1
|
Bots ST, Kemp V, Cramer SJ, van den Wollenberg DJ, Hornsveld M, Lamfers ML, van der Pluijm G, Hoeben RC. Nonhuman Primate Adenoviruses of the Human Adenovirus B Species Are Potent and Broadly Acting Oncolytic Vector Candidates. Hum Gene Ther 2022; 33:275-289. [PMID: 34861769 PMCID: PMC8972008 DOI: 10.1089/hum.2021.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.
Collapse
Affiliation(s)
- Selas T.F. Bots
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J. Cramer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marten Hornsveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Zhu Q, Chen S, Gu L, Qu J. Comparative analyses of clinical features reveal the severity of human adenovirus type 55 and type 7 in acute respiratory tract infections. J Med Microbiol 2021; 70. [PMID: 34951397 DOI: 10.1099/jmm.0.001445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Human adenovirus (HAdV) is an important pathogen in acute respiratory tract infections (ARTIs) and HAdV genotypes are associated with disease severity.Hypothesis. Comparative analyses of clinical features could reveal the severity of different HAdV genotypes in ARTIs.Aim. This study aimed to investigate the molecular epidemiology of HAdV infections and explore the correlations between clinical features and HAdV genotypes.Methodology. A retrospective study was conducted on ARTIs at Beijing Chao-Yang Hospital during the period 2011-2016. A standardized data form was used to record the clinical information. HAdV was detected by FQ-PCR from respiratory specimens, and genotypes were determined by entire hexon gene sequencing.Results. A total of 8044 samples were collected, of which 296 (3.7 %) were HAdV-positive. Patients ≤44 years old were more likely to be positive for HAdV. There were three peak periods of adenoviral infections, with detection rates of 13.03, 9.39 and 10.38 %, respectively. Six HAdV genotypes (HAdV-55, -7, -3, -14, -50, -2) were identified, with HAdV-55 and HAdV-7 being the most prevalent (50.6 and 21.5 %). Compared with HAdV-7 and other types, patients infected with HAdV-55 had a longer duration of fever (P=0.0428). Infections with HAdV-55 and HAdV-7 were more severe compared to those caused by other types, with higher rates of oxygen therapy and mechanical ventilation (P=0.0172 and P=0.0144). All five deaths were caused by HAdV-55.Conclusion. This study describes the epidemiological characteristics of HAdV infections in North China, revealing the higher severity of HAdV-55 and HAdV-7 in ARTIs. Thus, strengthened surveillance of HAdV genotypes is warranted.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, PR China
| | - Shuyan Chen
- Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, PR China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, PR China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, PR China
| |
Collapse
|
3
|
Tian X, Fan Y, Liu Z, Zhang L, Liao J, Zhou Z, Li X, Liu T, Liu W, Qiu H, Zhou R. Broadly neutralizing monoclonal antibodies against human adenovirus types 55, 14p, 7, and 11 generated with recombinant type 11 fiber knob. Emerg Microbes Infect 2018; 7:206. [PMID: 30531794 PMCID: PMC6286715 DOI: 10.1038/s41426-018-0197-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/07/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022]
Abstract
The re-emerging human adenovirus types HAdV7, HAdV14, and HAdV55 of species B have caused severe lower respiratory tract diseases and even deaths during recent outbreaks. However, no adenovirus vaccine or therapeutic has been approved for general use. These adenoviruses attach to host cells via the knob domain of the fiber, using human desmoglein 2 as the primary cellular receptor. In this study, a recombinant HAdV11 fiber knob trimer (HAdV11FK) expressed in E. coli was shown to induce broadly neutralizing antibodies against HAdV11, -7, -14p1, and -55 in mice. Using HAdV11FK as an antigen, three monoclonal antibodies, 6A7, 3F11, and 3D8, with high neutralizing activity were generated. More importantly, the results of in vitro neutralization assays demonstrated that 3F11 and 3D8 cross-neutralized HAdV11, -7, and -55, but not HAdV14p1. The amino acids 251KE252 within the F-G loop may be the crucial amino acids in the conformational epitope recognized by 3F11, which is common to HAdV11, -7, -14p, and -55, but is not present in HAdV14p1 and HAdV3. A two-amino-acid deletion in the HAdV14p1 structure breaks the short alpha helix (248SREKE252) that is present in the HAdV7, -11, -55, and -14p fiber knob structures. Our findings add to the knowledge of adenovirus fiber structure and antibody responses and are important for the design of adenovirus vaccines and antiviral drugs with broad activity.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Jiayi Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hongling Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wong M, Woolford L, Hasan NH, Hemmatzadeh F. A Novel Recombinant Canine Adenovirus Type 1 Detected from Acute Lethal Cases of Infectious Canine Hepatitis. Viral Immunol 2017; 30:258-263. [PMID: 28426340 DOI: 10.1089/vim.2016.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, canine adenoviruses (CAdVs) from two acute fatal cases of infectious canine hepatitis (ICH) were analyzed using molecular detection and sequencing of the pVIII, E3, and fiber protein genes. Pathological findings in affected dogs were typical for CAdV-1 associated disease, characterized by severe centrilobular to panlobular necrohemorrhagic hepatitis and the development of disseminated intravascular coagulation in the terminal stages of disease. Comparison of partial genome sequences revealed that although these newly detected viruses mainly had CAdV-1 genome characteristics, their pVIII gene was more similar to that of CAdV-2. This likely suggests that a recombination has occurred between CAdV-1 and CAdV-2, which possibly explains the cause of vaccine failure or increased virulence of the virus in the observed ICH cases.
Collapse
Affiliation(s)
- Magdelene Wong
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Lucy Woolford
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Noor Haliza Hasan
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, University Malaysia Sabah , Sabah, Malaysia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
5
|
Modification of the early gene enhancer-promoter improves the oncolytic potency of adenovirus 11. Mol Ther 2011; 20:306-16. [PMID: 22086234 DOI: 10.1038/mt.2011.242] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oncolytic adenoviruses based on serotype 5 (Ad5) have several shortcomings, including the downregulation of its receptor in cancer cells, high prevalence of neutralizing antibodies and hepatotoxicity. Another adenoviral serotype, Ad11, could overcome these obstacles. Here, we show that human cancer cell lines express higher levels of the Ad11 receptor CD46, resulting in much better infectivity than Ad5. Surprisingly, only 36% (9/25) of the cell lines were more sensitive to Ad11- than to Ad5-mediated cytotoxicity. Investigations revealed that it was the transcription of Ad11 E1A, not CD46 expression or virus infectivity, which determined the cell's sensitivity to Ad11 killing. Ad11 E1A mRNA levels have an effect on viral DNA replication, structural protein synthesis and infectious particle production. To test the hypothesis that increased E1A transcription would lead to improved Ad11 replication in Ad5-sensitive (but Ad11-less sensitive) cells, two Ad11 mutants (Ad11-Ad5-P and Ad11-Ad5-EP) were constructed where either the E1A promoter or enhancer-promoter, respectively, was replaced by that of Ad5. Ad11-Ad5-EP demonstrated increased E1A mRNA levels and replication, together with enhanced oncolytic potency in vitro and in vivo. This effect was found in both the Ad5-sensitive and Ad11-sensitive cancer cells, broadening the range of tumors that could be effectively killed by Ad11-Ad5-EP.
Collapse
|
6
|
Torres S, Chodosh J, Seto D, Jones MS. The revolution in viral genomics as exemplified by the bioinformatic analysis of human adenoviruses. Viruses 2010; 2:1367-1381. [PMID: 21994684 PMCID: PMC3185712 DOI: 10.3390/v2071367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/24/2010] [Indexed: 12/23/2022] Open
Abstract
Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV), HAdV-C2 and HAdV-C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910) within the hexon gene, of which HAdV-C2 and HAdV-C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.
Collapse
Affiliation(s)
- Sarah Torres
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, CA 94535, USA; E-Mail:
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, 02114 MA, USA; E-Mail:
| | - Donald Seto
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110, USA; E-Mail:
| | - Morris S. Jones
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, CA 94535, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-415-279-1869; Fax: +1-707-423-7267
| |
Collapse
|
7
|
Outbreak of acute respiratory infection among infants in Lisbon, Portugal, caused by human adenovirus serotype 3 and a new 7/3 recombinant strain. J Clin Microbiol 2010; 48:1391-6. [PMID: 20147640 DOI: 10.1128/jcm.02019-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human adenoviruses (AdVs) typically cause mild illnesses in otherwise healthy hosts. We investigated a pediatric outbreak of acute respiratory infection with fatal outcomes that occurred in Lisbon, Portugal, in 2004. Biological specimens were collected from 83 children attending two nurseries, a kinesiotherapy clinic, and the household of a nanny. Adenovirus infection was confirmed in 48 children by PCR and virus isolation. Most (96%) isolates were classified as being of subspecies B1. Phylogenetic analysis of fiber and hexon gene sequences revealed that most infants were infected with AdV serotype 3 (AdV3) strains. Infants attending one nursery harbored a new recombinant strain containing an AdV serotype 7 hexon and serotype 3 fiber (AdV7/3). Both the AdV3 and the AdV7/3 strains caused fatal infections. Two different serotype 3 strains were circulating in Lisbon in 2004, and the new AdV7/3 recombinant type originated from only one of those strains. These results demonstrate that recombination leads to the emergence of new adenovirus strains with epidemic and lethal potential.
Collapse
|
8
|
Applying genomic and bioinformatic resources to human adenovirus genomes for use in vaccine development and for applications in vector development for gene delivery. Viruses 2010; 2:1-26. [PMID: 21994597 PMCID: PMC3185558 DOI: 10.3390/v2010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/05/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022] Open
Abstract
Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented.
Collapse
|
9
|
Abstract
Whole-genome sequencing of human adenovirus type 11 (HAdV-11) strain QS, isolated in China, was conducted, and its sequence was compared with the sequences of strains within the species of HAdVs. The HAdV-11 QS genome contains 34,755 nucleotides. Similar to the other HAdV subgenus B sequences, the HAdV-11 QS genome coded 37 functional proteins and could be divided into four early, two intermediate, and five late transcription regions. The amino acid sequences of the fiber and the hypervariable regions (HVRs) within the hexon gene of HAdV-11 QS were identical to the corresponding sequences of the HAdV-11a strain; further analyses that compared those amino acid sequences with the amino acid sequences of the HAdV species subgenus B:2 strains revealed that the highest degree of homology (>99.2%) existed between HAdV-11 QS and the prototypical HAdV-14 strain, except for a few coding sequences of HVRs within the hexon gene, DNA polymerase, pVI, and pre-terminal protein. This indicate that HAdV-11 strain QS, isolated in China, is a recombinant adenovirus of HAdV-14, and the recombination analyses also confirmed this finding. It is difficult to clarify the time and manner of the recombination, and further investigations are required to determine whether the emergence of recombination between HAdV-11a and HAdV-14 might increase virulence, thereby posing a new global challenge with regard to acute respiratory diseases in the near future.
Collapse
|
10
|
Seto J, Walsh MP, Mahadevan P, Purkayastha A, Clark JM, Tibbetts C, Seto D. Genomic and bioinformatics analyses of HAdV-14p, reference strain of a re-emerging respiratory pathogen and analysis of B1/B2. Virus Res 2009; 143:94-105. [PMID: 19463726 DOI: 10.1016/j.virusres.2009.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/22/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
Abstract
Unlike other human adenovirus (HAdV) species, B is divided into subspecies B1 and B2. Originally this was partly based on restriction enzyme (RE) analysis. B1 members, except HAdV-50, are commonly associated with respiratory diseases while B2 members are rarely associated with reported respiratory diseases. Recently two members of B2 have been identified in outbreaks of acute respiratory disease (ARD). One, HAdV-14, has re-emerged after an apparent 52-year absence. Genomic analysis and bioinformatics data are reported for HAdV-14 prototype for use as a reference and to understand and counter its re-emergence. The data complement and extend the original criteria for subspecies designation, unique amongst the adenoviruses, and highlight differences between B1 and B2, representing the first comprehensive analysis of this division. These data also provide finer granularity into the pathoepidemiology of the HAdVs. Whole genome analysis uncovers heterogeneous identity structures of the hexon and fiber genes amongst the HAdV-14 and the B1/B2 subspecies, which may be important in prescient vaccine development. Analysis of cell surface proteins provides insight into HAdV-14 tropism, accounting for its role as a respiratory pathogen. This HAdV-14 prototype genome is also a reference for applications of B2 adenoviruses as vectors for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Jason Seto
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd., MSN 5B3, Manassas, VA 20110, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Q, Su X, Seto D, Zheng BJ, Tian X, Sheng H, Li H, Wang Y, Zhou R. Construction and characterization of a replication-competent human adenovirus type 3-based vector as a live-vaccine candidate and a viral delivery vector. Vaccine 2009; 27:1145-53. [DOI: 10.1016/j.vaccine.2008.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/07/2008] [Accepted: 12/20/2008] [Indexed: 01/02/2023]
|
12
|
Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi GM, Harkins RN, Hermiston TW. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3:e2409. [PMID: 18560559 PMCID: PMC2423470 DOI: 10.1371/journal.pone.0002409] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/30/2008] [Indexed: 12/22/2022] Open
Abstract
Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies.
Collapse
Affiliation(s)
- Irene Kuhn
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Paul Harden
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Maxine Bauzon
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Cecile Chartier
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Julie Nye
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Steve Thorne
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Tony Reid
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Shaoheng Ni
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Len Seymour
- Hybrid systems Ltd, Oxfordshire, United Kingdom
| | - Gabor M. Rubanyi
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Richard N. Harkins
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Terry W. Hermiston
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Moura FEA, Mesquita JRLD, Portes SAR, Ramos EAG, Siqueira MM. Antigenic and genomic characterization of adenovirus associated to respiratory infections in children living in Northeast Brazil. Mem Inst Oswaldo Cruz 2008; 102:937-41. [PMID: 18209932 DOI: 10.1590/s0074-02762007000800008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 12/12/2007] [Indexed: 11/22/2022] Open
Abstract
From January to December 1998, nasopharyngeal aspirates were obtained from 482 children with acute respiratory infections attended in emergence department and wards of a teaching hospital in the city of Salvador, Brazil. The samples were tested for the presence of adenovirus by isolation in tissue culture and indirect immunofluorescence assay. Eleven adenoviruses were detected by both methods in the same clinical samples. Infections by adenovirus were observed during seven months of the year without association with rainy season. Genome analysis was performed on these 11 isolates. Species C was represented by serotypes 1, 2 and 5. Within species B, only serotype 7 (Ad7) was detected. Two genomic variants of Ad1, two variants of Ad2, one of Ad5, and one of Ad7 (7h) were identified. This is the first study of molecular epidemiology of adenovirus associated to acute respiratory infections in children living in Northeast Brazil, and contributes to a better understanding of adenovirus infections in the country.
Collapse
Affiliation(s)
- Fernanda E A Moura
- Laboratório de Virologia, Programa de Pós-Graduação em Microbiologia Médica, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, 60441-750 Fortaleza, CE, Brasil.
| | | | | | | | | |
Collapse
|
14
|
Vora GJ, Lin B, Gratwick K, Meador C, Hansen C, Tibbetts C, Stenger DA, Irvine M, Seto D, Purkayastha A, Freed NE, Gibson MG, Russell K, Metzgar D. Co-infections of adenovirus species in previously vaccinated patients. Emerg Infect Dis 2006; 12:921-30. [PMID: 16707047 PMCID: PMC3373024 DOI: 10.3201/eid1206.050245] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adenoviral infections associated with respiratory illness in military trainees involve multiple co-infecting species and serotypes. Despite the success of the adenovirus vaccine administered to US military trainees, acute respiratory disease (ARD) surveillance still detected breakthrough infections (respiratory illnesses associated with the adenovirus serotypes specifically targeted by the vaccine). To explore the role of adenoviral co-infection (simultaneous infection by multiple pathogenic adenovirus species) in breakthrough disease, we examined specimens from patients with ARD by using 3 methods to detect multiple adenoviral species: a DNA microarray, a polymerase chain reaction (PCR)–enzyme-linked immunosorbent assay, and a multiplex PCR assay. Analysis of 52 samples (21 vaccinated, 31 unvaccinated) collected from 1996 to 2000 showed that all vaccinated samples had co-infections. Most of these co-infections were community-acquired serotypes of species B1 and E. Unvaccinated samples primarily contained only 1 species (species E) associated with adult respiratory illness. This study highlights the rarely reported phenomenon of adenoviral co-infections in a clinically relevant environment suitable for the generation of new recombinational variants.
Collapse
Affiliation(s)
- Gary J. Vora
- Naval Research Laboratory, Washington, DC, USA
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
| | - Baochuan Lin
- Naval Research Laboratory, Washington, DC, USA
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
| | - Kevin Gratwick
- Naval Health Research Center, San Diego, California, USA
| | | | | | - Clark Tibbetts
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
| | - David A. Stenger
- Naval Research Laboratory, Washington, DC, USA
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
| | - Marina Irvine
- Naval Health Research Center, San Diego, California, USA
| | - Donald Seto
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
- George Mason University, Manassas, Virginia, USA
| | - Anjan Purkayastha
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
- George Mason University, Manassas, Virginia, USA
| | - Nikki E. Freed
- Naval Health Research Center, San Diego, California, USA
| | | | - Kevin Russell
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
- Naval Health Research Center, San Diego, California, USA
| | - David Metzgar
- Epidemic Outbreak Surveillance Consortium, Falls Church, Virginia, USA
- Naval Health Research Center, San Diego, California, USA
| |
Collapse
|
15
|
Zhang Q, Su X, Gong S, Zeng Q, Zhu B, Wu Z, Peng T, Zhang C, Zhou R. Comparative genomic analysis of two strains of human adenovirus type 3 isolated from children with acute respiratory infection in southern China. J Gen Virol 2006; 87:1531-1541. [PMID: 16690917 DOI: 10.1099/vir.0.81515-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human adenovirus type 3 (HAdV-3) is a causative agent of acute respiratory disease, which is prevalent throughout the world, especially in Asia. Here, the complete genome sequences of two field strains of HAdV-3 (strains GZ1 and GZ2) isolated from children with acute respiratory infection in southern China are reported (GenBank accession nos DQ099432 and DQ105654, respectively). The genomes were 35,273 bp (GZ1) and 35,269 bp (GZ2) and both had a G+C content of 51 mol%. They shared 99% nucleotide identity and the four early and five late regions that are characteristic of human adenoviruses. Thirty-nine protein- and two RNA-coding sequences were identified in the genome sequences of both strains. Protein pX had a predicted molecular mass of 8.3 kDa in strain GZ1; this was lower (7.6 kDa) in strain GZ2. Both strains contained 10 short inverted repeats, in addition to their inverted terminal repeats (111 bp). Comparative whole-genome analysis revealed 93 mismatches and four insertions/deletions between the two strains. Strain GZ1 infection produced a typical cytopathic effect, whereas strain GZ2 did not; non-synonymous substitutions in proteins of GZ2 may be responsible for this difference.
Collapse
Affiliation(s)
- Qiwei Zhang
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou 510120, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaobo Su
- South China Sea Institute of Oceanology, LED, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Sitang Gong
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou 510120, China
| | - Qiyi Zeng
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou 510120, China
| | - Zaohe Wu
- South China Sea Institute of Oceanology, LED, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tao Peng
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Chuyu Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rong Zhou
- South China Sea Institute of Oceanology, LED, Chinese Academy of Sciences, Guangzhou 510301, China
- Central Laboratory, Guangzhou Children's Hospital, Guangzhou 510120, China
| |
Collapse
|
16
|
Abstract
Leiomyomas (fibroids) are common estrogen-dependent uterine tumours that cause significant morbidity for women and a substantial economic impact on health delivery systems. Currently, there is no effective medical treatment option for this condition-hysterectomy is the mainstay of management. This is not an attractive choice for many women, especially patients desiring to preserve their fertility potential. Gene therapy is becoming a clinical reality, with more than 600 clinical trials worldwide. Researchers have recently attempted to develop a gene-therapy-based approach for the ablation of uterine fibroids. The localized nature of this condition and its accessibility using different imaging or endoscopic techniques make it an attractive target for direct delivery of gene-based vectors. Recent work from our laboratory suggests the potential use of a dominant-negative form of estrogen receptor (ER) to inactivate estrogen signalling in leiomyoma cells and induce apoptosis. Our in vivo data in a mouse model demonstrate the ability of an adenovirus-expressing dominant-negative ER to arrest leiomyoma growth. We and others also have described the utility of the herpes simplex virus-thymidine kinase (HSV-TK) plus ganciclovir (GCV) suicide gene-therapy system to effectively eradicate leiomyoma cells by utilizing the bystandard effect phenomena and the high expression of gap-junction protein in these tumours. Further work on rat models will pave the way for future leiomyoma gene-therapy clinical trials and allow the realization of gene therapy as a viable non-surgical option for this common problem in women's health.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | | |
Collapse
|
17
|
Sirena D, Ruzsics Z, Schaffner W, Greber UF, Hemmi S. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology 2005; 343:283-98. [PMID: 16169033 PMCID: PMC7172737 DOI: 10.1016/j.virol.2005.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 12/11/2022]
Abstract
Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.
Collapse
Affiliation(s)
- Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Gene Centre of LMU Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Corresponding author. Fax: +41 44 635 6811.
| |
Collapse
|
18
|
Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79:7503-13. [PMID: 15919905 PMCID: PMC1143628 DOI: 10.1128/jvi.79.12.7503-7513.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.
Collapse
Affiliation(s)
- Anuj Gaggar
- University of Washington School of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Stone D, Ni S, Li ZY, Gaggar A, DiPaolo N, Feng Q, Sandig V, Lieber A. Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 2005; 79:5090-104. [PMID: 15795294 PMCID: PMC1069572 DOI: 10.1128/jvi.79.8.5090-5104.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.
Collapse
Affiliation(s)
- Daniel Stone
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Purkayastha A, Su J, Carlisle S, Tibbetts C, Seto D. Genomic and bioinformatics analysis of HAdV-7, a human adenovirus of species B1 that causes acute respiratory disease: implications for vector development in human gene therapy. Virology 2005; 332:114-29. [PMID: 15661145 DOI: 10.1016/j.virol.2004.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 07/25/2004] [Accepted: 10/26/2004] [Indexed: 01/11/2023]
Abstract
Human adenovirus serotype 7 (HAdV-7) is a reemerging pathogen identified in acute respiratory disease (ARD), particularly in epidemics affecting basic military trainee populations of otherwise healthy young adults. The genome has been sequenced and annotated (GenBank accession no. ). Comparative genomics and bioinformatics analyses of the HAdV-7 genome sequence provide insight into its natural history and phylogenetic relationships. A putative origin of HAdV-7 from a chimpanzee host is observed. This has implications within the current biotechnological interest of using chimpanzee adenoviruses as vectors for human gene therapy and DNA vaccine delivery. Rapid genome sequencing and analyses of this species B1 member provide an example of exploiting accurate low-pass DNA sequencing technology in pathogen characterization and epidemic outbreak surveillance through the identification, validation, and application of unique pathogen genome signatures.
Collapse
Affiliation(s)
- Anjan Purkayastha
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | | | | | | | | |
Collapse
|
21
|
Purkayastha A, Ditty SE, Su J, McGraw J, Hadfield TL, Tibbetts C, Seto D. Genomic and bioinformatics analysis of HAdV-4, a human adenovirus causing acute respiratory disease: implications for gene therapy and vaccine vector development. J Virol 2005; 79:2559-72. [PMID: 15681456 PMCID: PMC546560 DOI: 10.1128/jvi.79.4.2559-2572.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/13/2004] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 4 (HAdV-4) is a reemerging viral pathogenic agent implicated in epidemic outbreaks of acute respiratory disease (ARD). This report presents a genomic and bioinformatics analysis of the prototype 35,990-nucleotide genome (GenBank accession no. AY594253). Intriguingly, the genome analysis suggests a closer phylogenetic relationship with the chimpanzee adenoviruses (simian adenoviruses) rather than with other human adenoviruses, suggesting a recent origin of HAdV-4, and therefore species E, through a zoonotic event from chimpanzees to humans. Bioinformatics analysis also suggests a pre-zoonotic recombination event, as well, between species B-like and species C-like simian adenoviruses. These observations may have implications for the current interest in using chimpanzee adenoviruses in the development of vectors for human gene therapy and for DNA-based vaccines. Also, the reemergence, surveillance, and treatment of HAdV-4 as an ARD pathogen is an opportunity to demonstrate the use of genome determination as a tool for viral infectious disease characterization and epidemic outbreak surveillance: for example, rapid and accurate low-pass sequencing and analysis of the genome. In particular, this approach allows the rapid identification and development of unique probes for the differentiation of family, species, serotype, and strain (e.g., pathogen genome signatures) for monitoring epidemic outbreaks of ARD.
Collapse
MESH Headings
- Adenovirus Infections, Human/epidemiology
- Adenovirus Infections, Human/prevention & control
- Adenovirus Infections, Human/therapy
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/pathogenicity
- Cell Line, Tumor
- Computational Biology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Genetic Therapy
- Genome, Viral
- Humans
- Molecular Sequence Data
- Phylogeny
- Respiratory Tract Infections/epidemiology
- Respiratory Tract Infections/prevention & control
- Respiratory Tract Infections/transmission
- Respiratory Tract Infections/virology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Anjan Purkayastha
- School of Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Holterman L, Vogels R, van der Vlugt R, Sieuwerts M, Grimbergen J, Kaspers J, Geelen E, van der Helm E, Lemckert A, Gillissen G, Verhaagh S, Custers J, Zuijdgeest D, Berkhout B, Bakker M, Quax P, Goudsmit J, Havenga M. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 2004; 78:13207-15. [PMID: 15542673 PMCID: PMC525025 DOI: 10.1128/jvi.78.23.13207-13215.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A novel plasmid-based adenovirus vector system that enables manufacturing of replication-incompetent (DeltaE1) adenovirus type 11 (Ad11)-based vectors is described. Ad11 vectors are produced on PER.C6/55K cells yielding high-titer vector batches after purification. Ad11 seroprevalence proves to be significantly lower than that of Ad5, and neutralizing antibody titers against Ad11 are low. Ad11 seroprevalence among human immunodeficiency virus-positive (HIV(+)) individuals is as low as that among HIV(-) individuals, independent of the level of immune suppression. The low level of coinciding seroprevalence between Ad11 and Ad35 in addition to a lack of correlation between high neutralizing antibody titers towards either adenovirus strongly suggest that the limited humoral cross-reactive immunity between these two highly related B viruses appears not to preclude the use of both vectors in the same individual. Ad11 transduces primary cells including smooth muscle cells, synoviocytes, and dendritic cells and cardiovascular tissues with higher efficiency than Ad5. Ad11 and Ad35 appear to have a similar tropism as judged by green fluorescent protein expression levels determined by using a panel of cancer cell lines. In addition, Ad5 preimmunization did not significantly affect Ad11-mediated transduction in C57BL/6 mice. We therefore conclude that the Ad11-based vector represents a novel and useful candidate gene transfer vehicle for vaccination and gene therapy.
Collapse
|
23
|
Kovács GM, Davison AJ, Zakhartchouk AN, Harrach B. Analysis of the first complete genome sequence of an Old World monkey adenovirus reveals a lineage distinct from the six human adenovirus species. J Gen Virol 2004; 85:2799-2807. [PMID: 15448340 DOI: 10.1099/vir.0.80225-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Simian adenovirus 3 (SAdV-3) is one of several adenoviruses that were isolated decades ago from Old World monkeys. Determination of the complete DNA sequence of SAdV-3 permitted the first full genomic comparison of a monkey adenovirus with adenoviruses of humans (HAdVs) and chimpanzees, which are recognized formally as constituting six of the species (HAdV-A to HAdV-F) within the genus Mastadenovirus. The SAdV-3 genome is 34 246 bp in size and has a G+C content of 55.3 mol%. It contains all the genes that are characteristic of the genus Mastadenovirus and has a single VA-RNA gene and six genes in each of the E3 and E4 regions. The genetic organization is the same as that of HAdV-12, a member of the HAdV-A species. Phylogenetic analyses showed that although SAdV-3 is related marginally more closely to HAdV-A and HAdV-F than to other species, it represents a unique lineage that branched at an early stage of primate adenovirus divergence. The results imply that the genetic layout in SAdV-3 and HAdV-12 may also have characterized the common ancestor of all sequenced primate adenoviruses.
Collapse
Affiliation(s)
- Gábor M Kovács
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Alexender N Zakhartchouk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| |
Collapse
|
24
|
Lauer KP, Llorente I, Blair E, Seto J, Krasnov V, Purkayastha A, Ditty SE, Hadfield TL, Buck C, Tibbetts C, Seto D. Natural variation among human adenoviruses: genome sequence and annotation of human adenovirus serotype 1. J Gen Virol 2004; 85:2615-2625. [PMID: 15302955 DOI: 10.1099/vir.0.80118-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 36,001 base pair DNA sequence of human adenovirus serotype 1 (HAdV-1) has been determined, using a 'leveraged primer sequencing strategy' to generate high quality sequences economically. This annotated genome (GenBank AF534906) confirms anticipated similarity to closely related species C (formerly subgroup), human adenoviruses HAdV-2 and -5, and near identity with earlier reports of sequences representing parts of the HAdV-1 genome. A first round of HAdV-1 sequence data acquisition used PCR amplification and sequencing primers from sequences common to the genomes of HAdV-2 and -5. The subsequent rounds of sequencing used primers derived from the newly generated data. Corroborative re-sequencing with primers selected from this HAdV-1 dataset generated sparsely tiled arrays of high quality sequencing ladders spanning both complementary strands of the HAdV-1 genome. These strategies allow for rapid and accurate low-pass sequencing of genomes. Such rapid genome determinations facilitate the development of specific probes for differentiation of family, serotype, subtype and strain (e.g. pathogen genome signatures). These will be used to monitor epidemic outbreaks of acute respiratory disease in a defined test bed by the Epidemic Outbreak Surveillance (EOS) project.
Collapse
Affiliation(s)
- Kim P Lauer
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Isabel Llorente
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Eric Blair
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Jason Seto
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Vladimir Krasnov
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Anjan Purkayastha
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Susan E Ditty
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Ted L Hadfield
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Charles Buck
- Department of Virology, American Type Culture Collection (ATCC), Manassas, VA 20108, USA
| | - Clark Tibbetts
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
| | - Donald Seto
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| |
Collapse
|
25
|
Abstract
This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a 'leader-exon structure', which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Mária Benkő
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| |
Collapse
|