1
|
Zhang H, Wang S, Zhang XX, Ji W, Song F, Zhao Y, Li J. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background. Microb Cell Fact 2016; 15:68. [PMID: 27125644 PMCID: PMC4850703 DOI: 10.1186/s12934-016-0463-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background The filamentous fungus Aspergillus niger is widely
exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. Results The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC–MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Conclusions Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.
Collapse
Affiliation(s)
- Hui Zhang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Shuang Wang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Xiang Xiang Zhang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Wei Ji
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue Zhao
- Northeast Agricultural University College of Life Science, Harbin, 150030, China.
| | - Jie Li
- Northeast Agricultural University College of Life Science, Harbin, 150030, China.
| |
Collapse
|
2
|
Gómez S, López-Estepa M, Fernández FJ, Suárez T, Vega MC. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes. ADVANCED TECHNOLOGIES FOR PROTEIN COMPLEX PRODUCTION AND CHARACTERIZATION 2016; 896:167-84. [DOI: 10.1007/978-3-319-27216-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Lopes FC, Tichota DM, Pereira JQ, Segalin J, de Oliveira Rios A, Brandelli A. Pigment Production by Filamentous Fungi on Agro-Industrial Byproducts: an Eco-Friendly Alternative. Appl Biochem Biotechnol 2013; 171:616-25. [DOI: 10.1007/s12010-013-0392-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
|
6
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
7
|
Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae. J Ind Microbiol Biotechnol 2010; 37:455-69. [DOI: 10.1007/s10295-010-0691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
8
|
Expression of ribonuclease A and ribonuclease N1 in the filamentous fungus Neurospora crassa. Appl Microbiol Biotechnol 2009; 85:1041-9. [PMID: 19662399 DOI: 10.1007/s00253-009-2161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
In this study, we investigated the ability of the fungus Neurospora crassa to produce and secrete two ribonucleases: the heterologous bovine RNase A and the endogenous RNase N(1). A set of expression vectors was constructed, each consisting of an RNase A open reading frame under the control of a specific promoter and each with a specific terminator. N. crassa transformants were analyzed at the transcriptional and protein levels. Irrespective of the promoter used, all transformants showed an RNase A-specific transcript in northern hybridization, but transcriptional strengths differed significantly. The strongest transcription was detected in transformants under the control of the cfp promoter. Western blot analysis and ELISA assays of selected transformants showed an effective secretion up to 356 ng/mL of recombinant RNase A protein. However, the highest ribonuclease activity could be detected in transformants carrying the endogenous RNase N(1) under the control of the ccg1 promoter. Expression and secretion of RNase N(1) thus represent an alternative to recombinant expression of RNase A protein. In conclusion, we have created a viable expression system for expression of homologous and heterologous proteins in N. crassa.
Collapse
|
9
|
Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0128-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|
11
|
De Maeseneire SL, Dauvrin T, Jonniaux JL, Van Bogaert INA, Soetaert WK, Vandamme EJMC. Cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene and the use of its promoter for expression in Myrothecium gramineum, a novel expression host. FEMS Microbiol Lett 2008; 281:140-6. [PMID: 18294194 DOI: 10.1111/j.1574-6968.2008.01091.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
At our laboratory, research has focused on the development of Myrothecium gramineum as a novel expression host. The glyceraldehyde-3-phosphate dehydrogenase (gpd)-promoter of M. gramineum was isolated and characterized (Genbank accession number EF486690). In order to prove its functionality and to explore the potential of M. gramineum as a novel fungal expression host, use of this gpd-promoter for the expression of a fungal alpha-amylase was investigated. Myrothecium gramineum was transformed with pGPDlpAmyAO, containing the gpd-promoter followed by the amy3 encoding sequence of Aspergillus oryzae. Study of the amylase production indicated that the promoter can be successfully used for the expression of heterologous proteins in M. gramineum. To the best of our knowledge, this is the first time a homologous expression system has been described for M. gramineum.
Collapse
Affiliation(s)
- Sofie L De Maeseneire
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
12
|
Dienes D, Börjesson J, Hägglund P, Tjerneld F, Lidén G, Réczey K, Stålbrand H. Identification of a trypsin-like serine protease from Trichoderma reesei QM9414. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Mertens JA, Skory CD, Ibrahim AS. Plasmids for expression of heterologous proteins in Rhizopus oryzae. Arch Microbiol 2006; 186:41-50. [PMID: 16804680 DOI: 10.1007/s00203-006-0121-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 04/14/2006] [Accepted: 05/02/2006] [Indexed: 11/27/2022]
Abstract
Rhizopus oryzae has long been used for enzyme production (e.g., glucoamylase and lipase), organic acid synthesis, and various fermented food applications. In this work, we describe a set of plasmid-based expression vectors that can be used for the production of heterologous proteins in R. oryzae. Three plasmid vectors have been created using either the glucoamylase A (amyA), pyruvate decarboxylase (pdcA), or phosphoglycerate kinase (pgk1) promoters to drive expression of heterologous proteins. All three plasmids use the pdcA terminator for transcription termination, the pyrG gene for restoration of uracil prototrophy, and an ampicillin resistance gene and origin of replication for maintenance in Escherichia coli. We have expressed green fluorescent protein (GFP) and compared transcription and protein accumulation for each of the expression vectors. Accumulation of GFP transcript and protein was directly correlated with the choice of promoter with pdcA > amyA > pgk1. Transcript level appears to parallel GFP protein accumulation. Plasmid copy number had little impact on transcription or protein accumulation. These vectors should be useful for overexpression of heterologous proteins and potentially, metabolic engineering of Rhizopus strains.
Collapse
Affiliation(s)
- Jeffrey A Mertens
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, 1815 N. University St., Peoria, IL 61604, USA.
| | | | | |
Collapse
|
14
|
Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Microbiol Biotechnol 2006; 69:711-7. [PMID: 16021486 DOI: 10.1007/s00253-005-0013-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/21/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
Although filamentous fungi have a unique property of secreting a large amount of homologous extracellular proteins, the use of filamentous fungi as hosts for the production of heterologous proteins is limited because of the low production levels that are generally reached. Here, we report a general screening method for the isolation of mutants with increased protein production levels. The screening method makes use of an Aspergillus niger strain that lacks the two major amylolytic enzymes, glucoamylase (GlaA) and acid amylase (AamA). The double-mutant strain grows poorly on starch and its growth is restored after reintroducing the catalytic part of the glucoamylase gene (GlaA512). We show that the fusion of a heterologous protein, a laccase from Pleurotus ostreatus (Pox2), to the catalytic part of glucoamylase (GlaA512-Pox2) severely hampers efficient production of the glucoamylase protein, resulting in a slow-growth phenotype on starch. Laccase-hypersecreting mutants were obtained by isolating mutants that displayed improved growth on starch plates. The mutant with the highest growth rate on starch displayed the highest laccase activity, indicating that increased glucoamylase protein levels are correlated with higher laccase production levels. In principle, our method can be applied to any low-produced heterologous protein that is secreted as a fusion with the glucoamylase protein.
Collapse
Affiliation(s)
- Xavier O Weenink
- Clusius Laboratory, Fungal Genetics Research Group, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
15
|
Ahamed A, Singh A, Ward OP. Culture-Based Strategies for Reduction of Protease Activity in Filtrates from Aspergillus niger NRRL-3. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-8121-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Grimm LH, Kelly S, Krull R, Hempel DC. Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 2005; 69:375-84. [PMID: 16317480 DOI: 10.1007/s00253-005-0213-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.
Collapse
Affiliation(s)
- L H Grimm
- Institute of Biochemical Engineering, Technical University of Braunschweig, Gaussstrasse 17, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
17
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
18
|
Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 2004; 65:363-72. [PMID: 15480623 DOI: 10.1007/s00253-004-1656-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/05/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
In terms of downstream processing efficiency, secretory expression systems offer potential advantages for the production of recombinant proteins, compared with inclusion body forming cytosolic systems. However, for high-volume therapeutics like insulin, the product yields of the majority of the potentially available secretory systems is not yet fully competitive. Current strategies to improve productivity and secretion efficiency comprise: (1) enhancement of gene expression rates, (2) optimization of secretion signal sequences, (3) coexpression of chaperones and foldases, (4) creation of protease deficient mutants to avoid premature product degradation and (5) subsequent breeding and mutagenesis. For the production of non-glycosylated proteins and proteins, which are natively glycosylated but are also pharmacologically active without glycosylation, prokaryotes, which usually lack metabolic pathways for glycosylation, are theoretically the most suitable organisms and offer two alternatives: either Escherichia coli strains are conditioned to be efficient secreters or efficient native secreters like Bacillus species are accordingly developed. To fully exploit the secretory capacity of fungal species, a deeper understanding of their posttranslational modification physiology will be necessary to steer the degree and pattern of glycosylation, which influences both folding and secretion efficiency. Insect and mammalian cells display posttranslational modification patterns very similar or identical to humans, but in view of the entailed expenditures, their employment can only be justified if their modification machinery is required to ensure a desired pharmacological activity.
Collapse
Affiliation(s)
- F R Schmidt
- Aventis Pharma Deutschland, Biocenter H 780, Industriepark Höchst, 65926, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Conesa A, Jeenes D, Archer DB, van den Hondel CAMJJ, Punt PJ. Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 2002; 68:846-51. [PMID: 11823227 PMCID: PMC126695 DOI: 10.1128/aem.68.2.846-851.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heme-containing peroxidases from white rot basidiomycetes, in contrast to most proteins of fungal origin, are poorly produced in industrial filamentous fungal strains. Factors limiting peroxidase production are believed to operate at the posttranslational level. In particular, insufficient availability of the prosthetic group which is required for peroxidase biosynthesis has been proposed to be an important bottleneck. In this work, we analyzed the role of two components of the secretion pathway, the chaperones calnexin and binding protein (BiP), in the production of a fungal peroxidase. Expression of the Phanerochaete chrysosporium manganese peroxidase (MnP) in Aspergillus niger resulted in an increase in the expression level of the clxA and bipA genes. In a heme-supplemented medium, where MnP was shown to be overproduced to higher levels, induction of clxA and bipA was also higher. Overexpression of these two chaperones in an MnP-producing strain was analyzed for its effect on MnP production. Whereas bipA overexpression seriously reduced MnP production, overexpression of calnexin resulted in a four- to fivefold increase in the extracellular MnP levels. However, when additional heme was provided in the culture medium, calnexin overexpression had no synergistic effect on MnP production. The possible function of these two chaperones in MnP maturation and production is discussed.
Collapse
Affiliation(s)
- Ana Conesa
- Department of Applied Microbiology and Gene Technology, TNO Food and Nutrition Research Institute, 3700 AJ Zeist, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Wiebe MG, Karandikar A, Robson GD, Trinci AP, Candia JL, Trappe S, Wallis G, Rinas U, Derkx PM, Madrid SM, Sisniega H, Faus I, Montijn R, van den Hondel CA, Punt PJ. Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 2001; 76:164-74. [PMID: 11505386 DOI: 10.1002/bit.1156] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A protease-deficient strain of Aspergillus niger has been used as a host for the production of human tissue plasminogen activator (t-PA). In defined medium, up to 0.07 mg t-PA (g biomass)(-1) was produced in batch and fed-batch cultures and production was increased two- to threefold in two-phase batch cultures in which additional glucose was provided as a single pulse at the end of the first batch growth phase. Production was increased [up to 1.9 mg t-PA (g biomass)(-1)] by the addition of soy peptone to the defined medium. The rate of t-PA production in batch cultures supplemented with soy peptone (0.2 to 0.6 mg t-PA L(-1) h(-1)) was comparable to rates observed previously in high-producing mammalian or insect cell cultures. In glucose-limited chemostat culture supplemented with soy peptone, t-PA was produced at a rate of 0.7 mg t-PA L(-1) h(-1). Expression of t-PA in A. niger resulted in increased expression of genes (bipA, pdiA, and cypB) involved in the unfolded protein response (UPR). However, when cypB was overexpressed in a t-PA-producing strain, t-PA production was not increased. The t-PA produced in A. niger was cleaved into two chains of similar molecular weight to two-chain human melanoma t-PA. The two chains appeared to be stable for at least 16 h in culture supernatant of the host strain. However, in general, <1% of the t-PA produced in A. niger was active, and active t-PA disappeared from the culture supernatant during the stationary phase of batch cultures, suggesting that the two-chain t-PA may have been incorrectly processed or that initial proteolytic cleavage occurred within the proteolytic domain of the protein. Total t-PA (detected by enzyme-linked immunoassay) also eventually disappeared from culture supernatants, confirming significant extracellular proteolytic activity, even though the host strain was protease-deficient.
Collapse
Affiliation(s)
- M G Wiebe
- School of Biological Sciences, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 2001; 33:155-71. [PMID: 11495573 DOI: 10.1006/fgbi.2001.1276] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high capacity of the secretion machinery of filamentous fungi has been widely exploited for the production of homologous and heterologous proteins; however, our knowledge of the fungal secretion pathway is still at an early stage. Most of the knowledge comes from models developed in yeast and higher eukaryotes, which have served as reference for the studies on fungal species. In this review we compile the data accumulated in recent years on the molecular basis of fungal secretion, emphasizing the relevance of these data for the biotechnological use of the fungal cell and indicating how this information has been applied in attempts to create improved production strains. We also present recent emerging approaches that promise to provide answers to fundamental questions on the molecular genetics of the fungal secretory pathway.
Collapse
Affiliation(s)
- A Conesa
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research, Zeist, 3700 AJ, The Netherlands
| | | | | | | |
Collapse
|
22
|
Nevalainen K. Strain improvement in filamentous fungi-an overview. AGRICULTURE AND FOOD PRODUCTION 2001. [DOI: 10.1016/s1874-5334(01)80013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Abstract
In the mid-1970s, information technology and recombinant DNA technology were considered as the breakthrough technologies of the final quarter of the 20th century. Now, about 25 years later, information technology has penetrated deeply into our society and nearly everyone uses this technology. Compared to the formidable success of information technology, the progress in the commercialization of recombinant DNA technology is moderate, even when taking into account that all that is related to the technological application of biological sciences needs extensive safety testing. However, there are signs that the speed of this commercialization will increase in the first decade of the 21st century. Moreover, new breakthroughs in our understanding of the complete genetic make up of eukaryotes will contribute to this increase in speed. An important aspect of the commercialization of this technology is the development of cells as factories for the production of valuable and/or useful molecules. Lower eukaryotes, such as yeasts and molds, are the most promising candidates to become the factories of the future, but at present these factories still contains a lot of process lines that may be superfluous under the well controlled conditions in fermentors. On the other hand, the speed and yield of these cellular production lines can be increased by eliminating the rate-determining steps of these process lines. In this contribution to the European Union symposium from Cell to Factory, some steps in the improvement of S. cerevisiae as cell factories for (heterologous) hydrophobic molecules are presented.
Collapse
|
24
|
Abstract
Pulse and pulse-chase experiments have been performed to study L-[(35)S] methionine incorporation and protein secretion kinetics in Aspergillus oryzae. Pulse experiments confirmed the mechanism of methionine uptake reported previously for Penicillium chrysogenum (Benko et al., 1967). Pulse-chase experiments were carried out to investigate the alpha-amylase secretion kinetics in A. oryzae. No unglycosylated alpha-amylase was detected neither intracellularly nor extracellularly demonstrating that glycosylation was not the rate controlling step in the secretory pathway. The pulse chase experiments indicated that there are two pools of intracellular alpha-amylase: a fast secreted and a slow secreted. The secretion of those two pools were described with a kinetic model, which was fitted to the pulse chase experiments.
Collapse
Affiliation(s)
- A L Santerre Henriksen
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
25
|
Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, van Loon AP. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 1999; 63:373-81. [PMID: 10099617 DOI: 10.1002/(sici)1097-0290(19990505)63:3<373::aid-bit14>3.0.co;2-t] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient process was developed for the low-cost production of phytases using Hansenula polymorpha. Glucose or glucose syrups, previously reported as repressive substrates, were used as main carbon sources during fermentation. Glucose was even the most productive substrate for high-level production of phytases. Compared with the process using glycerol, the standard carbon source used for this process until now, the use of glucose led to a reduction of more than 80% in the raw materials costs. In addition, exceptionally high concentrations of active enzyme (up to 13.5 g/L) were obtained in the medium, with phytase representing over 97% of the total accumulated protein. These levels greatly exceed those reported so far for any yeast-based expression system. Very efficient downstream processing procedures were developed with product recovery yields over 90%. Both the fermentation and downstream processing were successfully tested in pilot scale up to 2000 L. As a result, H. polymorpha can be used as a highly competitive system for low-cost phytase production.
Collapse
Affiliation(s)
- A F Mayer
- Biotechnology Research Group, Vitamins and Fine Chemicals Division, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|