vermis of the cerebellum was removed, cut in sagittal sections and analyzed for Fos-IR to infer activation. Our results showed that the cerebellum responded with more Fos-IR in the Alm and RF groups as compared to Control. More copulatory sessions resulted in more odor-induced Fos-IR, especially in the RF group. Accordingly, we discuss possible mechanisms on how the cerebellum mediates processing of both unconditioned and conditioned odors, and how sexual experience accelerates such process.
Collapse
Affiliation(s)
| | | | | | - María-Leonor López
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | | | - Porfirio Carrillo
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Ver., Mexico
| | - Genaro Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | - Luis Isauro García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico.
| |
Collapse
|
29
|
Geib BR, Stanley ML, Dennis NA, Woldorff MG, Cabeza R. From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval. Hum Brain Mapp 2017; 38:2242-2259. [PMID: 28112460 PMCID: PMC5460662 DOI: 10.1002/hbm.23518] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023] Open
Abstract
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242-2259, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin R. Geib
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth Carolina
| | - Matthew L. Stanley
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth Carolina
| | - Nancy A. Dennis
- Department of PsychologyPennsylvania State UniversityUniversity ParkPennsylvania
| | - Marty G. Woldorff
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth Carolina
| | - Roberto Cabeza
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth Carolina
| |
Collapse
|
30
|
Martin A. GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychon Bull Rev 2016; 23:979-90. [PMID: 25968087 PMCID: PMC5111803 DOI: 10.3758/s13423-015-0842-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.
Collapse
Affiliation(s)
- Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, Building 10, Room 4C-104, 10 Center Drive MSC 1366, Bethesda, MD, 20892-1366, USA.
| |
Collapse
|
31
|
Blankenship TL, O'Neill M, Deater-Deckard K, Diana RA, Bell MA. Frontotemporal function]al connectivity and executive functions contribute to episodic memory performance. Int J Psychophysiol 2016; 107:72-82. [PMID: 27388478 DOI: 10.1016/j.ijpsycho.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
The contributions of hemispheric-specific electrophysiology (electroencephalogram or EEG) and independent executive functions (inhibitory control, working memory, cognitive flexibility) to episodic memory performance were examined using abstract paintings. Right hemisphere frontotemporal functional connectivity during encoding and retrieval, measured via EEG alpha coherence, statistically predicted performance on recency but not recognition judgments for the abstract paintings. Theta coherence, however, did not predict performance. Likewise, cognitive flexibility statistically predicted performance on recency judgments, but not recognition. These findings suggest that recognition and recency operate via separate electrophysiological and executive mechanisms.
Collapse
Affiliation(s)
| | - Meagan O'Neill
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rachel A Diana
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Martha Ann Bell
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
32
|
Compère L, Sperduti M, Gallarda T, Anssens A, Lion S, Delhommeau M, Martinelli P, Devauchelle AD, Oppenheim C, Piolino P. Sex Differences in the Neural Correlates of Specific and General Autobiographical Memory. Front Hum Neurosci 2016; 10:285. [PMID: 27378884 PMCID: PMC4913091 DOI: 10.3389/fnhum.2016.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Autobiographical memory (AM) underlies the formation and temporal continuity over time of personal identity. The few studies on sex-related differences in AM suggest that men and women adopt different cognitive or emotional strategies when retrieving AMs. However, none of the previous works has taken into account the distinction between episodic autobiographical memory (EAM), consisting in the retrieval of specific events by means of mental time travel, and semantic autobiographical memory (SAM), which stores general personal events. Thus, it remains unclear whether differences in these strategies depend on the nature of the memory content to be retrieved. In the present study we employed functional MRI to examine brain activity underlying potential sex differences in EAM and SAM retrieval focusing on the differences in strategies related to the emotional aspects of memories while controlling for basic cognitive strategies. On the behavioral level, there was no significant sex difference in memory performances or subjective feature ratings of either type of AM. Activations common to men and women during AM retrieval were observed in a typical bilateral network comprising medial and lateral temporal regions, precuneus, occipital cortex as well as prefrontal cortex. Contrast analyses revealed that there was no difference between men and women in the EAM condition. In the SAM condition, women showed an increased activity, compared to men, in the dorsal anterior cingulate cortex, inferior parietal and precentral gyrus. Overall, these findings suggest that differential neural activations reflect sex-specific strategies related to emotional aspects of AMs, particularly regarding SAM. We propose that this pattern of activation during SAM retrieval reflects the cognitive cost linked to emotion regulation strategies recruited by women compared to men. These sex-related differences have interesting implications for understanding psychiatric disorders with differential sex prevalence and in which one of key features is overgenerality in AM.
Collapse
Affiliation(s)
- Laurie Compère
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Marco Sperduti
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Thierry Gallarda
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
- Laboratory of Physiopathology of Psychiatric Diseases, Centre Hospitalier Sainte AnneParis, France
| | - Adèle Anssens
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Stéphanie Lion
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Marion Delhommeau
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Pénélope Martinelli
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Anne-Dominique Devauchelle
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Catherine Oppenheim
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Pascale Piolino
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
- Institut Universitaire de FranceParis, France
| |
Collapse
|
33
|
Uemura K, Shimada H, Doi T, Makizako H, Tsutsumimoto K, Park H, Suzuki T. Reduced prefrontal oxygenation in mild cognitive impairment during memory retrieval. Int J Geriatr Psychiatry 2016; 31:583-91. [PMID: 26387497 DOI: 10.1002/gps.4363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Memory impairment is considered a hallmark of amnestic mild cognitive impairment (aMCI) and dementia. Emerging evidence suggests that the prefrontal lobe is required to maintain memory functions. The purpose of this study was to clarify whether older adults with aMCI have decreased prefrontal oxygenation during memory encoding and retrieval compared with age-matched healthy older adults, using multi-channel near-infrared spectroscopy. METHODS We examined 64 older adults with aMCI (mean 71.8 years) and 66 cognitively healthy control subjects comparable in age and gender (mean 71.7 years). The concentration of oxy-hemoglobin, which is a reliable biomarker of changes in regional cerebral blood flow, was measured in the prefrontal cortex during encoding and delayed retrieval of a list of 10 target words. Task performance was evaluated as average number of correct answers in the retrieval task. RESULTS Subjects with aMCI showed reduced activation in the bilateral dorsolateral cortex (approximately Brodmann area 9) and provided fewer correct answers in the retrieval period than control subjects. There were no significant differences during encoding. CONCLUSIONS Reduced activation in the dorsolateral cortex during retrieval may cause deficits in memory performance, which may be used as a marker of aMCI. Further studies are required to examine the predictive validity of this decreased activation pattern for the incidence of Alzheimer's disease.
Collapse
Affiliation(s)
- Kazuki Uemura
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hiroyuki Shimada
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takehiko Doi
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hyuma Makizako
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kota Tsutsumimoto
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hyuntae Park
- National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Medicinal Biotechnology, Dong-A University, Busan, Korea
| | - Takao Suzuki
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
34
|
Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia 2016; 80:35-46. [DOI: 10.1016/j.neuropsychologia.2015.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022]
|
35
|
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev 2015; 24:232-62. [PMID: 26318058 DOI: 10.1016/j.arr.2015.08.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Age-related cognitive changes often include difficulties in retrieving memories, particularly those that rely on personal experiences within their temporal and spatial contexts (i.e., episodic memories). This decline may vary depending on the studied phase (i.e., encoding, storage or retrieval), according to inter-individual differences, and whether we are talking about normal or pathological (e.g., Alzheimer disease; AD) aging. Such cognitive changes are associated with different structural and functional alterations in the human neural network that underpins episodic memory. The prefrontal cortex is the first structure to be affected by age, followed by the medial temporal lobe (MTL), the parietal cortex and the cerebellum. In AD, however, the modifications occur mainly in the MTL (hippocampus and adjacent structures) before spreading to the neocortex. In this review, we will present results that attempt to characterize normal and pathological cognitive aging at multiple levels by integrating structural, behavioral, inter-individual and neuroimaging measures of episodic memory.
Collapse
Affiliation(s)
- D Tromp
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| | - A Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France; Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - S Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - T Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - O Després
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
36
|
Uemura K, Doi T, Shimada H, Makizako H, Park H, Suzuki T. Age-related changes in prefrontal oxygenation during memory encoding and retrieval. Geriatr Gerontol Int 2015; 16:1296-1304. [DOI: 10.1111/ggi.12642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Kazuki Uemura
- Institute of Innovation for Future Society; Nagoya University; Nagoya Japan
| | - Takehiko Doi
- Department of Preventive Gerontology; Center for Gerontology and Social Science; Obu Japan
- Japan Society for the Promotion of Science; Tokyo Japan
| | - Hiroyuki Shimada
- Department of Preventive Gerontology; Center for Gerontology and Social Science; Obu Japan
| | - Hyuma Makizako
- Department of Preventive Gerontology; Center for Gerontology and Social Science; Obu Japan
| | - Hyuntae Park
- Department of Medicinal Biotechnology; Dong-A University; Busan Korea
| | - Takao Suzuki
- National Center for Geriatrics and Gerontology; Obu Japan
| |
Collapse
|
37
|
Yoo Y, Shin SA, Park S, Lee JH, Youn JH, Kim YK, Lee JY. The Korean Size/Weight Attribute Test: A Semantic Knowledge Test for Korean Older Adults and Brain-Imaging Evidence. J Alzheimers Dis 2015; 49:377-86. [DOI: 10.3233/jad-150492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yongjoon Yoo
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong A. Shin
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soowon Park
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine and SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Department of Education, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hye Lee
- Yongmoon Graduate School of Counseling Psychology, Seoul, Republic of Korea
| | - Jung-Hae Youn
- Yongmoon Graduate School of Counseling Psychology, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine and SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
38
|
Rubin LH, Meyer VJ, J Conant R, Sundermann EE, Wu M, Weber KM, Cohen MH, Little DM, Maki PM. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women. Neurobiol Dis 2015; 92:166-74. [PMID: 26408051 DOI: 10.1016/j.nbd.2015.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/19/2015] [Accepted: 09/20/2015] [Indexed: 01/21/2023] Open
Abstract
Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| | - Vanessa J Meyer
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Department of Psychiatry, Tulane University, New Orleans, LA, United States; Human Development and Family Studies, Iowa State University, Ames, IA, United States
| | - Rhoda J Conant
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Texas A&M University Health Science Center, Dallas, TX, United States
| | - Erin E Sundermann
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Einstein Aging Study, Bronx, NYC, United States
| | - Minjie Wu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kathleen M Weber
- The Core Center, Cook County Health and Hospital System and Hektoen Institute of Medicine, Chicago, IL, United States
| | - Mardge H Cohen
- The Core Center, Cook County Health and Hospital System and Hektoen Institute of Medicine, Chicago, IL, United States; Departments of Medicine, Stroger Hospital and Rush University, Chicago, IL, United States
| | - Deborah M Little
- Baylor Scott & White Health, Temple, TX, United States; Texas A&M University Health Science Center, Temple, TX, United States
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Pillay S, Liu X, Baracskay P, Hudetz AG. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats. Brain Connect 2015; 4:523-34. [PMID: 25090190 DOI: 10.1089/brain.2014.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Collapse
Affiliation(s)
- Siveshigan Pillay
- 1 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
40
|
Kong F, Ding K, Yang Z, Dang X, Hu S, Song Y, Liu J. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults. Soc Cogn Affect Neurosci 2014; 10:952-60. [PMID: 25406366 DOI: 10.1093/scan/nsu144] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Although much attention has been directed towards life satisfaction that refers to an individual's general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals' life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual's life satisfaction.
Collapse
Affiliation(s)
- Feng Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Ke Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Zetian Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Xiaobin Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Siyuan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, and School of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
41
|
Jia H, Hu X, Deshpande G. Behavioral relevance of the dynamics of the functional brain connectome. Brain Connect 2014; 4:741-59. [PMID: 25163490 DOI: 10.1089/brain.2014.0300] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While many previous studies assumed the functional connectivity (FC) between brain regions to be stationary, recent studies have demonstrated that FC dynamically varies across time. However, two challenges have limited the interpretability of dynamic FC information. First, a principled framework for selecting the temporal extent of the window used to examine the dynamics is lacking and this has resulted in ad-hoc selections of window lengths and subsequent divergent results. Second, it is unclear whether there is any behavioral relevance to the dynamics of the functional connectome in addition to that obtained from conventional static FC (SFC). In this work, we address these challenges by first proposing a principled framework for selecting the extent of the temporal windows in a dynamic and data-driven fashion based on statistical tests of the stationarity of time series. Further, we propose a method involving three levels of clustering-across space, time, and subjects-which allow for group-level inferences of the dynamics. Next, using a large resting-state functional magnetic resonance imaging and behavioral dataset from the Human Connectome Project, we demonstrate that metrics derived from dynamic FC can explain more than twice the variance in 75 behaviors across different domains (alertness, cognition, emotion, and personality traits) as compared with SFC in healthy individuals. Further, we found that individuals with brain networks exhibiting greater dynamics performed more favorably in behavioral tasks. This indicates that the ease with which brain regions engage or disengage may provide potential biomarkers for disorders involving altered neural circuitry.
Collapse
Affiliation(s)
- Hao Jia
- 1 Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University , Auburn, Alabama
| | | | | |
Collapse
|
42
|
|
43
|
Papp KV, Amariglio RE, Dekhtyar M, Roy K, Wigman S, Bamfo R, Sherman J, Sperling RA, Rentz DM. Development of a psychometrically equivalent short form of the Face-Name Associative Memory Exam for use along the early Alzheimer's disease trajectory. Clin Neuropsychol 2014; 28:771-85. [PMID: 24815535 PMCID: PMC4134419 DOI: 10.1080/13854046.2014.911351] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neuropsychologists are developing more challenging and specific tests to detect early and subtle changes in cognition related to preclinical Alzheimer's disease (AD). The 16-item Face-Name Associative Memory Exam (FNAME-16) is a challenging paired associative memory test able to detect subtle memory changes associated with biomarker evidence of preclinical AD. However, as individuals progress along the AD trajectory, measures that are sensitive at the preclinical stage may become too challenging by the stage of Mild Cognitive Impairment (MCI). Our goal was to develop a modified version of the face-name and face-occupation paired associative memory task (FNAME-12) with fewer stimuli and additional learning trials suitable for use in MCI. We administered the FNAME-12A, an alternate version FNAME 12B, the original FNAME-16, and a series of other neuropsychological measures to 65 clinically normal (CN) older adults (aged 65 to 85) and a subsample characterized by MCI (n = 18). The FNAME-12 exhibited psychometric equivalence with the FNAME-16 (r = .77, p < .001) and was correlated with other measures of episodic and semantic memory. The alternate form, FNAME-12B, was highly correlated with FNAME-12A (r = .76, p < .001). Mean performance on the FNAME 12A, stratified by education, was generated. The task could be completed by our MCI group yet remained challenging in the CN group, providing evidence for its utility along the AD trajectory.
Collapse
Affiliation(s)
- Kathryn V Papp
- a Center for Alzheimer Research and Treatment, Department of Neurology , Brigham and Women's Hospital , Boston , MA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Siedlecki KL. Visual perspective in autobiographical memories: reliability, consistency, and relationship to objective memory performance. Memory 2014; 23:306-16. [PMID: 24528294 DOI: 10.1080/09658211.2014.885054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.
Collapse
Affiliation(s)
- Karen L Siedlecki
- a Department of Psychology , Fordham University , New York , NY , USA
| |
Collapse
|
45
|
Pergola G, Suchan B. Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 2013; 7:162. [PMID: 24312029 PMCID: PMC3832901 DOI: 10.3389/fnbeh.2013.00162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022] Open
Abstract
Decades of research have established a model that includes the medial temporal lobe, and particularly the hippocampus, as a critical node for episodic memory. Neuroimaging and clinical studies have shown the involvement of additional cortical and subcortical regions. Among these areas, the thalamus, the retrosplenial cortex, and the prefrontal cortices have been consistently related to episodic memory performance. This article provides evidences that these areas are in different forms and degrees critical for human memory function rather than playing only an ancillary role. First we briefly summarize the functional architecture of the medial temporal lobe with respect to recognition memory and recall. We then focus on the clinical and neuroimaging evidence available on thalamo-prefrontal and thalamo-retrosplenial networks. The role of these networks in episodic memory has been considered secondary, partly because disruption of these areas does not always lead to severe impairments; to account for this evidence, we discuss methodological issues related to the investigation of these regions. We propose that these networks contribute differently to recognition memory and recall, and also that the memory stage of their contribution shows specificity to encoding or retrieval in recall tasks. We note that the same mechanisms may be in force when humans perform non-episodic tasks, e.g., semantic retrieval and mental time travel. Functional disturbance of these networks is related to cognitive impairments not only in neurological disorders, but also in psychiatric medical conditions, such as schizophrenia. Finally we discuss possible mechanisms for the contribution of these areas to memory, including regulation of oscillatory rhythms and long-term potentiation. We conclude that integrity of the thalamo-frontal and the thalamo-retrosplenial networks is necessary for the manifold features of episodic memory.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Boris Suchan
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
46
|
Smith JF, Braun AR, Alexander GE, Chen K, Horwitz B. Separating lexical-semantic access from other mnemonic processes in picture-name verification. Front Psychol 2013; 4:706. [PMID: 24130539 PMCID: PMC3795327 DOI: 10.3389/fpsyg.2013.00706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/16/2013] [Indexed: 11/13/2022] Open
Abstract
We present a novel paradigm to identify shared and unique brain regions underlying non-semantic, non-phonological, abstract, audio-visual (AV) memory vs. naming using a longitudinal functional magnetic resonance imaging experiment. Participants were trained to associate novel AV stimulus pairs containing hidden linguistic content. Half of the stimulus pairs were distorted images of animals and sine-wave speech versions of the animal's name. Images and sounds were distorted in such a way as to make their linguistic content easily recognizable only after being made aware of its existence. Memory for the pairings was tested by presenting an AV pair and asking participants to verify if the two stimuli formed a learned pairing. After memory testing, the hidden linguistic content was revealed and participants were tested again on their recollection of the pairings in this linguistically informed state. Once informed, the AV verification task could be performed by naming the picture. There was substantial overlap between the regions involved in recognition of non-linguistic sensory memory and naming, suggesting a strong relation between them. Contrasts between sessions identified left angular gyrus and middle temporal gyrus as key additional players in the naming network. Left inferior frontal regions participated in both naming and non-linguistic AV memory suggesting the region is responsible for AV memory independent of phonological content contrary to previous proposals. Functional connectivity between angular gyrus and left inferior frontal gyrus and left middle temporal gyrus increased when performing the AV task as naming. The results are consistent with the hypothesis that, at the spatial resolution of fMRI, the regions that facilitate non-linguistic AV associations are a subset of those that facilitate naming though reorganized into distinct networks.
Collapse
Affiliation(s)
- Jason F Smith
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
47
|
Straube B, He Y, Steines M, Gebhardt H, Kircher T, Sammer G, Nagels A. Supramodal neural processing of abstract information conveyed by speech and gesture. Front Behav Neurosci 2013; 7:120. [PMID: 24062652 PMCID: PMC3772311 DOI: 10.3389/fnbeh.2013.00120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/24/2013] [Indexed: 11/13/2022] Open
Abstract
Abstractness and modality of interpersonal communication have a considerable impact on comprehension. They are relevant for determining thoughts and constituting internal models of the environment. Whereas concrete object-related information can be represented in mind irrespective of language, abstract concepts require a representation in speech. Consequently, modality-independent processing of abstract information can be expected. Here we investigated the neural correlates of abstractness (abstract vs. concrete) and modality (speech vs. gestures), to identify an abstractness-specific supramodal neural network. During fMRI data acquisition 20 participants were presented with videos of an actor either speaking sentences with an abstract-social [AS] or concrete-object-related content [CS], or performing meaningful abstract-social emblematic [AG] or concrete-object-related tool-use gestures [CG]. Gestures were accompanied by a foreign language to increase the comparability between conditions and to frame the communication context of the gesture videos. Participants performed a content judgment task referring to the person vs. object-relatedness of the utterances. The behavioral data suggest a comparable comprehension of contents communicated by speech or gesture. Furthermore, we found common neural processing for abstract information independent of modality (AS > CS ∩ AG > CG) in a left hemispheric network including the left inferior frontal gyrus (IFG), temporal pole, and medial frontal cortex. Modality specific activations were found in bilateral occipital, parietal, and temporal as well as right inferior frontal brain regions for gesture (G > S) and in left anterior temporal regions and the left angular gyrus for the processing of speech semantics (S > G). These data support the idea that abstract concepts are represented in a supramodal manner. Consequently, gestures referring to abstract concepts are processed in a predominantly left hemispheric language related neural network.
Collapse
Affiliation(s)
- Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: An fMRI study. Neuroimage 2013; 74:195-208. [DOI: 10.1016/j.neuroimage.2013.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/02/2013] [Indexed: 11/23/2022] Open
|
49
|
Llano DA. Functional imaging of the thalamus in language. BRAIN AND LANGUAGE 2013; 126:62-72. [PMID: 22981716 PMCID: PMC4836874 DOI: 10.1016/j.bandl.2012.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/09/2012] [Accepted: 06/22/2012] [Indexed: 05/07/2023]
Abstract
Herein, the literature regarding functional imaging of the thalamus during language tasks is reviewed. Fifty studies met criteria for analysis. Two of the most common task paradigms associated with thalamic activation were generative tasks (e.g. word or sentence generation) and naming, though activation was also seen in tasks that involve lexical decision, reading and working memory. Typically, thalamic activation was seen bilaterally, left greater than right, along with activation in frontal and temporal cortical regions. Thalamic activation was seen with perceptually challenging tasks, though few studies rigorously correlated thalamic activation with measures of attention or task difficulty. The peaks of activation loci were seen in virtually all thalamic regions, with a bias towards left-sided and midline activation. These analyses suggest that the thalamus may be involved in processes that involve manipulations of lexical information, but point to the need for more systematic study of the thalamus using language tasks.
Collapse
Affiliation(s)
- Daniel A Llano
- University of Illinois at Urbana-Champaign, Department of Molecular and Integrative Physiology, USA.
| |
Collapse
|
50
|
Pergola G, Bellebaum C, Gehlhaar B, Koch B, Schwarz M, Daum I, Suchan B. The Involvement of the Thalamus in Semantic Retrieval: A Clinical Group Study. J Cogn Neurosci 2013; 25:872-86. [DOI: 10.1162/jocn_a_00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
There is increasing attention about the role of the thalamus in high cognitive functions, including memory. Although the bulk of the evidence refers to episodic memory, it was recently proposed that the mediodorsal (MD) and the centromedian–parafascicular (CM–Pf) nuclei of the thalamus may process general operations supporting memory performance, not only episodic memory. This perspective agrees with other recent fMRI findings on semantic retrieval in healthy participants. It can therefore be hypothesized that lesions to the MD and the CM–Pf impair semantic retrieval. In this study, 10 patients with focal ischemic lesions in the medial thalamus and 10 healthy controls matched for age, education, and verbal IQ performed a verbal semantic retrieval task. Patients were assigned to a target clinical group and a control clinical group based on lesion localization. Patients did not suffer from aphasia and performed in the range of controls in a categorization and a semantic association task. However, target patients performed poorer than healthy controls on semantic retrieval. The deficit was not because of higher distractibility but of an increased rate of false recall and, in some patients, of a considerably increased rate of misses. The latter deficit yielded a striking difference between the target and the control clinical groups and is consistent with anomia. Follow-up high-resolution structural scanning session in a subsample of patients revealed that lesions in the CM–Pf and MD were primarily associated with semantic retrieval deficits. We conclude that integrity of the MD and the CM–Pf is required for semantic retrieval, possibly because of their role in the activation of phonological representations.
Collapse
Affiliation(s)
- Giulio Pergola
- 1International School for Advanced Studies, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|