1
|
Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Detailed topology mapping reveals substantial exposure of the "cytoplasmic" C-terminal tail (CTT) sequences in HIV-1 Env proteins at the cell surface. PLoS One 2013; 8:e65220. [PMID: 23724133 PMCID: PMC3664582 DOI: 10.1371/journal.pone.0065220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/24/2013] [Indexed: 01/20/2023] Open
Abstract
Substantial controversy surrounds the membrane topology of the HIV-1 gp41 C-terminal tail (CTT). While few studies have been designed to directly address the topology of the CTT, results from envelope (Env) protein trafficking studies suggest that the CTT sequence is cytoplasmically localized, as interactions with intracellular binding partners are required for proper Env targeting. However, previous studies from our lab demonstrate the exposure of a short CTT sequence, the Kennedy epitope, at the plasma membrane of intact Env-expressing cells, the exposure of which is not observed on viral particles. To address the topology of the entire CTT sequence, we serially replaced CTT sequences with a VSV-G epitope tag sequence and examined reactivity of cell- and virion-surface Env to an anti-VSV-G monoclonal antibody. Our results demonstrate that the majority of the CTT sequence is accessible to antibody binding on the surface of Env expressing cells, and that the CTT-exposed Env constitutes 20–50% of the cell-surface Env. Cell surface CTT exposure was also apparent in virus-infected cells. Passive transfer of Env through cell culture media to Env negative (non-transfected) cells was not responsible for the apparent cell surface CTT exposure. In contrast to the cell surface results, CTT-exposed Env was not detected on infectious pseudoviral particles containing VSV-G-substituted Env. Finally, a monoclonal antibody directed to the Kennedy epitope neutralized virus in a temperature-dependent manner in a post-attachment neutralization assay. Collectively, these results suggest that the membrane topology of the HIV gp41 CTT is more complex than the widely accepted intracytoplasmic model.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
2
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
3
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. J Gen Virol 2012; 94:1-19. [PMID: 23079381 PMCID: PMC3542723 DOI: 10.1099/vir.0.046508-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anne-Sophie Kuhlmann
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
4
|
Bhowmick A, Salunke DM. Limited conformational flexibility in the paratope may be responsible for degenerate specificity of HIV epitope recognition. Int Immunol 2012; 25:77-90. [DOI: 10.1093/intimm/dxs093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Vincent N, Malvoisin E. Ability of antibodies specific to the HIV-1 envelope glycoprotein to block the fusion inhibitor T20 in a cell-cell fusion assay. Immunobiology 2012; 217:943-50. [PMID: 22387075 DOI: 10.1016/j.imbio.2012.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
The anti-HIV peptide T20 is able to inhibit the syncytia formation between CHO-WT and HeLa CD4(+)cells. We found that several sera of HIV-infected patients have the capacity to block the inhibition of fusion by T20. Suggesting that these sera may contain antibody which can block T20 access and prevent membrane fusion, we studied the ability of a panel of antibodies directed to different regions of HIV-1 envelope glycoprotein to block the inhibition of fusion by T20. We found that the C1 and V3 loop regions of gp120 and the heptad repeat 1, the immunodominant C-C region and the Kennedy epitope of gp41 located in the intracytoplasmic tail were the target for antibodies capable to block the inhibition of syncytia formation by T20. We suggest that these antibodies have the capacity to counteract the anti-fusion effect of T20 by preventing its binding to the interaction sites. Further studies are needed to determine if some of them recognize new T20 interaction sites.
Collapse
Affiliation(s)
- Nadine Vincent
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint-Etienne, 15 rue Ambroise Paré, 42023 Saint-Etienne, France
| | | |
Collapse
|
6
|
Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 2011; 86:1145-57. [PMID: 22072749 DOI: 10.1128/jvi.06463-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.
Collapse
|
7
|
Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC. Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 2011; 286:27156-66. [PMID: 21659530 PMCID: PMC3149309 DOI: 10.1074/jbc.m111.258855] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/03/2011] [Indexed: 11/06/2022] Open
Abstract
Although the HIV-1 Env gp120 and gp41 ectodomain have been extensively characterized in terms of structure and function, similar characterizations of the C-terminal tail (CTT) of HIV gp41 remain relatively limited and contradictory. The current study was designed to examine in detail CTT sequence conservation relative to gp120 and the gp41 ectodomain and to examine the conservation of predicted physicochemical and structural properties across a number of divergent HIV clades and groups. Results demonstrate that CTT sequences display intermediate levels of sequence evolution and diversity in comparison to the more diverse gp120 and the more conserved gp41 ectodomain. Despite the relatively high level of CTT sequence variation, the physicochemical properties of the lentivirus lytic peptide domains (LLPs) within the CTT are evidently highly conserved across clades/groups. Additionally, predictions using PEP-FOLD indicate a high level of structural similarity in the LLP regions that was confirmed by circular dichroism measurements of secondary structure of LLP peptides from clades B, C, and group O. Results demonstrate that LLP peptides adopt helical structure in the presence of SDS or trifluoroethanol but are predominantly unstructured in aqueous buffer. Thus, these data for the first time demonstrate strong conservations of characteristic CTT physicochemical and structural properties despite substantial sequence diversity, apparently indicating a delicate balance between evolutionary pressures and the conservation of CTT structure and associated functional roles in virus replication.
Collapse
Affiliation(s)
| | - Jodi K. Craigo
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Ronald C. Montelaro
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PLoS One 2010; 5:e15261. [PMID: 21151874 PMCID: PMC2998427 DOI: 10.1371/journal.pone.0015261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/03/2010] [Indexed: 01/05/2023] Open
Abstract
The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the "intracytoplasmic domain" based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical "Kennedy epitope" (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chengqun Sun
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Newman JT, Sturgeon TJ, Gupta P, Montelaro RC. Differential functional phenotypes of two primary HIV-1 strains resulting from homologous point mutations in the LLP domains of the envelope gp41 intracytoplasmic domain. Virology 2007; 367:102-16. [PMID: 17582453 PMCID: PMC2034414 DOI: 10.1016/j.virol.2007.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 05/21/2007] [Indexed: 01/10/2023]
Abstract
We previously reported that selected mutations of highly conserved arginine residues within the LLP regions of HIV-1(ME46) gp41 had diverse effects on Env function. In the current study, we sought to test if the observed LLP mutant phenotypes would be similar in HIV-1(89.6). The results of the current studies revealed that the LLP-1 mutations conferred reduced Env incorporation, infectivity, and replication phenotypes in both viruses, while homologous LLP-2 mutations had differential phenotypical effects between the two strains. In particular, several of the 89.6 LLP-2 mutant viruses were replication defective in CEMX174 cells despite having increased levels of Env incorporation, and with both strains, there were differential effects on infectivity. This comparison of homologous point mutations in two different strains of HIV supports the role of LLPs as determinants of Env function, but reveals for the first time the influence of virus strain on LLP mutant phenotypes.
Collapse
Affiliation(s)
- Jason T Newman
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
10
|
Reading SA, Dimmock NJ. Neutralization of animal virus infectivity by antibody. Arch Virol 2007; 152:1047-59. [PMID: 17516034 DOI: 10.1007/s00705-006-0923-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 11/24/2022]
Abstract
Neutralization is the ability of antibody to bind to and inactivate virus infectivity under defined conditions in vitro. Most neutralizing antibodies also protect animals in vivo, but protection is more complex as it also involves interaction of antibody with cells and molecules of the innate immune system. Neutralization by antibody can be mediated by a number of different mechanisms: by aggregation of virions, destabilization of the virion structure, inhibition of virion attachment to target cells, inhibition of the fusion of the virion lipid membrane with the membrane of the host cell, inhibition of the entry of the genome of non-enveloped viruses into the cell cytoplasm, inhibition of a function of the virion core through a signal transduced by an antibody, transcytosing IgA, and binding to nascent virions to block their budding or release from the cell surface. The mechanism of neutralization is determined by the properties of both a virion epitope and the antibody that reacts with it. Further, since a virus has at least several unique epitopes sited in different locations on the virion, and since the paratope and other properties of the reacting antibody can vary, this means that a virus can be neutralized by several different mechanisms. Understanding the processes of neutralization informs the creation of modern vaccines, and gives valuable insights into virus-cell interactions.
Collapse
Affiliation(s)
- S A Reading
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
11
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
12
|
Neutralizing epitopes in the membrane-proximal region of HIV-1 gp41: genetic variability and co-variation. Immunol Lett 2006; 106:180-6. [PMID: 16859756 DOI: 10.1016/j.imlet.2006.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Recent investigations on the passive immunization have proved that neutralizing antibodies directed to the membrane-proximal region of HIV-1 gp41 are potent anti-viral components, so this region is thought to be an attractive target for AIDS vaccine. Three key neutralizing epitopes, ELDKWA (aa662-667), NWFDIT (aa671-676) and ERDRDR (aa739-744) have been mapped in this region. In this study, their genetic variability and co-variation was evaluated. There exists marked shift in the predominant sequence patterns on these three neutralizing epitopes over time. Compared with subtype B, non-B clades exhibit significant genetic variability and co-variation on these three epitopes. Among HIV-1 strains isolated in recent 5 years, about one third displays epitope variants simultaneously on three epitopes. The newly isolated strains with co-variations on several neutralizing epitopes ought to be of strict surveillance in clinical treatment, and those frequent epitope variants should also be considered in vaccine design.
Collapse
|
13
|
Dimmock NJ. The complex antigenicity of a small external region of the C-terminal tail of the HIV-1 gp41 envelope protein: a lesson in epitope analysis. Rev Med Virol 2005; 15:365-81. [PMID: 16106492 DOI: 10.1002/rmv.476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The newly discovered external tail loop within the C-terminal tail of the gp41 transmembrane subunit of the HIV-1 envelope protein comprises approximately 40 residues, and within this are 18-residues ((734)PDRPEGIEEEGGERDRDR(751)) that include three antibody-reactive regions. The antigenicity is complex, and changes according to the biological context of the gp41. It is thus of interest both to the HIV specialist and protein immunologists. The antibody-reactive region, centred on the sequence ERDRD, encompasses three distinct epitopes which are expressed in different combinations on infected cells, wt virions, prefusion virion-cell complexes, and a neutralising antibody escape mutant virion. In addition ERDRD-specific antibodies have one or more antiviral activities, and variously neutralise the infectivity of free virions, neutralise virions already attached to the target cell, reduce the production of infectious progeny, and inhibit the ability of infected cells to fuse with non-infected cells. Antibodies to PDRPEG and IEEE have no apparent antiviral activity even though the footprints of the IEEE- and ERDRD-specific antibodies overlap. This review marshals the available experimental data with the aim of understanding the significance of the gp41 tail loop to the HIV-1 life cycle, and its relevance to potential anti-viral measures. There are lessons here, too, that are relevant to the comprehension of the antigenicity of short protein segments in general.
Collapse
Affiliation(s)
- Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
14
|
Dong XN, Ying J, Wu Y, Chen YH. Genetic variability of principal neutralizing determinants on HIV-1 gp41 and its correlation with subtypes. Immunol Lett 2005; 101:104-7. [PMID: 15961163 DOI: 10.1016/j.imlet.2005.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Several neutralizing determinants have been identified on HIV-1 envelope glycoprotein gp41: LGIWGCSGKLIC (HXB2: aa593-604), ELDKWA (aa662-667), NWFDIT (aa671-676), and ERDRDR (aa739-744). Restricted mutations were observed on these epitopes. In this study, the genetic variability of these neutralizing determinants in 3799 isolates from different M-group subtypes (A, B, C, D, F, G, H, CRF01_AE and CRF02_AG) and O group was analyzed. Many variants were found to be closely correlated with certain subtypes. These subtype-related variants could be recruited into the subtype identification and subtype-specific vaccine development.
Collapse
Affiliation(s)
- Xiao-Nan Dong
- Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of MOE, Beijing 100084, PR China.
| | | | | | | |
Collapse
|
15
|
Hollier MJ, Dimmock NJ. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function. Virology 2005; 337:284-96. [PMID: 15913700 PMCID: PMC7111842 DOI: 10.1016/j.virol.2005.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/02/2005] [Accepted: 04/11/2005] [Indexed: 11/17/2022]
Abstract
In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules – those destined for incorporation into virions – has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell.
Collapse
|
16
|
Kalia V, Sarkar S, Gupta P, Montelaro RC. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 2005; 79:2097-107. [PMID: 15681412 PMCID: PMC546547 DOI: 10.1128/jvi.79.4.2097-2107.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.
Collapse
Affiliation(s)
- Vandana Kalia
- University of Pittsburgh, Department of Molecular Genetics and Biochemistry, School of Medicine, W1144 BST, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
17
|
Heap CJ, Reading SA, Dimmock NJ. An antibody specific for the C-terminal tail of the gp41 transmembrane protein of human immunodeficiency virus type 1 mediates post-attachment neutralization, probably through inhibition of virus-cell fusion. J Gen Virol 2005; 86:1499-1507. [PMID: 15831963 DOI: 10.1099/vir.0.80414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence has been presented which shows that part of the C-terminal tail of the gp41 transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a neutralization epitope and is thus exposed on the external surface of the virion. Here, SAR1, a monoclonal antibody, which was stimulated by immunization with a plant virus expressing 60 copies of the GERDRDR sequence from the exposed gp41 tail, and has an unusual pattern of neutralization activity, giving little or no neutralization of free virions, but effecting modest post-attachment neutralization (PAN) of virus bound to target cells was investigated. Here, the properties of PAN were investigated. It was found that PAN could be mediated at 4 or 20 degrees C, but that at 20 degrees C maximum PAN required virus-cell complexes to be incubated for 3 h before addition of antibody. Further PAN appeared stable at 20 degrees C and could be mediated for at least 5 h at this temperature. In contrast, when virus-cell complexes formed at 20 degrees C but then shifted to 37 degrees C for various times before addition of SAR1, PAN was maximal after just 10 min, and was lost after 30 min incubation. Thus, PAN at 37 degrees C is transient and temperature-dependent. Since this scenario recalled the temperature requirements of virus-cell fusion, fusion of HIV-1-infected and non-infected cells was investigated, and it was found that SAR1 inhibited this process by up to 75 %, in a dose-dependent manner. However, antibodies to adjacent epitopes did not inhibit fusion. These data confirm the external location of the SAR1 epitope, implicate the gp41 C-terminal tail in the HIV-1 fusion process for the first time, and suggest that SAR1 mediates PAN by inhibiting virus-mediated fusion.
Collapse
Affiliation(s)
- Caroline J Heap
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Steven A Reading
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
18
|
Cheung L, McLain L, Hollier MJ, Reading SA, Dimmock NJ. Part of the C-terminal tail of the envelope gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 is exposed on the surface of infected cells and is involved in virus-mediated cell fusion. J Gen Virol 2005; 86:131-138. [PMID: 15604440 DOI: 10.1099/vir.0.80439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal tail of the gp41 transmembrane glycoprotein of the human immunodeficiency virus type 1 (HIV-1) virion is usually thought to be inside the virion, but it has been shown recently that part of the tail is exposed on the virion exterior. Here, using a panel of antibodies, it was demonstrated that the same part of the tail is exposed on the surface of HIV-1-infected C8166 lymphoblastoid cells and HeLa cells infected with a gp41-expressing vaccinia virus recombinant. Both types of infected cell failed to react with p17 matrix protein-specific IgGs until permeabilized with saponin, confirming the integrity of the plasma membrane. Cell-surface exposure of the gp41 tail was independently demonstrated by inhibition of HIV-1-mediated cell–cell fusion by one of the gp41 tail-specific antibodies. These data also implicate the exposed region of the gp41 C-terminal tail either directly or indirectly in the viral fusion process. Its surface exposure suggests that the gp41 C-terminal tail may be a candidate for immune intervention or chemotherapy of infection.
Collapse
Affiliation(s)
- Linda Cheung
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lesley McLain
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mark J Hollier
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Steven A Reading
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|