1
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
2
|
Afshar Y, Ma F, Quach A, Jeong A, Sunshine HL, Freitas V, Jami-Alahmadi Y, Helaers R, Li X, Pellegrini M, Wohlschlegel JA, Romanoski CE, Vikkula M, Iruela-Arispe ML. Transcriptional drifts associated with environmental changes in endothelial cells. eLife 2023; 12:e81370. [PMID: 36971339 PMCID: PMC10168696 DOI: 10.7554/elife.81370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| | - Feyiang Ma
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Austin Quach
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Anhyo Jeong
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
| | - Hannah L Sunshine
- Department of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Vanessa Freitas
- Departament of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao PauloLos AngelesUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
- WELBIO department, WEL Research InstituteWavreBelgium
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
3
|
Li MX, Li L, Zhou SY, Cao JH, Liang WH, Tian Y, Shi XT, Yang XB, Wu DY. A biomimetic orthogonal-bilayer tubular scaffold for the co-culture of endothelial cells and smooth muscle cells. RSC Adv 2021; 11:31783-31790. [PMID: 35496878 PMCID: PMC9041441 DOI: 10.1039/d1ra04472a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In blood vessels, endothelial cells (ECs) grow along the direction of blood flow, while smooth muscle cells (SMCs) grow circumferentially along the vessel wall. To mimic this structure, a polycaprolactone (PCL) tubular scaffold with orthogonally oriented bilayer nanofibers was prepared via electrospinning and winding. ECs were cultured on the inner layer of the scaffold with axial nanofibers and SMCs were cultured on the outer layer of the scaffold with circumferential nanofibers. Fluorescence images of the F-actin distribution of ECs and SMCs indicated that cells adhered, stretched, and proliferated in an oriented manner on the scaffold. Moreover, layers of ECs and SMCs formed on the scaffold after one month of incubation. The expression levels of platelet-endothelial cell adhesion molecule 1 (PECAM-1) and a contractile SMC phenotype marker in the EC/SMC co-culture system were much higher than those in individual culture systems, thus demonstrating that the proposed biomimetic scaffold promoted the intercellular junction of ECs and preserved the contractile phenotype of SMCs. To mimic blood vessels, a polycaprolactone tubular scaffold was prepared via electrospinning and winding. Endothelial cells were cultured on the inner layer with axial nanofibers and smooth muscle cells were cultured on the outer layer with circumferential nanofibers.![]()
Collapse
Affiliation(s)
- Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wei-Hua Liang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ye Tian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xue-Tao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology Guangzhou 510006 P. R. China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University Beijing 100029 P. R. China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
4
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
5
|
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019; 196:2-17. [PMID: 30072038 PMCID: PMC6344330 DOI: 10.1016/j.biomaterials.2018.07.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.
Collapse
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Liu Y, Rayatpisheh S, Chew SY, Chan-Park MB. Impact of endothelial cells on 3D cultured smooth muscle cells in a biomimetic hydrogel. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1378-1387. [PMID: 22296557 DOI: 10.1021/am201648f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
For the development of vascular tissue engineering, the impact of endothelial cells (ECs) on smooth muscle cell (SMC) spreading, proliferation, and differentiation is explored in the current study using a coculture model. In this coculture model, SMCs were encapsulated in a biomimetic hydrogel based on methacrylated dextran-graft-lysine (Dex-MA-LA) and methacrylamide-modified gelatin (Gel-MA), and exposed to a monolayer of ECs. With EC coculture, SMC proliferation in 3D hydrogel was promoted at initial period, and the formation of denser cellular networks was enhanced. ECs dynamically modulated SMC phenotype by promoting a more contractile SMC phenotype initially (on day 2), indicated by the upregulated expression of contractile genes α-actin, calponin, smooth muscle-myosin heavy chain (SM-MHC), and smoothelin; however, the onset of maximum expressions was delayed by ECs. Full differentiation of SMCs was not obtained even with EC coculture. Higher level of platelet-derived growth factor (PDGF)-BB and latent transforming growth factor (TGF)-β1 were detected in medium of coculture. These biochemical cues together with the physical cue of tensional force within cellular networks may be responsible for the dynamic modulation of SMC phenotype in coculture. Synthesis of elastin was promoted by ECs at transcriptional level. The formation of denser cellular networks and synthesis of elastin suggest that coculture with ECs is a potential method to construct functional vessel media layer in vitro.
Collapse
Affiliation(s)
- Yunxiao Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
7
|
Truskey GA. Endothelial Cell Vascular Smooth Muscle Cell Co-Culture Assay For High Throughput Screening Assays For Discovery of Anti-Angiogenesis Agents and Other Therapeutic Molecules. ACTA ACUST UNITED AC 2010; 2010:171-181. [PMID: 21278926 DOI: 10.2147/ijhts.s13459] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug development for many diseases would be aided greatly by accurate in vitro model systems that replicate key elements of in vivo physiology. The recent development of co-culture systems of endothelial cells and vascular smooth muscle cells can be extended to high throughput systems for the identification of compounds for angiogenesis, vascular repair and hypertension. In this review, the various co-culture systems are reviewed and biological interactions between endothelial cells and vascular smooth muscle cells are discussed. Key considerations in the design of high throughput systems are presented and selected examples are discussed.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering Duke University Durham, NC 27708-0281 USA
| |
Collapse
|
8
|
Balcells M, Martorell J, Olivé C, Santacana M, Chitalia V, Cardoso AA, Edelman ER. Smooth muscle cells orchestrate the endothelial cell response to flow and injury. Circulation 2010; 121:2192-9. [PMID: 20458015 DOI: 10.1161/circulationaha.109.877282] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Local modulation of vascular mammalian target of rapamycin (mTOR) signaling reduces smooth muscle cell (SMC) proliferation after endovascular interventions but may be associated with endothelial cell (EC) toxicity. The trilaminate vascular architecture juxtaposes ECs and SMCs to enable complex paracrine coregulation but shields SMCs from flow. We hypothesized that flow differentially affects mTOR signaling in ECs and SMCs and that SMCs regulate mTOR in ECs. METHODS AND RESULTS SMCs and/or ECs were exposed to coronary artery flow in a perfusion bioreactor. We demonstrated by flow cytometry, immunofluorescence, and immunoblotting that EC expression of phospho-S6 ribosomal protein (p-S6RP), a downstream target of mTOR, was doubled by flow. Conversely, S6RP in SMCs was growth factor but not flow responsive, and SMCs eliminated the flow sensitivity of ECs. Temsirolimus, a sirolimus analog, eliminated the effect of growth factor on SMCs and of flow on ECs, reducing p-S6RP below basal levels and inhibiting endothelial recovery. EC p-S6RP expression in stented porcine arteries confirmed our in vitro findings: Phosphorylation was greatest in ECs farthest from intact SMCs in metal stented arteries and altogether absent after sirolimus stent elution. CONCLUSIONS The mTOR pathway is activated in ECs in response to luminal flow. SMCs inhibit this flow-induced stimulation of endothelial mTOR pathway. Thus, we now define a novel external stimulus regulating phosphorylation of S6RP and another level of EC-SMC crosstalk. These interactions may explain the impact of local antiproliferative delivery that targets SMC proliferation and suggest that future stents integrate design influences on flow and drug effects on their molecular targets.
Collapse
MESH Headings
- Animals
- Aorta/physiology
- Arteries/physiology
- Arteries/physiopathology
- Cell Communication/physiology
- Cells, Cultured
- Coronary Vessels/physiology
- Endothelial Cells/metabolism
- Endothelium, Vascular/injuries
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Ribosomal Protein S6/metabolism
- Signal Transduction
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- Stents/adverse effects
- Swine
- Swine, Miniature
- TOR Serine-Threonine Kinases
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Rose SL, Babensee JE. Smooth muscle cell phenotype alters cocultured endothelial cell response to biomaterial-pretreated leukocytes. J Biomed Mater Res A 2008; 84:661-71. [PMID: 17635014 DOI: 10.1002/jbm.a.31305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Model in vitro culturing systems were developed to analyze roles of biomaterial-induced leukocyte activation on endothelial cell (EC) and smooth muscle cell (SMC) phenotype, and their crosstalk. Isolated monocytes or neutrophils were pretreated with model biomaterial beads and applied directly to "more secretory" (cultured in media containing 5% fetal bovine serum) or forced contractile (serum and growth factor starved) human aortic SMCs (HASMCs), or to the human aortic EC (HAEC) surface of HAEC/HASMC cocultures (HASMC phenotype varied to be "more or less secretory") for 5 or 24 h of static culture. Surface expression of proinflammatory [ICAM-1, VCAM-1, E-selectin], procoagulant (tissue factor), and anticoagulant (thrombomodulin) markers, as well as HAEC proliferation, were assessed by flow cytometry. Incubation of HAEC with biomaterial-pretreated monocytes (and neutrophils to lesser degree) suppressed HAEC proliferation and induced a proinflammatory/procoagulant HAEC phenotype. This HAEC phenotype was amplified in coculture with "more secretory" HASMCs and subdued in coculture with "less secretory" HASMCs. Direct incubation of biomaterial-pretreated monocytes or neutrophils with "more secretory" HASMCs further increased HASMC ICAM-1 and tissue factor expression. Direct incubation of biomaterial-pretreated monocytes or neutrophils with forced contractile HASMCs upregulated ICAM-1, VCAM-1, and tissue factor expression above the presence of serum-containing media alone.
Collapse
Affiliation(s)
- Stacey L Rose
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
10
|
Allen J, Khan S, Serrano MC, Ameer G. Characterization of Porcine Circulating Progenitor Cells: Toward a Functional Endothelium. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Allen J, Khan S, Serrano MC, Ameer G. Characterization of Porcine Circulating Progenitor Cells: Toward a Functional Endothelium. Tissue Eng Part A 2008; 14:183-94. [DOI: 10.1089/ten.a.2007.0265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Josephine Allen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Sadiya Khan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | | | - Guillermo Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Institute for BioNanotechnology in Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
12
|
Rose SL, Babensee JE. Complimentary endothelial cell/smooth muscle cell co-culture systems with alternate smooth muscle cell phenotypes. Ann Biomed Eng 2007; 35:1382-90. [PMID: 17431786 DOI: 10.1007/s10439-007-9311-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 03/30/2007] [Indexed: 12/01/2022]
Abstract
Development of in vitro models of native and injured vasculature is crucial for better understanding altered wound healing in disease, device implantation, or tissue engineering. Conditions were optimized using polyethyleneteraphalate transwell filters for human aortic endothelial cell (HAEC)/smooth muscle cell (HASMC) co-cultures with divergent HASMC phenotypes ('more or less secretory') while maintaining quiescent HAECs. Resulting HASMC phenotype was studied at 48 and 72 h following co-culture initiation, and compared to serum and growth factor starved monocultured 'forced contractile' HASMCs. Forced contractile HASMCs demonstrated organized alpha-smooth muscle actin filaments, minimal interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion, and low intracellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and tissue factor expression. Organization of alpha-smooth muscle actin was lost in 'more secretory' HASMCs in co-culture with HAECs, and IL-8 and MCP-1 secretion, as well as ICAM-1, VCAM-1, and tissue factor expression were significantly upregulated at both time points. Alternately, 'less secretory' HASMCs in co-culture with HAECs showed similar characteristics to forced contractile HASMCs at the 48 h time point, while by the 72 h time point they behaved similarly to 'more secretory' HASMCs. These co-culture systems could be useful in better understanding vascular healing, however there remain time constraint considerations for maintaining culture integrity/cell phenotype.
Collapse
Affiliation(s)
- Stacey L Rose
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332-0535, USA
| | | |
Collapse
|
13
|
Voorhees A, Nackman GB, Wei T. Experiments show importance of flow-induced pressure on endothelial cell shape and alignment. Proc Math Phys Eng Sci 2007. [DOI: 10.1098/rspa.2006.1805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the importance of haemodynamic forces on vascular disease is well recognized, the biologic response to these forces is not well understood. Indeed, as will be discussed, even the nature of the forces themselves is not understood; wall shear stress acting on arterial walls is commonly understood to be the primary, if not the sole, source of haemodynamic loading. The ultimate goal of this research is to experimentally quantify the complete force distribution acting on endothelial cells (ECs) and to directly examine the biochemical response of ECs to variations in haemodynamic loading. This report contains a description of the first spatially resolved microscopic particle image velocimetry (μPIV) flow measurements over individual human ECs. Using velocity data from multiple two-dimensional planes, it was possible to reconstruct the three-dimensional shear stress and pressure distributions over the cells. Data indicate that flow-induced pressure is of the same magnitude as shear with maximum magnitudes at the ‘toe’ and ‘heel’ of the ECs. Arguments are then made that EC response to pressure includes (i) reshaping to minimize drag, (ii) realigning to minimize shear-induced torque, and (iii) minimizing attachment forces required to maintain adhesion.
Collapse
Affiliation(s)
- Abram Voorhees
- MR Research and Development, Siemens Medical Solutions USA, Inc.Malvern, PA 19355, USA
| | - Gary B Nackman
- Division of Vascular Surgery, Robert Wood Johnson Medical SchoolNew Brunswick, NJ 08903, USA
| | - Timothy Wei
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic InstituteTroy, NY 12180-3590, USA
| |
Collapse
|
14
|
Wallace CS, Champion JC, Truskey GA. Adhesion and function of human endothelial cells co-cultured on smooth muscle cells. Ann Biomed Eng 2006; 35:375-86. [PMID: 17191127 DOI: 10.1007/s10439-006-9230-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/06/2006] [Indexed: 12/31/2022]
Abstract
To evaluate interactions between human endothelial cells (ECs) and smooth muscle cells (SMCs) for the development of tissue-engineered vessels, we examined the adhesion and key cell properties of human ECs grown on quiescent human aortic SMCs. ECs attached to SMCs spread more slowly than ECs attached to fibronectin surfaces, and ECs aligned along the direction of the SMCs. ECs attached firmly and less than 5% of the cells were removed by shear stresses as high as 300 dyn cm(-2). Unlike porcine SMCs and co-cultures, human SMCs or co-cultures do not contract under flow, and the human ECs and SMCs in co-culture align toward the direction of flow. A confluent endothelium could be maintained in co-culture for over 30 days, and some of the ECs reoriented perpendicular to the SMCs after 9 days in static culture. Surface tissue factor levels in ECs and SMCs were less in co-culture than in monoculture. Co-culture induced an increase in calponin expression in SMCs. These findings show that human co-cultures can be maintained for long culture periods, where the endothelium remains confluent and responds to long-term exposure to flow, and EC-SMC interactions lead to an increase in SMC differentiation and an EC surface that is less thrombotic.
Collapse
Affiliation(s)
- Charles Stevenson Wallace
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
| | | | | |
Collapse
|
15
|
Lavender MD, Pang Z, Wallace CS, Niklason LE, Truskey GA. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 2005; 26:4642-53. [PMID: 15722134 PMCID: PMC2929592 DOI: 10.1016/j.biomaterials.2004.11.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 11/24/2004] [Indexed: 11/25/2022]
Abstract
The development of a functional, adherent endothelium is one of the major factors limiting the successful development of tissue engineered vascular grafts (TEVGs). The adhesion and function of endothelial cells (ECs) on smooth muscle cells (SMCs) are poorly understood. The goal of this research was to optimize conditions for the direct culture of endothelium on SMCs, and to develop an initial assessment of co-culture on EC function. The co-culture consisted of a culture substrate, a basal adhesion protein, a layer of porcine SMCs, a medial adhesion protein, and a layer of porcine ECs. Conditions that led to successful co-culture were: a polystyrene culture substrate, a quiescent state for SMCs, subconfluent density for SMC seeding and confluent density for EC seeding, and fibronectin (FN) for the basal adhesion protein. EC adhesion was not enhanced by addition of FN, collagen I, collagen IV or laminin (LN) to the medial layer. 3-D image reconstruction by confocal microscopy indicated that SMCs did not migrate over ECs and the cells were present in two distinct layers. Co-cultures could be consistently maintained for as long as 10 days. After exposure to 5 dyne/cm(2) for 7.5 h, ECs remained adherent to SMCs. PECAM staining indicated junction formation between ECs, but at a lower level than that observed with EC monocultures. Co-culturing ECs with SMCs did not change the growth rate of ECs, but EC DiI-Ac-LDL uptake was increased. Thus, a confluent and adherent layer of endothelium can be directly cultured on quiescent SMCs.
Collapse
Affiliation(s)
- Mark D. Lavender
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
| | - Zhengyu Pang
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
| | - Charles S. Wallace
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
- Department of Anesthesiology, Duke University, Medical Center, Durham, NC 27710, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708-0281, USA
- Corresponding author. Tel.: +1 919 660 5147; fax: +1 919 684 4488. (G.A. Truskey)
| |
Collapse
|
16
|
Bochaton-Piallat ML, Gabbiani G. Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. Handb Exp Pharmacol 2005:645-63. [PMID: 16596818 DOI: 10.1007/3-540-27661-0_24] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proliferation and migration of smooth muscle cells (SMCs) from the media towards the intima are key events in atherosclerosis and restenosis. During these processes, SMC undergo phenotypic modulations leading to SMC dedifferentiation. The identification and characterization of factors controlling these phenotypic changes are crucial in order to prevent the formation of intimal thickening. One of the questions which presently remains open, is to know whether any SMCs of the media are capable of accumulating into the intima or whether only a predisposed medial SMC subpopulation is involved in this process. The latter hypothesis implies that arterial SMCs are phenotypically heterogenous. In this chapter, we will describe the distinct SMC phenotypes identified in arteries of various species, including humans. Their role in the formation of intimal thickening will be discussed.
Collapse
|
17
|
Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 2003; 23:1510-20. [PMID: 12907463 DOI: 10.1161/01.atv.0000090130.85752.ed] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During atheromatous plaque formation or restenosis after angioplasty, smooth muscle cells (SMCs) migrate from the media toward the intima, where they proliferate and undergo phenotypic changes. The mechanisms that regulate these phenomena and, in particular, the phenotypic modulation of intimal SMCs have been the subject of numerous studies and much debate during recent years. One view is that any SMCs present in the media could undergo phenotypic modulation. Alternatively, the seminal observation of Benditt and Benditt that human atheromatous plaques have the features of a monoclonal or an oligoclonal lesion has led to the hypothesis that a predisposed, medial SMC subpopulation could play a crucial role in the production of intimal thickening. The presence of a distinct SMC population in the arterial wall implies that under normal conditions, SMCs are phenotypically heterogeneous. The concept of SMC heterogeneity is gaining wider acceptance, as shown by the increasing number of publications on this subject. In this review, we discuss the in vitro studies that demonstrate the presence of distinct SMC subpopulations in arteries of various species, including humans. Their specific features and their regulation will be highlighted. Finally, the relevance of an atheroma-prone phenotype to intimal thickening formation will be discussed.
Collapse
Affiliation(s)
- Hiroyuki Hao
- University of Geneva-CMU, Department of Pathology, Switzerland
| | | | | |
Collapse
|
18
|
Stegemann JP, Nerem RM. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp Cell Res 2003; 283:146-55. [PMID: 12581735 DOI: 10.1016/s0014-4827(02)00041-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Removal of vascular smooth muscle cells (SMC) from their native environment alters the biochemical and mechanical signals responsible for maintaining normal cell function, causing a shift from a quiescent, contractile phenotype to a more proliferative, synthetic state. We examined the effect on SMC function of culture on two-dimensional (2D) substrates and in three-dimensional (3D) collagen Type I gels, including the effect of exogenous biochemical stimulation on gel compaction, cell proliferation, and expression of the contractile protein smooth muscle alpha-actin (SMA) in these systems. Embedding of SMC in 3D collagen matrices caused a marked decrease in both cell proliferation and expression of SMA. The presence of the extracellular matrix modulated cellular responses to platelet-derived growth factor BB, heparin, transforming growth factor-beta1, and endothelial cell-conditioned medium. Cell proliferation and SMA expression were shown to be inversely related, while gel compaction and SMA expression were not correlated. Taken together, these results show that SMC phenotype and function can be modulated using biochemical stimulation in vitro, but that the effects produced are dependent on the nature of the extracellular matrix. These findings have implications for the study of vascular biology in vitro, as well as for the development of engineered vascular tissues.
Collapse
Affiliation(s)
- Jan P Stegemann
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | | |
Collapse
|
19
|
Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat ML. Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol 2002; 22:1093-9. [PMID: 12117722 DOI: 10.1161/01.atv.0000022407.91111.e4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Heterogeneous smooth muscle cell (SMC) populations have been described in the arteries of several species. We have investigated whether SMC heterogeneity is present in the porcine coronary artery, which is widely used as a model of restenosis. METHODS AND RESULTS By using 2 isolation methods, distinct medial populations were identified: spindle-shaped SMCs (S-SMCs) after enzymatic digestion, with a "hill-and-valley" growth pattern, and rhomboid SMCs (R-SMCs) after explantation, which grow as a monolayer. Moreover, the intimal thickening that was induced after stent implantation yielded a large proportion of R-SMCs. R-SMCs exhibited high proliferative and migratory activities and high urokinase activity and were poorly differentiated compared with S-SMCs. Heparin and transforming growth factor-beta2 inhibited proliferation and increased differentiation in both populations, whereas fibroblast growth factor-2 and platelet-derived growth factor-BB had the opposite effect. In addition, S-SMCs treated with fibroblast growth factor-2 or platelet-derived growth factor-BB or placed in coculture with coronary artery endothelial cells acquired a rhomboid phenotype. This change was reversible and was also observed with S-SMC clones, suggesting that it depends on phenotypic modulation rather than on selection. CONCLUSIONS Our results show that 2 distinct SMC subpopulations can be recovered from the pig coronary artery media. The study of these subpopulations will be useful for understanding the mechanisms of restenosis.
Collapse
MESH Headings
- Animals
- Anticoagulants/pharmacology
- Cell Movement/genetics
- Cells, Cultured
- Coronary Vessels/chemistry
- Coronary Vessels/cytology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Growth Substances/pharmacology
- Heparin/pharmacology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenotype
- Swine
- Tunica Intima/chemistry
- Tunica Intima/cytology
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Media/chemistry
- Tunica Media/cytology
- Tunica Media/drug effects
- Tunica Media/metabolism
Collapse
Affiliation(s)
- Hiroyuki Hao
- Department of Pathology, University of Geneva-CMU, University Hospital Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Asakawa H, Kobayashi T. The effect of coculture with human smooth muscle cells on the proliferation, the IL-1 beta secretion, the PDGF production and tube formation of human aortic endothelial cells. Cell Biochem Funct 1999; 17:123-30. [PMID: 10377958 DOI: 10.1002/(sici)1099-0844(199906)17:2<123::aid-cbf817>3.0.co;2-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endothelial cells (ECs) and smooth muscle cells (SMCs), which are the major component cells of blood vessels, produce various bioactive substances and communicate with each other through them. Although several studies of the interaction between ECs and SMCs have been reported, the effect of coculture with SMCs on ECs is still obscure. To clarify the interaction of ECs and SMCs, we examined the effect of coculture with SMCs on the proliferation, the IL-1 beta secretion, the PDGF production and tube formation of ECs, using the coculture model: transferable wells and collagen gel. IL-1 and PDGF are considered to be related to progression of atherosclerosis. Proliferation and tube formation of ECs are associated with repair of vessels. In the transferable well system coculture with SMCs stimulated the proliferation of ECs, and enhanced the IL-1 beta secretion of ECs and in the collagen gel system coculture with SMCs induced the tube formation of ECs, and appeared to enhance the PDGF production of ECs. In conclusion, the effect of coculture with SMCs on ECs has two conflicting aspects: progression of atheroscleosis and angiogenesis. These results suggest that an imbalance of their effects may lead to pathological events.
Collapse
Affiliation(s)
- H Asakawa
- Department of Internal Medicine, Itami City Hospital, Hyogo, Japan.
| | | |
Collapse
|
21
|
Nackman GB, Fillinger MF, Shafritz R, Wei T, Graham AM. Flow modulates endothelial regulation of smooth muscle cell proliferation: A new model. Surgery 1998. [DOI: 10.1016/s0039-6060(98)70141-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Chon JH, Wang HS, Chaikof EL. Role of fibronectin and sulfated proteoglycans in endothelial cell migration on a cultured smooth muscle layer. J Surg Res 1997; 72:53-9. [PMID: 9344714 DOI: 10.1006/jsre.1997.5168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endothelial cell (EC) migration is essential for the healing of denudation injuries to the vessel wall. This event occurs in vivo in a pericellular environment and should be regulated in part by juxtacrine and paracrine interactions with underlying smooth muscle cells (SMCs). To investigate the EC migration behavior over SMCs under direct cell-cell contact conditions, we have utilized human umbilical vein endothelial cells (HUVECs) grown to confluence on microcarrier beads and radiolabeled with chromium-51. The EC carrying beads were spread over a confluent human aortic SMC monolayer and cocultured for 48 hr, allowing the EC to migrate from beads onto the underlying SMC monolayer in the presence of sodium chlorate, cycloheximide (CHM), or anti-fibronectin monoclonal antibody (anti-FN mAb). The level of EC migration was quantified by counting the amount of radioactivity on the SMC layer after the removal of the beads. The presence of a SMC layer enhanced EC migration more than threefold (P < 0.05). Furthermore, EC migration was inhibited from 30 to 80% (P < 0.05) by sodium chlorate, CHM, and anti-FN mAb in a dose-dependent fashion. This model has shown that smooth muscle cells augment endothelial motility. Both fibronectin and sulfated proteoglycans released by ECs and SMCs likely play an important role in the regulation of EC migration behavior over SMCs. The method described of using radiolabeled ECs on microcarrier beads should prove to be a useful tool in the study of cell migration in a heterotypic cellular environment.
Collapse
Affiliation(s)
- J H Chon
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | | | | |
Collapse
|
23
|
Zarge JI, Huang P, Husak V, Kim DU, Haudenschild CC, Nord RM, Greisler HP. Fibrin glue containing fibroblast growth factor type 1 and heparin with autologous endothelial cells reduces intimal hyperplasia in a canine carotid artery balloon injury model. J Vasc Surg 1997; 25:840-8; discussion 848-9. [PMID: 9152311 DOI: 10.1016/s0741-5214(97)70213-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Intimal hyperplasia plagues all types of vascular intervention. Early confluent re-endothelialization may attenuate the smooth muscle cell (SMC) proliferative response. We previously reported that fibroblast growth factor type 1 (FGF-1) and heparin at relative concentrations of 10 ng/ml:250 U/ml delivered in a fibrin glue (FG) suspension can selectively stimulate endothelial cells (EC) and inhibit SMC proliferation in cell culture. This current study evaluates this surface treatment with and without seeded autologous ECs on intimal hyperplasia in a canine carotid artery balloon injury model. METHODS Twenty-nine adult dogs underwent bilateral balloon injury to a 6 cm segment of their carotid arteries. The injury resulted in a reproducible removal of the intima and 4 to 6 medial lamellae. Nine dogs were used in part I to determine the percent retention of FGF-1 and EC when applied in a FG suspension to the balloon-injured carotid arteries. Part 2 used the remaining 20 dogs to determine the effect of this surface treatment on intimal hyperplasia. In 10 group I dogs, FG (fibrinogen 32.1 mg/ml and thrombin 0.32 U/ml) containing FGF-1 (11 ng/ml) and heparin (250 U/ml) was applied to the luminal surface of one carotid artery, whereas the contralateral carotid artery underwent balloon injury alone. In 10 group II dogs, an identical FG preparation with FGF-1 and heparin was applied to the surface of one carotid artery, whereas the contralateral carotid artery received FG/FGF-1/heparin that also contained autologous ECs (P3; 5 x 10(4) to 10 x 10(4) cells/cm2). Five dogs from both group I and group II were killed at 10 days and the remaining 10 dogs at 30 days. Histologic analysis and computerized morphometric analysis were used to determine intimal and medial thickness and area, percent endothelialization, and medial SMC proliferative rate. RESULTS There was no measurable neointima in any 10-day dog. There was no difference in neointimal area between the treatments in group I 30-day dogs. There was a significant decrease in maximal neointimal area, intima/media thickness ratio, and intima/media area ratio in group II 30-day dogs that were treated with FG/FGF-1/heparin plus EC. There was an insignificant increase in percent EC coverage and an insignificant decrease in medial SMC proliferative rate in group II 10-day dogs treated with FG/FGF-1/heparin plus EC. CONCLUSIONS In this canine carotid model, FG with FGF-1 and heparin did not induce significant intimal or medial thickening after 10 or 30 days when compared with vessels that were only balloon-injured. The seeding of autologous ECs within the FG/FGF-1/heparin suspension caused a reduction in neointima formation with no concomitant medial thickening 30 days after injury. The use of FG to locally deliver FGF-1 and ECs may have clinical relevance in the inhibition of intimal hyperplasia.
Collapse
Affiliation(s)
- J I Zarge
- Department of Surgery, Loyola University Medical Center, Maywood, Ill 60153, USA
| | | | | | | | | | | | | |
Collapse
|