1
|
Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC, Hsu KC. Single-cell profiling aligns CD56 bright and cytomegalovirus-induced adaptive natural killer cells to a naïve-memory relationship. Front Immunol 2024; 15:1499492. [PMID: 39742279 PMCID: PMC11686228 DOI: 10.3389/fimmu.2024.1499492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV- individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- M. Kazim Panjwani
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon Grassmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kattria van der Ploeg
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph C. Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
2
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Kinney BL, Brammer B, Kansal V, Parrish CJ, Kissick HT, Liu Y, Saba NF, Buchwald ZS, El-Deiry MW, Patel MR, Boyce BJ, Kaka AS, Gross JH, Baddour HM, Chen AY, Schmitt NC. CD28-CD57+ T cells from head and neck cancer patients produce high levels of cytotoxic granules and type II interferon but are not senescent. Oncoimmunology 2024; 13:2367777. [PMID: 38887372 PMCID: PMC11181932 DOI: 10.1080/2162402x.2024.2367777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.
Collapse
Affiliation(s)
- Brendan L.C. Kinney
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brianna Brammer
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikash Kansal
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Connor J. Parrish
- School of Medicine, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Haydn T. Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Mark W. El-Deiry
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mihir R. Patel
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian J. Boyce
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Azeem S. Kaka
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - H. Michael Baddour
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Amy Y. Chen
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Madruga MP, Grun LK, Santos LSMD, Friedrich FO, Antunes DB, Rocha MEF, Silva PL, Dorneles GP, Teixeira PC, Oliveira TF, Romão PRT, Santos L, Moreira JCF, Michaelsen VS, Cypel M, Antunes MOB, Jones MH, Barbé-Tuana FM, Bauer ME. Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients. Immun Ageing 2024; 21:17. [PMID: 38454515 PMCID: PMC10921685 DOI: 10.1186/s12979-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.
Collapse
Affiliation(s)
- Mailton Prestes Madruga
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Kich Grun
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Letícya Simone Melo Dos Santos
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | | | - Douglas Bitencourt Antunes
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Marcella Elesbão Fogaça Rocha
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Pedro Luis Silva
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paula Coelho Teixeira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tiago Franco Oliveira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - Vinicius Schenk Michaelsen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Marcos Otávio Brum Antunes
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Florencia María Barbé-Tuana
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
5
|
Zhong H, Chang L, Pei S, Kang Y, Yang L, Wu Y, Chen N, Luo Y, Zhou Y, Xie J, Xia Y. Senescence-related genes analysis in breast cancer reveals the immune microenvironment and implications for immunotherapy. Aging (Albany NY) 2024; 16:3531-3553. [PMID: 38358910 PMCID: PMC10929821 DOI: 10.18632/aging.205544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Despite the advent of precision therapy for breast cancer (BRCA) treatment, some individuals are still unable to benefit from it and have poor survival prospects as a result of the disease's high heterogeneity. Cell senescence plays a crucial role in the tumorigenesis, progression, and immune regulation of cancer and has a major impact on the tumor microenvironment. To find new treatment strategies, we aimed to investigate the potential significance of cell senescence in BRCA prognosis and immunotherapy. We created a 9-gene senescence-related signature. We evaluated the predictive power and the role of signatures in the immune microenvironment and infiltration. In vitro tests were used to validate the expression and function of the distinctive critical gene ACTC1. Our risk signature allows BRCA patients to receive a Predictive Risk Signature (PRS), which may be used to further categorize a patient's response to immunotherapy. Compared to conventional clinicopathological characteristics, PRS showed strong predictive efficacy and precise survival prediction. Moreover, PRS subgroups were examined for altered pathways, mutational patterns, and possibly useful medicines. Our research offers suggestions for incorporating senescence-based molecular classification into risk assessment and ICI therapy decision-making.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijie Chang
- Department of Neonatal Intensive Care Unit, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yifan Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Nuo Chen
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yicheng Luo
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yixiao Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
6
|
Elias Junior E, Gubert VT, Bonin-Jacob CM, Puga MAM, Gouveia CG, Sichinel AH, Tozetti IA. CD57 T cells associated with immunosenescence in adults living with HIV or AIDS. Immunology 2024; 171:146-153. [PMID: 37880915 DOI: 10.1111/imm.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the advancement of human immunodeficiency virus (HIV)-related discoveries, new HIV infections still persist. With the advent of antiretroviral therapy, prognosis has migrated from acute to chronic HIV infection and inflammation, with the possibility of increased immune aging. We aimed to assess such immunosenescence by analysing CD27 and CD57 expression on the surface of T cells. This cross-sectional study was conducted between 2017 and 2018 on people living with HIV/AIDS (PLWHA) who attended an outpatient clinic of the Infectious Diseases Service of a university hospital and a geriatric reference service in Brazil. A standardized interview was conducted, and venous peripheral blood was collected for flow cytometry analysis. To assess immunosenescence, we compared CD27 and CD57 expression on the surface of T cells between adult and elderly individuals without HIV and adult PLWHA. All results for cells in terminal senescent stages in adult PLWHA more closely resembled those of elderly than adult participants without HIV (p > 0.05). The presence of CD27+ cells did not differ statistically among the three study groups when comparing immunological responders (IR) and immunological non-responders (INR); for the entire CD4+ T-cell population (including CD4 + CD8+ and CD4 + CD8- cells), the median count (25-75th) was higher in the INR (79.6%) than the IR (68.0%) group. HIV-infected individuals possessed a higher number of T lymphocytes with a molecular phenotype associated with immunosenescence, a lower proportion of T cells in the early stages of senescence (median 25-75th: 27.0%), and a higher proportion of T cells in the intermediate and final stages of senescence (median 25-75th: 16.1%) than adults without HIV (median 25-75th: 42.0% and 18.4%, respectively). Considering the higher number of senescent T lymphocytes, we observed in our PLWHA population-especially in the INR group (CD8CD57+ cells: 39.3% INR vs. 23.4% IR; CD4CD57+ cells: 44.0% INR vs. 27.7% IR)-may indicate a similar mortality risk phenotype from immune-preventable diseases.
Collapse
Affiliation(s)
- Erivaldo Elias Junior
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
- São Julião Hospital, Campo Grande, Mato Grosso do Sul, Brazil
| | - Vanessa T Gubert
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila M Bonin-Jacob
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marco Antonio M Puga
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | - Inês A Tozetti
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
7
|
Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC, Hsu KC. Single-Cell Profiling Reveals a Naive-Memory Relationship between CD56 bright and Adaptive Human Natural Killer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559062. [PMID: 37790504 PMCID: PMC10543008 DOI: 10.1101/2023.09.23.559062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV-individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56 bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56 bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.
Collapse
|
8
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Justus JLP, Schluga Y, da Rocha MT, Martins E, Liao A, Abramson I, Vaida F, Schrier R, Ellis RJ. CD3 +CD56 + and CD3 -CD56 + lymphocytes in the cerebrospinal fluid of persons with HIV-1 subtypes B and C. J Neuroimmunol 2023; 377:578067. [PMID: 36965365 PMCID: PMC10817703 DOI: 10.1016/j.jneuroim.2023.578067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
The transactivator of transcription (Tat) is a HIV regulatory protein which promotes viral replication and chemotaxis. HIV-1 shows extensive genetic diversity, HIV-1 subtype C being the most dominant subtype in the world. Our hypothesis is the frequency of CSF CD3+CD56+ and CD3-CD56dim is reduced in HIV-1C compared to HIV-1B due to the Tat C30S31 substitution in HIV-1C. 34 CSF and paired blood samples (PWH, n = 20; PWoH, n = 14) were studied. In PWH, the percentage of CD3+CD56+ was higher in CSF than in blood (p < 0.001), comparable in both compartments in PWoH (p = 0.20). The proportion of CD3-CD56dim in CSF in PWH was higher than PWoH (p = 0.008). There was no subtype differences. These results showed CNS compartmentalization of NKT cell response in PWH.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Bin Tang
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Julie Lilian P Justus
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yara Schluga
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Tadeu da Rocha
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Edna Martins
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Antony Liao
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ian Abramson
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Florin Vaida
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| |
Collapse
|
9
|
Almeida JS, Casanova JM, Santos-Rosa M, Tarazona R, Solana R, Rodrigues-Santos P. Natural Killer T-like Cells: Immunobiology and Role in Disease. Int J Mol Sci 2023; 24:ijms24032743. [PMID: 36769064 PMCID: PMC9917533 DOI: 10.3390/ijms24032743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
CD56+ T cells are generally recognized as a distinct population of T cells and are categorized as NKT-like cells. Although our understanding of NKT-like cells is far from satisfactory, it has been shown that aging and a number of disease situations have impacted these cells. To construct an overview of what is currently known, we reviewed the literature on human NKT-like cells. NKT-like cells are highly differentiated T cells with "CD1d-independent" antigen recognition and MHC-unrestricted cell killing. The genesis of NKT-like cells is unclear; however, it is proposed that the acquisition of innate characteristics by T cells could represent a remodeling process leading to successful aging. Additionally, it has been shown that NKT-like cells may play a significant role in several pathological conditions, making it necessary to comprehend whether these cells might function as prognostic markers. The quantification and characterization of these cells might serve as a cutting-edge indicator of individual immune health. Additionally, exploring the mechanisms that can control their killing activity in different contexts may therefore result in innovative therapeutic alternatives in a wide range of disease settings.
Collapse
Affiliation(s)
- Jani-Sofia Almeida
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - José Manuel Casanova
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- University Clinic of Orthopedics, Orthopedics Service, Tumor Unit of the Locomotor Apparatus (UTAL), Coimbra Hospital and Universitary Center (CHUC), 3000-075 Coimbra, Portugal
| | - Manuel Santos-Rosa
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain
| | - Rafael Solana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, 14004 Córdoba, Spain
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14071 Córdoba, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
10
|
Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7965433. [PMID: 36567855 PMCID: PMC9771667 DOI: 10.1155/2022/7965433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma, cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations. Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease better and propose potential target identification for the treatment in the early stages of PD. However, there are still some limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.
Collapse
|
11
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
12
|
Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals (Basel) 2022; 15:ph15080912. [PMID: 35893737 PMCID: PMC9394378 DOI: 10.3390/ph15080912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Aging results from the progressive dysregulation of several molecular pathways and mTOR and AMPK signaling have been suggested to play a role in the complex changes in key biological networks involved in cellular senescence. Moreover, multiple factors, including poor nutritional balance, drive immunosenescence progression, one of the meaningful aspects of aging. Unsurprisingly, nutraceutical and pharmacological interventions could help maintain an optimal biological response by providing essential bioactive micronutrients required for the development, maintenance, and the expression of the immune response at all stages of life. In this regard, many studies have provided evidence of potential antiaging properties of resveratrol, as well as rapamycin and metformin. Indeed, in vitro and in vivo models have demonstrated for these molecules a number of positive effects associated with healthy aging. The current review focuses on the mechanisms of action of these three important compounds and their suggested use for the clinical treatment of immunosenescence and aging.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti, 2, 35131 Padova, Italy
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | - Alessandro Buriani
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | | | - Giada Caudullo
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Correspondence: (V.S.); (D.Z.); (G.S.)
| |
Collapse
|
13
|
Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J, van Beek J, van Baarle D, Guichelaar T. Co-Expression of TIGIT and Helios Marks Immunosenescent CD8+ T Cells During Aging. Front Immunol 2022; 13:833531. [PMID: 35651622 PMCID: PMC9148977 DOI: 10.3389/fimmu.2022.833531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aging leads to alterations in the immune system that result in ineffective responsiveness against pathogens. Features of this process, collectively known as immunosenescence, accumulate in CD8+ T cells with age and have been ascribed to differentiation of these cells during the course of life. Here we aimed to identify novel markers in CD8+ T cells associated with immunosenescence. Furthermore, we assessed how these markers relate to the aging-related accumulation of highly differentiated CD27-CD28- cells. We found that co-expression of the transcription factor Helios and the aging-related marker TIGIT identifies CD8+ T cells that fail to proliferate and show impaired induction of activation markers CD69 and CD25 in response to stimulation in vitro. Despite this, in blood of older adults we found TIGIT+Helios+ T cells to become highly activated during an influenza-A virus infection, but these higher frequencies of activated TIGIT+Helios+ T cells associate with longer duration of coughing. Moreover, in healthy individuals, we found that TIGIT+Helios+ CD8+ T cells accumulate with age in the highly differentiated CD27-CD28- population. Interestingly, TIGIT+Helios+ CD8+ T cells also accumulate with age among the less differentiated CD27+CD28- T cells before their transit into the highly differentiated CD27-CD28- stage. This finding suggests that T cells with immunosenescent features become prominent at old age also within the earlier differentiation states of these cells. Our findings show that co-expression of TIGIT and Helios refines the definition of immunosenescent CD8+ T cells and challenge the current dogma of late differentiation stage as proxy for T-cell immunosenescence.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
14
|
Xi Y, Wang W, Wang H, Wang X, Zhang J, Zhao J, Wang G, Gui J, Ni X. Impaired HPV-specific T-cell response in juvenile-onset recurrent respiratory papillomatosis patients. Clin Immunol 2022; 241:109046. [DOI: 10.1016/j.clim.2022.109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
|
15
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Kaszubowska L, Foerster J, Kmieć Z. NKT-like (CD3 + CD56+) cells differ from T cells in expression level of cellular protective proteins and sensitivity to stimulation in the process of ageing. Immun Ageing 2022; 19:18. [PMID: 35410272 PMCID: PMC8996639 DOI: 10.1186/s12979-022-00274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND NKT-like cells are T lymphocytes coexpressing several NK cell-associated receptors. They are effector lymphocytes of innate and adaptive immunity, and their number increases with age. The study aimed to analyze the expression of cellular protective proteins, i.e. sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like and T cells of the young ('young', 31 subjects, age range 19-24 years), seniors aged under 85 ('old'; 30 subjects, age range 65-84 years) and seniors aged over 85 ('oldest', 24 subjects, age range 85-94 years). Both NKT-like and T cells were cultured for 48 h and stimulated with IL-2, LPS and PMA with ionomycin and compared with unstimulated control cells. RESULTS The oldest seniors varied from the other age groups by significantly increased expression of SIRT1 and HSP70 in both NKT-like and T cells observed in both stimulated and nonstimulated cells. The analyzed lymphocyte populations of the oldest revealed not only the highest expression of these proteins but also insensitivity to all types of applied stimulation. When NKT-like cells were compared to T cells, higher expression of the studied protective proteins was observed in both stimulated and unstimulated NKT-like cells. Neither CD3 + CD56+ nor CD3+ cells revealed elevated expression of SOD2, and these cells responded to stimulation until very advanced age. T cells revealed higher sensitivity to stimulation with IL-2 regarding SIRT1 and HSP70 expression. NKT-like cells were more sensitive to stimulation with PMA and ionomycin concerning the expression of these proteins. IL-2 did not induce a significant increase in SOD2 expression in the studied age groups. CONCLUSIONS The oldest seniors developed an adaptive stress response in both T and NKT-like cells regarding the expression of SIRT1 and HSP70, which was increased and insensitive to further stimulation in contrast to SOD2, which showed a more inducible pattern of expression. CD3 + CD56+ cells exhibited higher expression of cellular protective proteins than CD3+ cells in both stimulated and control, nonstimulated cells. NKT-like and T cells showed a distinct sensitivity to the applied stimulatory factors in the respective age groups.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
17
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
18
|
Ceeraz S, Thompson CR, Beatson R, Choy EH. Harnessing CD8 +CD28 - Regulatory T Cells as a Tool to Treat Autoimmune Disease. Cells 2021; 10:2973. [PMID: 34831195 PMCID: PMC8616472 DOI: 10.3390/cells10112973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
T regulatory cell therapy presents a novel therapeutic strategy for patients with autoimmune diseases or who are undergoing transplantation. At present, the CD4+ Treg population has been extensively characterized, as a result of defined phenotypic and functional readouts. In this review article, we discuss the development and biology of CD8+ Tregs and their role in murine and human disease indications. A subset of CD8+ Tregs that lack the surface expression of CD28 (CD8+CD28- Treg) has proved efficacious in preclinical models. CD8+CD28- Tregs are present in healthy individuals, but their impaired functionality in disease renders them less effective in mediating immunosuppression. We primarily focus on harnessing CD8+ Treg cell therapy in the clinic to support current treatment for patients with autoimmune or inflammatory conditions.
Collapse
Affiliation(s)
| | | | - Richard Beatson
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK;
| | - Ernest H. Choy
- CREATE Centre, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
19
|
Kouli A, Jensen M, Papastavrou V, Scott KM, Kolenda C, Parker C, Solim IH, Camacho M, Martin-Ruiz C, Williams-Gray CH. T lymphocyte senescence is attenuated in Parkinson's disease. J Neuroinflammation 2021; 18:228. [PMID: 34645462 PMCID: PMC8513368 DOI: 10.1186/s12974-021-02287-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Immune involvement is well-described in Parkinson’s disease (PD), including an adaptive T lymphocyte response. Given the increasing prevalence of Parkinson’s disease in older age, age-related dysregulation of T lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T lymphocytes. Methods Peripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing markers p16INK4a and p21CIP1/Waf1. Results The number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less apparent in PD patients. Conclusions Taken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is present at the earliest stages of Parkinson’s disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02287-9.
Collapse
Affiliation(s)
- Antonina Kouli
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Melanie Jensen
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Department of Cellular Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
| | - Vanesa Papastavrou
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Kirsten M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Claire Kolenda
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Craig Parker
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Imtiaz H Solim
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Marta Camacho
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Carmen Martin-Ruiz
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| |
Collapse
|
20
|
Coleman MJ, Zimmerly KM, Yang XO. Accumulation of CD28 null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021; 11:1425. [PMID: 34680058 PMCID: PMC8533086 DOI: 10.3390/biom11101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes infectious disease, and manifests in a wide range of symptoms from asymptomatic to severe illness and even death. Severity of infection is related to many risk factors, including aging and an array of underlying conditions, such as diabetes, hypertension, chronic obstructive pulmonary disease (COPD), and cancer. It remains poorly understood how these conditions influence the severity of COVID-19. Expansion of the CD28null senescent T-cell populations, a common phenomenon in aging and several chronic inflammatory conditions, is associated with higher morbidity and mortality rates in COVID-19. Here, we summarize the potential mechanisms whereby CD28null cells drive adverse outcomes in disease and predispose patients to devastating COVID-19, and discuss possible treatments for individuals with high counts of CD28null senescent T-cells.
Collapse
Affiliation(s)
- Mia J. Coleman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
- Class of 2023, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| |
Collapse
|
21
|
Polevshchikov AV, Nazarov PG. Immunity, Aging, and the Works of V.M. Dilman. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kullberg S, Rivera NV, Grunewald J, Eklund A. Effects of infliximab on lung and circulating natural killer cells, CD56+ T cells and B cells in sarcoidosis. BMJ Open Respir Res 2021; 8:8/1/e000933. [PMID: 34233893 PMCID: PMC8264913 DOI: 10.1136/bmjresp-2021-000933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Tumour necrosis factor α (TNF-α) is pivotal in sarcoid granuloma formation, and inhibitors of TNF-α offer an attractive third-line treatment option in sarcoidosis. The sarcoid inflammation is characterised by an exaggerated T helper 1 response, and evidence indicates a contribution of dysregulated and/or deficient NK (natural killer) cells, CD56+ T cells and B cells. Objectives Insight into how TNF-α inhibitors influence these cells may provide more information on inflammatory mechanisms in sarcoidosis and improve understanding of such treatment. We therefore evaluated treatment effects of the TNF-α inhibitor infliximab on lung and peripheral blood (PB) NK, CD56+ T cells and B cells. Methods Fifteen patients were assessed with PB samples, spirometry and CT scan, and 11 of them also underwent bronchoalveolar lavage (BAL) close to start of infliximab treatment. These investigations were repeated after 6 months of treatment. Results Twelve out of 15 patients disclosed a clinical improvement at follow-up. Median percentage of BAL fluid (BALF) CD56+ T cells increased while a decrease was seen in PB (p<0.05 and 0.005, respectively). No significant changes were observed for NK cells. There was a trend towards increased median percentage of PB B cells (p=0.07), and a negative correlation was observed between PB and BALF B cells after treatment (p<0.05). Conclusion In conclusion, 6 months of infliximab treatment in patients with sarcoidosis, of whom the majority benefited from the treatment, influenced immune cells in the lung and circulation differently, highlighting the importance of investigating several compartments concomitantly when evaluating treatment effects on the inflammatory activity.
Collapse
Affiliation(s)
- Susanna Kullberg
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden .,Respiratory Medicine Division, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Natalia V Rivera
- Respiratory Medicine Division, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Grunewald
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.,Respiratory Medicine Division, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anders Eklund
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.,Respiratory Medicine Division, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
23
|
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021; 20:102893. [PMID: 34237417 DOI: 10.1016/j.autrev.2021.102893] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa M Villar
- Red Española de Esclerosis Múltiple (REEM), Spain; Servicio de Inmunología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
24
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|
25
|
Signatures of immune dysfunction in HIV and HCV infection share features with chronic inflammation in aging and persist after viral reduction or elimination. Proc Natl Acad Sci U S A 2021; 118:2022928118. [PMID: 33811141 PMCID: PMC8040665 DOI: 10.1073/pnas.2022928118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is thought to be a major cause of morbidity and mortality in aging, but whether similar mechanisms underlie dysfunction in infection-associated chronic inflammation is unclear. Here, we profiled the immune proteome, and cellular composition and signaling states in a cohort of aging individuals versus a set of HIV patients on long-term antiretroviral therapy therapy or hepatitis C virus (HCV) patients before and after sofosbuvir treatment. We found shared alterations in aging-associated and infection-associated chronic inflammation including T cell memory inflation, up-regulation of intracellular signaling pathways of inflammation, and diminished sensitivity to cytokines in lymphocytes and myeloid cells. In the HIV cohort, these dysregulations were evident despite viral suppression for over 10 y. Viral clearance in the HCV cohort partially restored cellular sensitivity to interferon-α, but many immune system alterations persisted for at least 1 y posttreatment. Our findings indicate that in the HIV and HCV cohorts, a broad remodeling and degradation of the immune system can persist for a year or more, even after the removal or drastic reduction of the pathogen load and that this shares some features of chronic inflammation in aging.
Collapse
|
26
|
Brea R, Valdecantos P, Rada P, Alen R, García-Monzón C, Boscá L, Fuertes-Agudo M, Casado M, Martín-Sanz P, Valverde ÁM. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY) 2021; 13:7800-7827. [PMID: 33780353 PMCID: PMC8034963 DOI: 10.18632/aging.202884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The liver exhibits a variety of functions that are well-preserved during aging. However, the cellular hallmarks of aging increase the risk of hepatic alterations and development of chronic liver diseases. Acetaminophen (APAP) is a first choice for relieving mild-to-moderate pain. Most of the knowledge about APAP-mediated hepatotoxicity arises from acute overdose studies due to massive oxidative stress and inflammation, but little is known about its effect in age-related liver inflammation after chronic exposure. Our results show that chronic treatment of wild-type mice on the B6D2JRcc/Hsd genetic background with APAP at an infratherapeutic dose reduces liver alterations during aging without affecting body weight. This intervention attenuates age-induced mild oxidative stress by increasing HO-1, MnSOD and NQO1 protein levels and reducing ERK1/2 and p38 MAPK phosphorylation. More importantly, APAP treatment counteracts the increase in Cd8+ and the reduction in Cd4+ T lymphocytes observed in the liver with age. This response was also found in peripheral blood mononuclear cells. In conclusion, chronic infratherapeutic APAP treatment protects mice from age-related liver alterations by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
| | - Pilar Valdecantos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv) ISCIII, Madrid 28029, Spain
| | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| |
Collapse
|
27
|
Darden DB, Moore FA, Brakenridge SC, Navarro EB, Anton SD, Leeuwenburgh C, Moldawer LL, Mohr AM, Efron PA, Mankowski RT. The Effect of Aging Physiology on Critical Care. Crit Care Clin 2021; 37:135-150. [PMID: 33190766 PMCID: PMC8194285 DOI: 10.1016/j.ccc.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Older patients experience a decline in their physiologic reserves as well as chronic low-grade inflammation named "inflammaging." Both of these contribute significantly to aging-related factors that alter the acute, subacute, and chronic response of these patients to critical illness, such as sepsis. Unfortunately, this altered response to stressors can lead to chronic critical illness followed by dismal outcomes and death. The primary goal of this review is to briefly highlight age-specific changes in physiologic systems majorly affected in critical illness, especially because it pertains to sepsis and trauma, which can lead to chronic critical illness and describe implications in clinical management.
Collapse
Affiliation(s)
- Dijoia B Darden
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Eduardo B Navarro
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell 2020; 19:e13272. [PMID: 33166035 PMCID: PMC7744956 DOI: 10.1111/acel.13272] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
The development of senescence in tissues of different organs and in the immune system are usually investigated independently of each other although during ageing, senescence in both cellular systems develop concurrently. Senescent T cells are highly inflammatory and secrete cytotoxic mediators and express natural killer cells receptors (NKR) that bypass their antigen specificity. Instead they recognize stress ligands that are induced by inflammation or infection of different cell types in tissues. In this article we discuss data on T cell senescence, how it is regulated and evidence for novel functional attributes of senescent T cells. We discuss an interactive loop between senescent T cells and senescent non-lymphoid cells and conclude that in situations of intense inflammation, senescent cells may damage healthy tissue. While the example for immunopathology induced by senescent cells that we highlight is cutaneous leishmaniasis, this situation of organ damage may apply to other infections, including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and senescent cells are all part of the same equation.
Collapse
Affiliation(s)
- Luciana P. Covre
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | | | - Daniel C. O. Gomes
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
29
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
30
|
Abstract
T-cell immunity undergoes a complex and continuous remodeling with aging. Understanding those dynamics is essential in refining immunosuppression. Aging is linked to phenotypic and metabolic changes in T-cell immunity, many resulting into impaired function and compromised effectiveness. Those changes may impact clinical immunosuppression with evidences suggesting age-specific efficacies of some (CNI and mammalian target of rapamycin inhibitors) but not necessarily all immunosuppressants. Metabolic changes of T cells with aging have only recently been appreciated and may provide novel ways of immunosuppression. Here, we provide an update on changes of T-cell immunity in aging.
Collapse
|
31
|
Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE, Maini MK, Teixeira VH, Janes SM, Gilroy DW, Larbi A, Mabbott NA, Ucar D, Kuchel GA, Henson SM, Strid J, Lee JH, Banchereau J, Akbar AN. Sestrins induce natural killer function in senescent-like CD8 + T cells. Nat Immunol 2020; 21:684-694. [PMID: 32231301 PMCID: PMC10249464 DOI: 10.1038/s41590-020-0643-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London, London, UK
| | - Roel P H De Maeyer
- Division of Infection and Immunity, University College London, London, UK
| | - Luciana P Covre
- Division of Infection and Immunity, University College London, London, UK
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Alessio Lanna
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel C O Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Natalie E Riddell
- Division of Infection and Immunity, University College London, London, UK
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Samuel M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Neil A Mabbott
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - George A Kuchel
- University of Connecticut Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK
| | - Jun H Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
32
|
Covre LP, Devine OP, Garcia de Moura R, Vukmanovic-Stejic M, Dietze R, Ribeiro-Rodrigues R, Guedes HLDM, Lubiana Zanotti R, Falqueto A, Akbar AN, Gomes DCO. Compartmentalized cytotoxic immune response leads to distinct pathogenic roles of natural killer and senescent CD8 + T cells in human cutaneous leishmaniasis. Immunology 2020; 159:429-440. [PMID: 31925782 DOI: 10.1111/imm.13173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic activity mediated by CD8+ T cells is the main signature of the immunopathogenesis of cutaneous leishmaniasis (CL). Here, we performed a broad evaluation of natural killer (NK) cell phenotypic and functional features during cutaneous leishmaniasis. We demonstrate for the first time that CL patients present the accumulation of circulating NK cells with multiple features of replicative senescence including low proliferative capacity and shorter telomeres, elevated expression of CD57, KLRG1 but diminished CD27 stimulatory receptor expression. Moreover, they exhibited higher cytotoxic and inflammatory potential than age-matched controls. The accumulation of circulating senescent NK cells (CD56dim CD57bright ) correlated positively with skin lesion size in the same patients, suggesting that they, like circulating senescent CD8+ T cells, may contribute to the immunopathology of CL. However, this senescent population had lower cutaneous lymphocyte antigen expression and so had diminished skin-homing potential compared with total or senescent CD8+ T cells. This was confirmed in CL skin lesions where we found a predominance of CD8+ T cells (both senescent and non-senescent) that correlated with the severity of the disease. Although there was also a correlation between the proportions of senescent NK cells (CD56+ CD57+ ) in the skin and lesion size, this was less evident. Collectively our results demonstrate first-hand that senescent cytotoxic cells may mediate skin pathology during human cutaneous leishmaniasis. However, as senescent cytotoxic CD8+ T cells predominate in the skin lesions, they may have a greater role than NK cells in mediating the non-specific skin damage in CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | | | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | | | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil.,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil.,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| |
Collapse
|
33
|
Pangrazzi L, Reidla J, Carmona Arana JA, Naismith E, Miggitsch C, Meryk A, Keller M, Krause AAN, Melzer FL, Trieb K, Schirmer M, Grubeck-Loebenstein B, Weinberger B. CD28 and CD57 define four populations with distinct phenotypic properties within human CD8 + T cells. Eur J Immunol 2019; 50:363-379. [PMID: 31755098 PMCID: PMC7079235 DOI: 10.1002/eji.201948362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Indexed: 12/12/2022]
Abstract
After repeated antigen exposure, both memory and terminally differentiated cells can be generated within CD8+ T cells. Although, during their differentiation, activated CD8+ T cells may first lose CD28, and CD28- cells may eventually express CD57 as a subsequent step, a population of CD28+ CD57+ (DP) CD8+ T cells can be identified in the peripheral blood. How this population is distinct from CD28- CD57- (DN) CD8+ T cells, and from the better characterized non-activated/early-activated CD28+ CD57- and senescent-like CD28- CD57+ CD8+ T cell subsets is currently unknown. Here, RNA expression of the four CD8+ T cell subsets isolated from human PBMCs was analyzed using microarrays. DN cells were more similar to "early" highly differentiated cells, with decreased TNF and IFN-γ production, impaired DNA damage response and apoptosis. Conversely, increased apoptosis and expression of cytokines, co-inhibitory, and chemokine receptors were found in DP cells. Higher levels of DP CD8+ T cells were observed 7 days after Hepatitis B vaccination, and decreased levels of DP cells were found in rheumatoid arthritis patients. More DP and DN CD8+ T cells were present in the bone marrow, in comparison with PBMCs. In summary, our results indicate that DP and DN cells are distinct CD8+ T cell subsets displaying defined properties.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Jürgen Reidla
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - José Antonio Carmona Arana
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Adelheid Alma Nora Krause
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Grieskirchnerstrasse 42, Wels, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| |
Collapse
|
34
|
Alberro A, Osorio-Querejeta I, Sepúlveda L, Fernández-Eulate G, Mateo-Abad M, Muñoz-Culla M, Carregal-Romero S, Matheu A, Vergara I, López de Munain A, Sáenz-Cuesta M, Otaegui D. T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging (Albany NY) 2019; 11:10723-10741. [PMID: 31785146 PMCID: PMC6914389 DOI: 10.18632/aging.102517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023]
Abstract
Aging is a universal and complex process that affects all tissues and cells types, including immune cells, in a process known as immunosenescence. However, many aspects of immunosenescence are not completely understood, as the characteristics of the immune cells of nonagenarians and centenarians or the features and implications of extracellular vesicles (EVs). In this study, we analyzed blood samples from 51 individuals aged 20-49 and 70-104 years. We found that senescent CD8 cells accumulate with age, while there is a partial reduction of senescent CD4 cells in nonagenarians and centenarians. Moreover, plasma EVs carry T cell specific markers, but no accumulation of "senescent-like EVs" was found within any of analyzed age groups. Our functional studies of cocultures of peripheral blood mononuclear cells and EVs showed that EVs enhance T cell viability and, under phytohemagglutinin stimulation, they influence cytokine secretion and cell activation in an age-dependent manner. These results underline the importance of EVs on the immune system functioning, and open new perspectives to further study their implication in human aging.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain
| | - Iñaki Osorio-Querejeta
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Lucía Sepúlveda
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain
| | - Gorka Fernández-Eulate
- Osakidetza Basque Health Service, Donostia University Hospital, San Sebastian, Spain.,Biodonostia Health Research Institute, Neuromuscular Diseases Group, San Sebastian, Spain
| | - Maider Mateo-Abad
- Biodonostia Health Research Institute, Primary Care Unit, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Susana Carregal-Romero
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,CIC biomaGUNE, Molecular and Functional Biomarkers Group, San Sebastian, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Cellular Oncology Group, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Itziar Vergara
- Biodonostia Health Research Institute, Primary Care Unit, San Sebastian, Spain.,Health Services Research on Chronic Patients Network (REDISSEC), Madrid, Spain
| | - Adolfo López de Munain
- Osakidetza Basque Health Service, Donostia University Hospital, San Sebastian, Spain.,Biodonostia Health Research Institute, Neuromuscular Diseases Group, San Sebastian, Spain.,CIBERNED, Madrid, Spain
| | - Matías Sáenz-Cuesta
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - David Otaegui
- Biodonostia Health Research Institute, Multiple Sclerosis Group, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| |
Collapse
|
35
|
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8 +CD28 - Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci 2019; 20:ijms20112810. [PMID: 31181772 PMCID: PMC6600236 DOI: 10.3390/ijms20112810] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized—tolerance, anergy, exhaustion, and senescence—CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28− senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28− senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei X Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jae Hyun Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kaleigh Fetcko
- Department of Neurology, University of Illinois at Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Xu W, Monaco G, Wong EH, Tan WLW, Kared H, Simoni Y, Tan SW, How WZY, Tan CTY, Lee BTK, Carbajo D, K G S, Low ICH, Mok EWH, Foo S, Lum J, Tey HL, Tan WP, Poidinger M, Newell E, Ng TP, Foo R, Akbar AN, Fülöp T, Larbi A. Mapping of γ/δ T cells reveals Vδ2+ T cells resistance to senescence. EBioMedicine 2018; 39:44-58. [PMID: 30528453 PMCID: PMC6354624 DOI: 10.1016/j.ebiom.2018.11.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Immune adaptation with aging is a major of health outcomes. Studies in humans have mainly focus on αβ T cells while γδ T cells have been neglected despite their role in immunosurveillance. We investigated the impact of aging on γδ T cell subsets phenotypes, functions, senescence and their molecular response to stress. Methods Peripheral blood of young and old donors in Singapore have been used to assess the phenotype, functional capacity, proliferation capacity and gene expression of the various γδ T cell subsets. Peripheral blood mononuclear cells from apheresis cones and young donors have been used to characterize the telomere length, epigenetics profile and DNA damage response of the various γδ T cell subsets phenotype. Findings Our data shows that peripheral Vδ2+ phenotype, functional capacity (cytokines, cytotoxicity, proliferation) and gene expression profile are specific when compared against all other αβ and γδ T cells in aging. Hallmarks of senescence including telomere length, epigenetic profile and DNA damage response of Vδ2+ also differs against all other αβ and γδ T cells. Interpretation Our results highlight the differential impact of lifelong stress on γδ T cells subsets, and highlight possible mechanisms that enable Vδ2+ to be resistant to cellular aging. The new findings reinforce the concept that Vδ2+ have an “innate-like” behavior and are more resilient to the environment as compared to “adaptive-like” Vδ1+ T cells.
Collapse
Affiliation(s)
- Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianni Monaco
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Eleanor Huijin Wong
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Wilson Lek Wen Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wilson Zhi Yong How
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Daniel Carbajo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Srinivasan K G
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Ivy Chay Huang Low
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Esther Wing Hei Mok
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | | | | | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Arne N Akbar
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Tamas Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Microbiology, National University of Singapore, Singapore, Singapore; Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
37
|
Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci 2018; 8:brainsci8100188. [PMID: 30340343 PMCID: PMC6210638 DOI: 10.3390/brainsci8100188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe, chronic mental disorder characterized by delusions and hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic and environmental factors. Telomere erosion has been shown to be accelerated by different factors including environmental factors such as cigarette smoking and chronic alcohol consumption or by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly relied on measurements of leukocyte telomere length and it is generally accepted that individuals with short leukocyte telomere length are considered biologically older than those with longer ones. A dysregulation of both innate and adaptive immune systems has been described in schizophrenia patients and other mental diseases supporting the contribution of the immune system to disease symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory cytokine production in response to still undefined environmental agents such as herpesviruses infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together with genetic vulnerability, are considered etiological factors for schizophrenia, and support that inflammation status is involved in the course of illness in schizophrenia.
Collapse
Affiliation(s)
- Corona Solana
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Diana Pereira
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
38
|
Williams-Gray CH, Wijeyekoon RS, Scott KM, Hayat S, Barker RA, Jones JL. Abnormalities of age-related T cell senescence in Parkinson's disease. J Neuroinflammation 2018; 15:166. [PMID: 29807534 PMCID: PMC5972443 DOI: 10.1186/s12974-018-1206-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wealth of evidence implicates both central and peripheral immune changes as contributing to the pathogenesis of Parkinson's disease (PD). It is critical to better understand this aspect of PD given that it is a tractable target for disease-modifying therapy. Age-related changes are known to occur in the immune system (immunosenescence) and might be of particular relevance in PD given that its prevalence rises with increasing age. We therefore sought to investigate this with respect to T cell replicative senescence, a key immune component of human ageing. METHODS Peripheral blood mononuclear cells were extracted from blood samples from 41 patients with mild PD (Hoehn and Yahr stages 1-2, mean (SD) disease duration 4.3 (1.2) years) and 41 age- and gender-matched controls. Immunophenotyping was performed with flow cytometry using markers of T lymphocyte activation and senescence (CD3, CD4, CD8, HLA-DR, CD38, CD28, CCR7, CD45RA, CD57, CD31). Cytomegalovirus (CMV) serology was measured given its proposed relevance in driving T cell senescence. RESULTS Markers of replicative senescence in the CD8+ population were strikingly reduced in PD cases versus controls (reduced CD57 expression (p = 0.005), reduced percentage of 'late differentiated' CD57loCD28hi cells (p = 0.007) and 'TEMRA' cells (p = 0.042)), whilst expression of activation markers (CD28) was increased (p = 0.005). This was not driven by differences in CMV seropositivity. No significant changes were observed in the CD4 population. CONCLUSIONS This study demonstrates for the first time that the peripheral immune profile in PD is distinctly atypical for an older population, with a lack of the CD8+ T cell replicative senescence which characterises normal ageing. This suggests that 'abnormal' immune ageing may contribute to the development of PD, and markers of T cell senescence warrant further investigation as potential biomarkers in this condition.
Collapse
Affiliation(s)
- C H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK.
| | - R S Wijeyekoon
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - K M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - S Hayat
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - R A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - J L Jones
- Neurology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Impact of stress on aged immune system compartments: Overview from fundamental to clinical data. Exp Gerontol 2018; 105:19-26. [DOI: 10.1016/j.exger.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
40
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
41
|
Carpier JM, Lucas CL. Epstein-Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Front Immunol 2018; 8:2005. [PMID: 29387064 PMCID: PMC5776011 DOI: 10.3389/fimmu.2017.02005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
Activated PI3Kδ Syndrome (APDS) is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ) subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID) is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV) infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| | - Carrie L Lucas
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
42
|
Jeng MY, Hull PA, Fei M, Kwon HS, Tsou CL, Kasler H, Ng CP, Gordon DE, Johnson J, Krogan N, Verdin E, Ott M. Metabolic reprogramming of human CD8 + memory T cells through loss of SIRT1. J Exp Med 2017; 215:51-62. [PMID: 29191913 PMCID: PMC5748845 DOI: 10.1084/jem.20161066] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved SIRT1–FoxO1 axis plays a new role in human CD8+ T cell metabolism and function. Progression from the naive to the terminally differentiated memory state is accompanied by the loss of SIRT1 and FoxO1 expression, which derepresses glycolytic and cytotoxic capacities of CD8+CD28– T cells under resting conditions. The expansion of CD8+CD28– T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28– T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28– T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28– T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28– T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28– T cells. These data identify the evolutionarily conserved SIRT1–FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans.
Collapse
Affiliation(s)
- Mark Y Jeng
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Philip A Hull
- Gladstone Institutes, San Francisco, CA.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mingjian Fei
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hye-Sook Kwon
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Herb Kasler
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - Che-Ping Ng
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - David E Gordon
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Jeffrey Johnson
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Nevan Krogan
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Eric Verdin
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
43
|
Effective "activated PI3Kδ syndrome"-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 2017; 130:2307-2316. [PMID: 28972011 DOI: 10.1182/blood-2017-08-801191] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/23/2017] [Indexed: 01/17/2023] Open
Abstract
Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS. Treatment with leniolisib (CDZ173), a selective PI3Kδ inhibitor, caused dose-dependent suppression of PI3Kδ pathway hyperactivation (measured as phosphorylation of AKT/S6) in cell lines ectopically expressing APDS-causative p110δ variants and in T-cell blasts derived from patients. A clinical trial with 6 APDS patients was conducted as a 12-week, open-label, multisite, within-subject, dose-escalation study of oral leniolisib to assess safety, pharmacokinetics, and effects on lymphoproliferation and immune dysregulation. Oral leniolisib led to a dose-dependent reduction in PI3K/AKT pathway activity assessed ex vivo and improved immune dysregulation. We observed normalization of circulating transitional and naive B cells, reduction in PD-1+CD4+ and senescent CD57+CD4- T cells, and decreases in elevated serum immunoglobulin M and inflammatory markers including interferon γ, tumor necrosis factor, CXCL13, and CXCL10 with leniolisib therapy. After 12 weeks of treatment, all patients showed amelioration of lymphoproliferation with lymph node sizes and spleen volumes reduced by 39% (mean; range, 26%-57%) and 40% (mean; range, 13%-65%), respectively. Thus, leniolisib was well tolerated and improved laboratory and clinical parameters in APDS, supporting the specific inhibition of PI3Kδ as a promising new targeted therapy in APDS and other diseases characterized by overactivation of the PI3Kδ pathway. This trial was registered at www.clinicaltrials.gov as #NCT02435173.
Collapse
|
44
|
Dock J, Ramirez CM, Hultin L, Hausner MA, Hultin P, Elliott J, Yang OO, Anton PA, Jamieson BD, Effros RB. Distinct aging profiles of CD8+ T cells in blood versus gastrointestinal mucosal compartments. PLoS One 2017; 12:e0182498. [PMID: 28832609 PMCID: PMC5568404 DOI: 10.1371/journal.pone.0182498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023] Open
Abstract
A hallmark of human immunosenescence is the accumulation of late-differentiated memory CD8+ T cells with features of replicative senescence, such as inability to proliferate, absence of CD28 expression, shortened telomeres, loss of telomerase activity, enhanced activation, and increased secretion of inflammatory cytokines. Importantly, oligoclonal expansions of these cells are associated with increased morbidity and mortality risk in elderly humans. Currently, most information on the adaptive immune system is derived from studies using peripheral blood, which contains approximately only 2% of total body lymphocytes. However, most lymphocytes reside in tissues. It is not clear how representative blood changes are of the total immune status. This is especially relevant with regard to the human gastrointestinal tract (GALT), a major reservoir of total body lymphocytes (approximately 60%) and an anatomical region of high antigenic exposure. To assess how peripheral blood T cells relate to those in other locations, we compare CD8+ T cells from peripheral blood and the GALT, specifically rectosigmoid colon, in young/middle age, healthy donors, focusing on phenotypic and functional alterations previously linked to senescence in peripheral blood. Overall, our results indicate that gut CD8+ T cells show profiles suggestive of greater differentiation and activation than those in peripheral blood. Specifically, compared to blood from the same individual, the gut contains significantly greater proportions of CD8+ T cells that are CD45RA- (memory), CD28-, CD45RA-CD28+ (early memory), CD45RA-CD28- (late memory), CD25-, HLA-DR+CD38+ (activated) and Ki-67+ (proliferating); ex vivo CD3+ telomerase activity levels are greater in the gut as well. However, gut CD8+ T cells may not necessarily be more senescent, since they expressed significantly lower levels of CD57 and PD-1 on CD45RO+ memory cells, and had in vitro proliferative dynamics similar to that of blood cells. Compartment-specific age-effects in this cohort were evident as well. Blood cells showed a significant increase with age in proportion of HLA-DR+38+, Ki-67+ and CD25+ CD8+ T cells; and an increase in total CD3+ex-vivo telomerase activity that approached significance. By contrast, the only age-effect seen in the gut was a significant increase in CD45RA- (memory) and concurrent decrease in CD45RA+CD28+ (naïve) CD8+ T cells. Overall, these results indicate dynamics of peripheral blood immune senescence may not hold true in the gut mucosa, underscoring the importance for further study of this immunologically important tissue in evaluating the human immune system, especially in the context of chronic disease and aging.
Collapse
Affiliation(s)
- Jeffrey Dock
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Christina M Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Lance Hultin
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Mary Ann Hausner
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Patricia Hultin
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Department of Epidemiology, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Julie Elliott
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Otto O Yang
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,Department of Microbiology Immunology & Molecular Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,AIDS Healthcare Foundation, Los Angeles, CA, United States of America
| | - Peter A Anton
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America.,Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America
| | - Beth D Jamieson
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| | - Rita B Effros
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States of America.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, United States of America
| |
Collapse
|
45
|
Changes of peripheral lymphocyte subsets and cytokine environment during aging and deteriorating gastrointestinal tract health status. Oncotarget 2017; 8:60764-60777. [PMID: 28977824 PMCID: PMC5617384 DOI: 10.18632/oncotarget.18485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/04/2017] [Indexed: 01/10/2023] Open
Abstract
Human immune senescence accompanies with the physical and physiological frailty. The functional change and shift of NK, NKT and T cell subsets by aging have been widely studied. However, it remains largely unclear how the aging and disease conditions affect the distribution of lymphocytes. In the present study, 233 subjects with age range from 20 to 87 year old, including healthy people, people with chronic gastrointestinal tract disease or cancers were investigated. We found that the proportion of NK cells, CD8+ T cells and NKT cells remained relatively unchanged with aging. However, NKG2D and CD16 expression level on NK cells decreased with aging indicating impaired NK cell function. Surprisingly, the proportion of NK, NKT and T cells all declined with deteriorating health status from health to chronic gastrointestinal tract disease and cancer. Furthermore, cytokine and chemokine profiles changed with aging, but did not vary with different health status. Our results highlight new evidence for a continuum of change during immunologic aging and show unique data for variations of NK cells, CD8+ T cells, NKT cells, and cytokine microenvironment with human aging and health status transformation.
Collapse
|
46
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
47
|
Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. Kidney Int 2017; 91:1447-1463. [PMID: 28233611 DOI: 10.1016/j.kint.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022]
Abstract
The definition of biological donor organ age rather than chronological age seems obvious for the establishment of a valid pre-transplant risk assessment. Therefore, we studied gene expression for candidate markers in 60 zero-hour kidney biopsies. Compared with 29 younger donors under age 55, 31 elderly donors age 55 and older had significant mRNA expression for immunoproteasome subunits (PSMB8, PSMB9 and PSMB10), HLA-DRB, and transcripts of the activating cytotoxicity receptor NKG2D. Gene expression was validated in an independent donor cohort consisting of 37 kidneys from donors 30 years and under (Group I), 75 kidneys from donors age 31-54 years (Group II) and 75 kidneys from donors age 55 and older (Group III). Significant gene induction was confirmed in kidneys from Group III for PSMB9 and PSMB10. Strikingly, transcripts of NKG2D had the significantly highest gene induction in Group III versus Group II and Group I. Similar results were obtained for CDKN2A, but not for telomere length. Both NKG2D and CDKN2A mRNA expression were significantly correlated with creatinine levels at 24 months after transplantation. Univariate regression analysis showed significant predictive power regarding graft function at 6 and 12 months for NKG2D and CDKN2A. However, only NKG2D remained significantly predictive in the multivariate model at 12 months. Thus, our results reveal novel candidate markers in aged renal allografts, which could be helpful in the assessment of organ quality.
Collapse
|
48
|
Lourenço O, Fonseca AM, Taborda-Barata L. Human CD8+ T Cells in Asthma: Possible Pathways and Roles for NK-Like Subtypes. Front Immunol 2016; 7:638. [PMID: 28066445 PMCID: PMC5179570 DOI: 10.3389/fimmu.2016.00638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Asthma affects approximately 300 million people worldwide and is the most common chronic lung disease, which usually is associated with bronchial inflammation. Most research has focused upon the role of CD4+ T cells, and relatively few studies have addressed the phenotypic and functional roles of CD8+ T cell types and subtypes. Human NK-like CD8+ T cells may involve cells that have been described as CD8+CD28−, CD8+CD28−CD57+, CD8+CD27−, or CD8+ effector memory (TEM) cells, among other. However, most of the data that are available regarding these various cell types were obtained in murine models did not thoroughly characterize these cells with phenotypically or functionally or did not involve asthma-related settings. Nevertheless, one may conceptualize three principal roles for human NK-like CD8+ T cells in asthma: disease-promoting, regulatory, and/or tissue repair. Although evidence for some of these roles is scarce, it is possible to extrapolate some data from overlapping or related CD8+ T cell phenotypes, with caution. Clearly, further research is warranted, namely in terms of thorough functional and phenotypic characterization of human NK-like CD8+ T cells in human asthma of varying severity.
Collapse
Affiliation(s)
- Olga Lourenço
- CICS - UBI, Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Ana Mafalda Fonseca
- CICS - UBI, Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Luis Taborda-Barata
- CICS - UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Allergy and Clinical Immunology, Cova da Beira Hospital Centre, Covilhã, Portugal
| |
Collapse
|
49
|
Pita-López ML, Pera A, Solana R. Adaptive Memory of Human NK-like CD8 + T-Cells to Aging, and Viral and Tumor Antigens. Front Immunol 2016; 7:616. [PMID: 28066426 PMCID: PMC5165258 DOI: 10.3389/fimmu.2016.00616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Human natural killer (NK)-like CD8+ T-cells are singular T-cells that express both T and NK cell markers such as CD56; their frequencies depend on their differentiation and activation during their lifetime. There is evidence of the presence of these innate CD8+ T-cells in the human umbilical cord, highlighting the necessity of investigating whether the NK-like CD8+ T-cells arise in the early stages of life (gestation). Based on the presence of cell surface markers, these cells have also been referred to as CD8+KIR+ T-cells, innate CD8+ T-cells, CD8+CD28−KIR+ T-cells or NKT-like CD8+CD56+ cells. However, the functional and co-signaling significance of these NK cell receptors on NK-like CD8+ T-cells is less clear. Also, the diverse array of costimulatory and co-inhibitory receptors are spatially and temporally regulated and may have distinct overlapping functions on NK-like CD8+ T-cell priming, activation, differentiation, and memory responses associated with different cell phenotypes. Currently, there is no consensus regarding the functional properties and phenotypic characterization of human NK-like CD8+ T-cells. Environmental factors, such as aging, autoimmunity, inflammation, viral antigen re-exposure, or the presence of persistent tumor antigens have been shown to allow differentiation (“adaptation”) of the NK-like CD8+ T-cells; the elucidation of this differentiation process and a greater understanding of the characteristics of these cells could be important for their eventual in potential therapeutic applications aimed at improving protective immunity. This review will attempt to elucidate an understanding of the characteristics of these cells with the goal toward their eventual use in potential therapeutic applications aimed at improving protective immunity.
Collapse
Affiliation(s)
- María Luisa Pita-López
- Research Center in Molecular Biology of Chronic Diseases (CIBIMEC), CUSUR University of Guadalajara , Guzmán , Mexico
| | - Alejandra Pera
- Clinical Division, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba, Córdoba, Spain
| | - Rafael Solana
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba , Córdoba , Spain
| |
Collapse
|
50
|
Hodge G, Hodge S. Steroid Resistant CD8 +CD28 null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease. Front Immunol 2016; 7:617. [PMID: 28066427 PMCID: PMC5165019 DOI: 10.3389/fimmu.2016.00617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8+ T cells may be central regulators of the inflammatory network in this disease. CD8+ cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8+ T-cells and CD8+ natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28+ counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8+CD28null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells.
Collapse
Affiliation(s)
- Greg Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute, Adelaide, SA, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia; Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sandra Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute, Adelaide, SA, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia; Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|