1
|
Huang L, Yang M, Yuan Y, Li X, Kuang E. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation. Antiviral Res 2016; 138:68-78. [PMID: 27939840 DOI: 10.1016/j.antiviral.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses.
Collapse
Affiliation(s)
- Lu Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Mengtian Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
2
|
Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 2009; 5:e1000677. [PMID: 19956661 PMCID: PMC2777334 DOI: 10.1371/journal.ppat.1000677] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/30/2009] [Indexed: 02/06/2023] Open
Abstract
Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment. Gammaherpesviruses are associated with the development of lymphomas, particularly in immunosuppressed individuals, as well as several other types of cancers. Like all herpesviruses, once a host is infected these viruses cannot be cleared and, as such, infected individuals harbor these viruses for life. One of the important strategies utilized by herpesviruses to chronically infect their host is their ability to establish a largely quiescent form of infection referred to as latency, in which no progeny virus is produced. Importantly, all herpesviruses have the capacity to emerge from latency and replicate, a process referred to as reactivation. Gammaherpesviruses largely persist in a population of white blood cells called B lymphocytes which, upon differentiation into plasma cells, produce antibodies in response to infection. Notably, it has been recently shown for the human gammaherpesviruses, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, that virus reactivation from latently infected B lymphocytes involves differentiation of the infected B lymphocytes to plasma cells. Here, using a small animal model of gammaherpesvirus infection, we show that plasma cell differentiation is also associated with reactivation of murine gammaherpesvirus 68. Furthermore, we show that this requires a protein encoded by the virus which is able to drive plasma cell differentiation. Thus, our studies not only confirm the importance of plasma cell differentiation in gammaherpesvirus reactivation from B lymphocytes, but also provide evidence that this process is controlled by a viral protein.
Collapse
|
3
|
Cho NH, Choi YK, Choi JK. Multi-transmembrane protein K15 of Kaposi's sarcoma-associated herpesvirus targets Lyn kinase in the membrane raft and induces NFAT/AP1 activities. Exp Mol Med 2009; 40:565-73. [PMID: 18985015 DOI: 10.3858/emm.2008.40.5.565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viral proteins of gamma-2 herpesviruses, such as LMP2A of Epstein Barr virus (EBV) and Tip of herpesvirus saimiri (HVS) dysregulate lymphocyte signaling by interacting with Src family kinases. K15 open reading frame of Kaposi's sarcoma associated herpesvirus (KSHV), located at the right end of the viral genome, encodes several splicing variants differing in numbers of transmembrane domains. Previously, we demonstrated that the cytoplasmic tail of the K15 protein interfered with B cell receptor signal transduction to cellular tyrosine phosphorylation and calcium mobilization. However, the detailed mechanism underlying this phenomenon was not understood. In the C-terminal cytoplasmic region of K15, putative binding domains for Src-SH2 and -SH3 were identified. In this study, we attempted to characterize these modular elements and cellular binding protein(s) by GST pull down and co-immunoprecipitation assays. These studies revealed that K15 interacted with the major B cell tyrosine kinase Lyn. In vitro kinase and transient co-expression assays showed that the expression of K15 protein resulted in activation of Lyn kinase activity. In addition, GST pull down assay suggested that the SH2 domain of Lyn alone was necessary for interaction with the C-terminal SH2B (YEEV) of K15, but the addition of Lyn SH3 to the SH2 domain increases the binding affinity to K15 protein. The data from luciferase assays indicate that K15 expression in BJAB cells induced NFAT and AP1 activities. The tyrosine residue in the C-terminal end of K15 required for the Lyn interaction appeared to be essential for NFAT/AP1 activation, highlighting the significance of the C-terminal SH2B of K15 as a modular element in interfering with B lymphocyte signaling through interaction with Lyn kinase.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul 110-799, Korea
| | | | | |
Collapse
|
4
|
Remodeling of endothelial adherens junctions by Kaposi's sarcoma-associated herpesvirus. J Virol 2008; 82:9615-28. [PMID: 18667499 DOI: 10.1128/jvi.02633-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) connects neighboring endothelial cells (ECs) via interendothelial junctions and regulates EC proliferation and adhesion during vasculogenesis and angiogenesis. The cytoplasmic domain of VE-cadherin recruits alpha- and beta-catenins and gamma-catenin, which interact with the actin cytoskeleton, thus modulating cell morphology. Dysregulation of the adherens junction/cytoskeletal axis is a hallmark of invasive tumors. We now demonstrate that the transmembrane ubiquitin ligase K5/MIR-2 of Kaposi's sarcoma-associated herpesvirus targets VE-cadherin for ubiquitin-mediated destruction, thus disturbing EC adhesion. In contrast, N-cadherin levels in K5-expressing cells were increased compared to those in control cells. Steady-state levels of alpha- and beta-catenins and gamma-catenin in K5-expressing ECs were drastically reduced due to proteasomal destruction. Moreover, the actin cytoskeleton was rearranged, resulting in the dysregulation of EC barrier function as measured by electric cell-substrate impedance sensing. Our data represent the first example of a viral protein targeting adherens junction proteins and suggest that K5 contributes to EC proliferation, vascular leakage, and the reprogramming of the EC proteome during Kaposi's sarcoma tumorigenesis.
Collapse
|
5
|
Abou-Merhi R, Khoriaty R, Arnoult D, El Hajj H, Dbouk H, Munier S, El-Sabban ME, Hermine O, Gessain A, de Thé H, Mahieux R, Bazarbachi A. PS-341 or a combination of arsenic trioxide and interferon-α inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia 2007; 21:1792-801. [PMID: 17568816 DOI: 10.1038/sj.leu.2404797] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpes virus (KSHV) is the causative agent of primary effusion lymphoma and of KS. Primary effusion lymphoma (PEL) is an aggressive proliferation of B cells. Conventional chemotherapy has limited benefits in PEL patients, and the prognosis is very poor. We previously reported that treatment of human T-cell leukemia virus type 1 (HTLV-1)-associated adult T-cell leukemia/lymphoma cells either with arsenic trioxide (As) combined to interferon-alpha (IFN-alpha) or with the bortezomib (PS-341) proteasome inhibitor induces cell cycle arrest and apoptosis, partly due to the reversal of the constitutive nuclear factor-kappaB (NF-kappaB) activation. PEL cells also display an activated NF-kappaB pathway that is necessary for their survival. This prompted us to investigate the effects of PS-341, or of the As/IFN-alpha combination on PEL cells. A dramatic inhibition of cell proliferation and induction of apoptosis was observed in PS-341 and in As/IFN-alpha treated cells. This was associated with the dissipation of the mitochondrial membrane potential, cytosolic release of cytochrome c, caspase activation and was reversed by the z-VAD caspase inhibitor. PS-341 and As/IFN-alpha treatment abrogated NF-kappaB translocation to the nucleus and decreased the levels of the anti-apoptotic protein Bcl-X(L). Altogether, these results provide a rational basis for a future therapeutic use of PS-341 or combined As and IFN-alpha in PEL patients.
Collapse
Affiliation(s)
- R Abou-Merhi
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
7
|
Abstract
The genomes of several human herpesviruses, including Kaposi sarcoma (KS) herpesvirus (KSHV), display surprisingly high levels of both genetic diversity and clustered subtyping at certain loci. We have been interested in understanding this phenomenon with the hope that it might be a useful diagnostic tool for viral epidemiology, and that it might provide some insights about how these large viral genomes evolve over a relatively short timescale. To do so, we have carried out extensive PCR DNA sequence analysis across the genomes of 200 distinct KSHV samples collected from KS patients around the world. Here we review and summarize current understanding of the origins of KSHV variability, the spread of KSHV and its human hosts out of Africa, the existence of chimeric genomes, and the concept that different segments of the genome have had different evolutionary histories.
Collapse
Affiliation(s)
- G S Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA.
| | | |
Collapse
|
8
|
Buckles EL, Lowenstine LJ, Funke C, Vittore RK, Wong HN, St Leger JA, Greig DJ, Duerr RS, Gulland FMD, Stott JL. Otarine Herpesvirus-1, not papillomavirus, is associated with endemic tumours in California sea lions (Zalophus californianus). J Comp Pathol 2006; 135:183-9. [PMID: 17034810 DOI: 10.1016/j.jcpa.2006.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 06/26/2006] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to determine if Otarine Herpesvirus-1 (OtHV-1) is associated with the presence of urogenital carcinomas in California sea lions. Polymerase chain reaction (PCR) analysis with primers specific for OtHV-1 was used to compare the prevalence of OtHV-1 infection in 15 sea lions affected by urogenital carcinoma with that of age-matched and juvenile tumour-free animals, and animals with tumours of non-urogenital origin. The herpesvirus was more prevalent (100%) and more widespread in the 15 animals with urogenital carcinoma than in 25 control animals, and was most often found in the urogenital tissue (vagina and prostate) and in the draining lymph nodes. Moreover, OtHV-1 DNA was not found in any juvenile animal, or in the neoplastic tissues of animals with non-urogenital tumours. Papillomavirus-specific PCR analysis of urogenital carcinoma tissues detected papillomavirus sequences in only one carcinomatous tissue. Further studies are needed to determine if OtHV-1 contributes to oncogenesis in the California sea lion; these data show, however, that OtHV-1 is associated with urogenital carcinomas, is preferentially present in urogenital tissues, and may be sexually transmitted. Papillomaviruses, which are known to contribute to urogenital tumours in other species, did not appear to be associated with the sea lion carcinomas.
Collapse
Affiliation(s)
- E L Buckles
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, One Shields Drive, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Früh K, Moses AV. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 2005; 65:5084-95. [PMID: 15958552 DOI: 10.1158/0008-5472.can-04-2822] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is involved in the development of lymphoproliferative diseases and Kaposi's sarcoma. The oncogenicity of this virus is reflected in vitro by its ability to transform B cells and endothelial cells. Infection of dermal microvascular endothelial cells (DMVEC) transforms the cells from a cobblestone-like monolayer to foci-forming spindle cells. This transformation is accompanied by dramatic changes in the cellular transcriptome. Known oncogenes, such as c-Kit, are among the KSHV-induced host genes. We previously showed that c-Kit is an essential cellular component of the KSHV-mediated transformation of DMVEC. Here, we test the hypothesis that the transformation process can be used to discover novel oncogenes. When expression of a panel of KSHV-induced cellular transcripts was inhibited with antisense oligomers, we observed inhibition of DMVEC proliferation and foci formation using antisense molecules to RDC1 and Neuritin. We further showed that transformation of KSHV-infected DMVEC was inhibited by small interfering RNA directed at RDC1 or Neuritin. Ectopic expression of Neuritin in NIH 3T3 cells resulted in changes in cell morphology and anchorage-independent growth, whereas RDC1 ectopic expression significantly increased cell proliferation. In addition, both RDC1- and Neuritin-expressing cells formed tumors in nude mice. RDC1 is an orphan G protein-coupled receptor, whereas Neuritin is a growth-promoting protein known to mediate neurite outgrowth. Neither gene has been previously implicated in tumorigenesis. Our data suggest that KSHV-mediated transformation involves exploitation of the hitherto unrealized oncogenic properties of RDC1 and Neuritin.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Cell Transformation, Viral/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Endothelial Cells/cytology
- Endothelial Cells/virology
- GPI-Linked Proteins
- Gene Expression Profiling
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- LIM Domain Proteins
- Metalloproteins/biosynthesis
- Metalloproteins/genetics
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Neuropeptides/biosynthesis
- Neuropeptides/genetics
- Oligonucleotide Array Sequence Analysis
- Oligonucleotides, Antisense/genetics
- Oncogenes/physiology
- Osteopontin
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- Receptors, CXCR
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/virology
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/genetics
Collapse
Affiliation(s)
- Camilo Raggo
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Aoki Y, Tosato G. Therapeutic options for human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus-related disorders. Expert Rev Anti Infect Ther 2004; 2:213-25. [PMID: 15482187 DOI: 10.1586/14787210.2.2.213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus infection is associated with three proliferative disorders in immunocompromised patients - Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. These disorders often develop in patients with advanced AIDS who present a number of therapeutic challenges, underscoring the importance of continuing efforts dedicated to basic and clinical research in this field. In the era of highly active antiretroviral therapy, the incidence of AIDS and Kaposi's sarcoma has considerably decreased, presumably due to enhanced anti-Kaposi's sarcoma-associated herpesvirus immune responses, whereas the situation with primary effusion lymphoma and multicentric Castleman's disease is more complex. Based on advances in the understanding of Kaposi's sarcoma-associated herpesvirus-related disorders and availability of antiretroviral agents, current and future therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Yoshiyasu Aoki
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive 12N226, Bethesda, MD 20892-1907, USA.
| | | |
Collapse
|
12
|
Ohsaki E, Ueda K, Sakakibara S, Do E, Yada K, Yamanishi K. Poly(ADP-ribose) polymerase 1 binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J Virol 2004; 78:9936-46. [PMID: 15331727 PMCID: PMC514965 DOI: 10.1128/jvi.78.18.9936-9946.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During latency, Kaposi's sarcoma-associated herpesvirus (KSHV) is thought to replicate once and to be partitioned in synchrony with the cell cycle of the host. In this replication cycle, the KSHV terminal repeat (TR) sequence functions as a replication origin, assisted by the latency-associated nuclear antigen (LANA). Thus, TR seems to function as a cis element for the replication and partitioning of the KSHV genome. Viral replication and partitioning are also likely to require cellular factors that interact with TR in either a LANA-dependent or -independent manner. Here, we sought to identify factors that associate with TR by using a TR DNA column and found that poly(ADP-ribose) polymerase 1 (PARP1) and known replication factors, including ORC2, CDC6, and Mcm7, bound to TR. PARP1 bound directly to a specific region within TR independent of LANA, and LANA was poly(ADP-ribosyl)ated by PARP1. Drugs such as hydroxyurea and niacinamide, which raise or lower PARP activity, respectively, affected the virus copy number in infected cells. Thus, the poly(ADP-ribosyl)ation status of LANA appears to affect the replication and/or maintenance of the viral genome. Drugs that specifically up-regulate PARP activity may lead to the disappearance of latent KSHV.
Collapse
Affiliation(s)
- Eriko Ohsaki
- Department of Microbiology, Osaka Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Chung YH, Cho NH, Garcia MI, Lee SH, Feng P, Jung JU. Activation of Stat3 transcription factor by Herpesvirus saimiri STP-A oncoprotein. J Virol 2004; 78:6489-97. [PMID: 15163742 PMCID: PMC416526 DOI: 10.1128/jvi.78.12.6489-6497.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The saimiri transforming protein (STP) oncogene of Herpesvirus saimiri subgroup A strain 11 (STP-A11) is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. We previously showed that STP-A11 interacts with cellular Src kinase through its SH2 binding motif and that this interaction elicits Src signal transduction. Here we demonstrate that STP-A11 interacts with signal transducer and activator of transcription 3 (Stat3) independently of Src association and that the amino-terminal short proline-rich motif of STP-A11 and the central linker region of Stat3 are necessary for their interaction. STP-A11 formed a triple complex with Src kinase and Stat3 where Src kinase phosphorylated Stat3, resulting in the nuclear localization and transcriptional activation of Stat3. Consequently, the constitutively active Stat3 induced by STP-A11 elicited cellular signal transduction, which ultimately induced cell survival and proliferation upon serum deprivation. Furthermore, this activity was strongly correlated with the induction of Fos, cyclin D1, and Bcl-XL expression. These results demonstrate that STP-A11 independently targets two important cellular signaling molecules, Src and Stat3, and that these proteins cooperate efficiently to induce STP-A11-mediated transformation.
Collapse
Affiliation(s)
- Young-Hwa Chung
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
14
|
Hasham MG, Tsygankov AY. Tip, an Lck-interacting protein of Herpesvirus saimiri, causes Fas- and Lck-dependent apoptosis of T lymphocytes. Virology 2004; 320:313-29. [PMID: 15016553 DOI: 10.1016/j.virol.2003.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
Saimiriine herpesvirus-2 (Herpesvirus saimiri) transforms T lymphocytes, including human, to continuous growth in vitro. H. saimiri-induced transformation is becoming an important tool of T-cell biology, including studies of HIV replication. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T-cell transformation. In spite of the important role of these proteins, their biological functions and the molecular mechanisms of their action remain insufficiently understood. To further elucidate the effects of Tip on T cells, we transduced T lymphocytes, using an efficient lentiviral gene transfer system, to express Tip in the absence of other H. saimiri proteins. Our results indicate that Tip specifically inhibits IL-2 production by human T lymphocytes. Furthermore, Tip promotes T-cell apoptosis, which appears to be the reason for the observed decrease in IL-2 production. Finally, the apoptotic effect of Tip in T cells is mediated by Fas and requires the presence of active Lck in the cell.
Collapse
Affiliation(s)
- Muneer G Hasham
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
15
|
Sorokina EM, Merlo JJ, Tsygankov AY. Molecular mechanisms of the effect of herpesvirus saimiri protein StpC on the signaling pathway leading to NF-kappaB activation. J Biol Chem 2004; 279:13469-77. [PMID: 14724292 DOI: 10.1074/jbc.m305250200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2) causes lethal T lymphoproliferative diseases in the susceptible species and transforms T lymphocytes to continuous growth in vitro. H. saimiri-induced transformation of T cells is becoming an important experimental tool of biomedical research. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T cell transformation by this virus. It has been shown previously that StpC transforms fibroblasts, activates NF-kappaB, and binds to tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins, but the molecular mechanism of its action remains insufficiently understood. This study further characterized the effect of StpC on NF-kappaB. First, StpC activates NF-kappaB via the consensus pathway involving activation of I-kappaB kinase and subsequent phosphorylation and degradation of I-kappaB in both T lymphoid and epithelial cells. Second, triggering of this pathway by StpC in both T lymphoid and epithelial cells is dependent on the presence of functional NF-kappaB-inducing kinase (NIK). Third, StpC physically interacts with TRAF in epithelial cells, and the effect of StpC on NF-kappaB activity in these cells requires the presence of functional TRAF. Finally the effect of StpC is completely independent of TNF-alpha, a well described stimulus of NF-kappaB activity. Moreover it appears that StpC uncouples stimulation of NF-kappaB activity from TNF-alpha stimulation. Overall these results argue that the effect of StpC on NF-kappaB is similar to the effects of other viral proteins, "usurping" the TRAF/NIK/I-kappaB kinase pathway, and reinforce the notion that the role of StpC in cell transformation by H. saimiri may be mediated by signaling that results in NF-kappaB activation.
Collapse
Affiliation(s)
- Elena M Sorokina
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
16
|
Watanabe T, Sugaya M, Atkins AM, Aquilino EA, Yang A, Borris DL, Brady J, Blauvelt A. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J Virol 2003; 77:6188-96. [PMID: 12743275 PMCID: PMC155023 DOI: 10.1128/jvi.77.11.6188-6196.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor spindle cells in all clinical types of Kaposi's sarcoma (KS) are infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Although KSHV contains more than 80 genes, only a few are expressed in tumor spindle cells, including latency-associated nuclear antigen (LANA) and k-cyclin (kCYC). To assess the oncogenic potential of LANA and kCYC, primary human umbilical vein endothelial cells (HUVEC) and murine NIH 3T3 cells were stably transduced by using recombinant retroviruses expressing these genes or the known viral oncogene simian virus 40 large T antigen (LTAg). Interestingly, LANA-transduced HUVEC proliferated faster and demonstrated a greatly prolonged life span (mean +/- standard deviation, 38.3 +/- 11.0 passages) than untransduced cells and vector-transduced cells (<20 passages). By contrast, kCYC-transduced HUVEC did not proliferate faster or live longer than control cells. LANA- and kCYC-transduced HUVEC, but not LTAg-transduced HUVEC, retained the ability to form normal vessel-like structures in an in vitro model of angiogenesis. In cellular assays of transformation, LANA- and kCYC-transduced NIH 3T3 cells demonstrated minimal or no anchorage-independent growth in soft agar and no tumorigenicity when injected into nude mice, unlike LTAg-transduced NIH 3T3 cells. Lastly, gene expression profiling revealed down-regulation, or silencing, of a number of genes within LANA-transduced HUVEC. Taken together, these results suggest that KSHV LANA is capable of inducing prolonged life span, but not transformation, in primary human cells. These findings may explain why LANA-expressing spindle cells proliferate within KS tumors, yet most often do not demonstrate biologic characteristics of transformation or true malignant conversion.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Viral
- Cell Division
- Cell Transformation, Viral
- Cyclin D
- Cyclins/genetics
- Cyclins/metabolism
- Endothelium, Vascular/cytology
- Female
- Herpesvirus 8, Human/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Mice
- Mice, Nude
- Neovascularization, Physiologic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Proteins/metabolism
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Transduction, Genetic
- Umbilical Veins
Collapse
Affiliation(s)
- Takahiro Watanabe
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Larroche C, Agbalika F, Poirel H, Martin A, Gautheret-Dejean A, Raphaël M, Lortholary O. Epstein-Barr virus and human herpesvirus 8 coinfection and concomitant extranodal nasal-type NK/T cell lymphoma and Castleman disease: case report. Clin Infect Dis 2003; 36:e107-10. [PMID: 12715327 DOI: 10.1086/374663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 12/12/2002] [Indexed: 11/03/2022] Open
Abstract
We describe a 36-year-old man uninfected with human immunodeficiency virus who had confirmed concurrent infection with Epstein-Barr virus (EBV) and human herpesvirus 8 (HHV-8) and their respective lymphoproliferative manifestations, nasal-type NK/T cell lymphoma and Castleman disease. Antibodies to HHV-8 and EBV DNA were found in plasma and peripheral blood mononuclear cells. An EBV-positive nasal-type NK/T cell lymphoma infiltrated the splenic red pulp, whereas the white pulp contained HHV-8-positive plasmablasts, as found in Castleman disease.
Collapse
Affiliation(s)
- Claire Larroche
- Department of Internal Medicine and Infectious Disease, Hôpital Avicenne, Université Paris-Nord, 93009 Bobigny Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Fruh K. A functional genomics approach to Kaposi's sarcoma. Ann N Y Acad Sci 2002; 975:180-91. [PMID: 12538164 DOI: 10.1111/j.1749-6632.2002.tb05951.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Kaposi's sarcoma (KS) is the most frequent malignancy afflicting acquired immune-deficiency syndrome (AIDS) patients. Tumor lesions are characterized by spindle cells of vascular origin and vascularization. Kaposi's sarcoma-associated herpes virus (KSHV) is consistently found in all forms of KS. Infection of dermal microvascular endothelial cells (DMVEC) with KSHV recapitulates spindle cell formation in vitro. We studied this transformation process by DNA microarray analysis comparing the RNA expression profiles of KSHV-infected and mock-infected DMVEC. Genes involved in tumorigenesis, angiogenesis, host defense, cell growth and differentiation, transcription, and metabolism were observed to change significantly upon infection with KSHV. One of the most consistently KSHV-induced genes was the receptor tyrosine kinase and proto-oncogene c-Kit. Inhibition of c-Kit activity with the pharmacological inhibitor of c-Kit signaling STI571 reversed the KSHV-induced morphological transformation of DMVEC. Moreover, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation (Moses et al. J. Virol. 76(16): 8383-8399). These data demonstrate that microarrays are useful for the identification of pharmacological targets essential for KS tumorigenesis.
Collapse
MESH Headings
- Benzamides
- Cell Line, Transformed
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral/drug effects
- Cell Transformation, Viral/genetics
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Enzyme Inhibitors/pharmacology
- Gene Expression Profiling
- Genomics
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Humans
- Imatinib Mesylate
- Oligonucleotide Array Sequence Analysis
- Piperazines/pharmacology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-kit/genetics
- Pyrimidines/pharmacology
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- Sarcoma, Kaposi/etiology
- Sarcoma, Kaposi/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- Ashlee V Moses
- Vaccine and Gene Therapy Institute and Department of Molecular Microbiology and Immunology, Oregon Health Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Früh K. Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 2002; 76:8383-99. [PMID: 12134042 PMCID: PMC155158 DOI: 10.1128/jvi.76.16.8383-8399.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.
Collapse
Affiliation(s)
- Ashlee V Moses
- Vaccine and Gene Therapy Institute, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|