1
|
Ruiz-Arenas C, Marín-Goñi I, Wang L, Ochoa I, Pérez-Jurado L, Hernaez M. NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders. Nucleic Acids Res 2024; 52:e44. [PMID: 38597610 PMCID: PMC11109970 DOI: 10.1093/nar/gkae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than studying individual genes. However, existing gene set projection methods cannot return representative, robust, and interpretable GSAS. We developed NetActivity, a machine learning framework that generates GSAS based on a sparsely-connected autoencoder, where each neuron in the inner layer represents a gene set. We proposed a three-tier training that yielded representative, robust, and interpretable GSAS. NetActivity model was trained with 1518 GO biological processes terms and KEGG pathways and all GTEx samples. NetActivity generates GSAS robust to the initialization parameters and representative of the original transcriptome, and assigned higher importance to more biologically relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition and higher interpretability than GSVA and hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting gene sets related to cell division, key for disease progression. When applied to metastatic prostate cancer, gene sets associated with cancer progression were also altered due to drug resistance, while a classical enrichment analysis identified gene sets irrelevant to the phenotype. NetActivity is publicly available in Bioconductor and GitHub.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
- Department MELIS, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Marín-Goñi
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Idoia Ochoa
- Department of Electrical and Electronics Engineering, Tecnun, University of Navarra, Donostia, Spain
- Institute for Data Science and Artificial Inteligence (DATAI), University of Navarra, Pamplona 31008, Spain
| | - Luis A Pérez-Jurado
- Department MELIS, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Genetics Service, Hospital del Mar & Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mikel Hernaez
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
- Institute for Data Science and Artificial Inteligence (DATAI), University of Navarra, Pamplona 31008, Spain
| |
Collapse
|
2
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
3
|
Wang Z, Dai Z, Wang B, Gao Y, Gao X, Wang L, Zhou S, Yang L, Qiu X, Liu Z. Targeting c-MET to Enhance the Efficacy of Olaparib in Prostate Cancer. Onco Targets Ther 2021; 14:4383-4389. [PMID: 34377000 PMCID: PMC8349550 DOI: 10.2147/ott.s291267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Prostate cancer is the second leading cause of cancer death in men worldwide. Olaparib is clinically approved for the treatment prostate cancer, but cytotoxicity and off-target effects including DNA damage limit its clinical applications. In the current study, new strategies to improve the therapeutic efficacy of olaparib for the treatment of prostate cancer were investigated. Methods Two prostate cancer cell lines were exposed to the c-MET inhibitor PHA665752 and/or the PARP inhibitor olaparib. Cell counting kit-8, colony formation assays, and transwell assays were conducted to evaluate the cytotoxicity of olaparib alone or in combination with PHA665752 in prostate cancer cell lines. Western blotting, immunofluorescence staining, and the comet assay were used to assess the effects of PHA665752 on olaparib-induced DNA damage. Results Combined inhibition of c-MET and PARP resulted in effective and synergistic blocking of the growth of prostate cancer cell lines. Invasion and migration were significantly suppressed when the agents were combined. Mechanistically, dual blocking of PARP and c-MET in prostate cancer cell lines was associated with an impaired DNA damage response. Interestingly, immunofluorescence staining analysis of RAD51 protein indicated that the c-MET inhibitor PHA665752 significantly impaired homologous repair via downregulated translocation of RAD51 into the nucleus in prostate cancer cells. Conclusion The combination of the c-MET inhibitor PHA665752 and the PARP inhibitor olaparib may be a promising therapeutic strategy in patients with prostate cancer.
Collapse
Affiliation(s)
- Zhenwei Wang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Zhihong Dai
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Bingwei Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Yuren Gao
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiang Gao
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liang Wang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Sihai Zhou
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liqin Yang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyu Liu
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
4
|
Lien VT, Celen S, Nuruddin S, Attili B, Doumont G, Van Simaeys G, Bormans G, Klaveness J, Olberg DE. Preclinical evaluation of [ 18F]cabozantinib as a PET imaging agent in a prostate cancer mouse model. Nucl Med Biol 2021; 93:74-80. [PMID: 33422771 DOI: 10.1016/j.nucmedbio.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Cabozantinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of medullary thyroid cancer, renal cell carcinoma and hepatocellular carcinoma, and is currently in clinical trials for the treatment of prostate cancer and others. It exerts its therapeutic effect mainly through inhibition of the tyrosine kinases MET (hepatocyte growth factor receptor) and VEGFR2 (vascular endothelial growth factor receptor 2), in addition to several other kinases involved in cancer. PET imaging with TKIs such as [18F]cabozantinib could potentially aid in cancer diagnosis and guide treatment. This study aims to evaluate the utility of [18F]cabozantinib as a PET imaging probe in PC3 tumor xenografted mice. METHODS [18F]cabozantinib was evaluated in non-tumor and tumor bearing (PC3 xenografted) male mice by ex vivo biodistribution studies and in vivo μPET imaging. Pretreatment studies were performed in the tumor bearing mice with the MET inhibitor PF04217903. Mouse plasma was analyzed with HPLC to quantify radiometabolites. To further evaluate the binding specificity of [18F]cabozantinib, in vitro autoradiography studies on heart and PC3 tumor sections were performed in the presence of authentic cabozantinib or specific MET and VEGFR2 inhibitors. RESULTS Tissue distribution studies in non-tumor bearing mice revealed slow blood clearance, absence of brain uptake and a high myocardial uptake. In the tumor bearing mice, tumor uptake was low (0.58 ± 0.20% ID/g at 30 min post tracer injection), which was confirmed by μPET imaging. No differences in tissue distribution and kinetics were observed in both biodistributions and μPET studies after pretreatment with the MET inhibitor PF04217903. At 30 min post tracer injection, 60 ± 3% of the recovered radioactivity in plasma in non-tumor bearing mice was present as intact tracer. [18F]cabozantinib binding in vitro to heart and tumor tissues was partly blocked in the presence of selective MET and VEGFR2 inhibitors (up to 40% block). The fraction of non-specific binding was relatively high for both tissues (66% for heart and 39% for tumor). CONCLUSION [18F]cabozantinib exhibits non-favorable properties as a PET imaging probe, demonstrated by slow excretion kinetics along with low tumor uptake and high non-specific binding in tumor and heart tissue. The results reflect cabozantinibs multi-kinase activity, making PET imaging of tumor specific kinase expression with [18F]cabozantinib challenging.
Collapse
Affiliation(s)
- Vegard Torp Lien
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway; Norwegian Medical Cyclotron Center, Oslo, Norway.
| | - Sofie Celen
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Bala Attili
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi, Belgium
| | - Gaetan Van Simaeys
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi, Belgium; Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway
| | - Dag Erlend Olberg
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway; Norwegian Medical Cyclotron Center, Oslo, Norway
| |
Collapse
|
5
|
Evodiamine Mitigates Cellular Growth and Promotes Apoptosis by Targeting the c-Met Pathway in Prostate Cancer Cells. Molecules 2020; 25:molecules25061320. [PMID: 32183146 PMCID: PMC7144730 DOI: 10.3390/molecules25061320] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Evodiamine (EVO) is an indoloquinazoline alkaloid that exerts its various anti-oncogenic actions by blocking phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), c-Met, and nuclear factor kappa B (NF-κB) signaling pathways, thus leading to apoptosis of tumor cells. We investigated the ability of EVO to affect hepatocyte growth factor (HGF)-induced c-Met/Src/STAT3 activation cascades in castration-resistant prostate cancer (CRPC). First, we noted that EVO showed cytotoxicity and anti-proliferation activities in PC-3 and DU145 cells. Next, we found that EVO markedly inhibited HGF-induced c-Met/Src/STAT3 phosphorylation and impaired the nuclear translocation of STAT3 protein. Then, we noted that EVO arrested the cell cycle, caused apoptosis, and downregulated the expression of various carcinogenic markers such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), cyclin D1, cyclooxygenase 2 (COX-2), survivin, vascular endothelial growth factor (VEGF), and matrix metallopeptidases 9 (MMP-9). Moreover, it was observed that in cPC-3 and DU145 cells transfected with c-Met small interfering RNA (siRNA), Src/STAT3 activation was also mitigated and led to a decrease in EVO-induced apoptotic cell death. According to our results, EVO can abrogate the activation of the c-Met/Src/STAT3 signaling axis and thus plays a role as a robust suppressor of tumor cell survival, proliferation, and angiogenesis.
Collapse
|
6
|
Smith DC, Daignault-Newton S, Grivas P, Reichert ZR, Hussain M, Cooney KA, Caram M, Alva A, Jacobson J, Yablon C, Mehra R, Escara-Wilke J, Shelley G, Keller ET. Efficacy and Effect of Cabozantinib on Bone Metastases in Treatment-naive Castration-resistant Prostate Cancer. Clin Genitourin Cancer 2020; 18:332-339.e2. [PMID: 32299729 DOI: 10.1016/j.clgc.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cabozantinib is active in advanced prostate cancer with improvement on bone scans in men on phase II trials. This trial evaluated the efficacy and changes in bone lesions in men with metastatic castration-resistant prostate cancer (mCRPC) treated with cabozantinib. PATIENTS AND METHODS Eligible patients with mCRPC involving bone underwent biopsy of a bone lesion followed by cabozantinib starting at 60 mg daily and continuing until progression or intolerable toxicity. The primary study endpoint was progression-free survival at 12 weeks. The bone lesion was rebiopsied at 6 weeks. Expression of CMET, phospho-CMET, and VEGFR2 was assayed by immunohistochemistry. Serum was obtained at baseline, and at 3, 6, and 12 weeks and assayed for bone remodeling markers. RESULTS A total of 25 patients were enrolled: 22 were evaluable, and 3 were excluded before receiving cabozantinib. At 12 weeks, 17 (77%) of 22 patients had stable disease or better. The median time on treatment was 24 weeks (range, 3-112 weeks). The overall median progression-free survival was 43.7 weeks (95% confidence interval, 23.7-97.0 weeks). Eight (36%) of 22 patients had markedly reduced uptake on bone scan. Patients with significant response on bone scan had higher bone morphogenic protein-2 levels at baseline, stable N-telopeptides levels, increased vascular endothelial growth factor receptor 2 expression, and a trend towards increased phospho-CMET while on cabozantinib compared with patients with stable disease. CONCLUSIONS Cabozantinib is active in men with mCRPC, inducing significant changes on bone scan in one-third of patients with changes in markers of bone formation and the tumor microenvironment.
Collapse
Affiliation(s)
- David C Smith
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI.
| | | | - Petros Grivas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Zachery R Reichert
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Maha Hussain
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Kathleen A Cooney
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Megan Caram
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Ajjai Alva
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Jon Jacobson
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Corrie Yablon
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - June Escara-Wilke
- University of Michigan Rogel Cancer Center, Ann Arbor, MI; Department of Urology, University of Michigan, Ann Arbor, MI
| | - Greg Shelley
- University of Michigan Rogel Cancer Center, Ann Arbor, MI; Department of Urology, University of Michigan, Ann Arbor, MI
| | - Evan T Keller
- University of Michigan Rogel Cancer Center, Ann Arbor, MI; Department of Urology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Resveratrol Suppresses Prostate Cancer Epithelial Cell Scatter/Invasion by Targeting Inhibition of Hepatocyte Growth Factor (HGF) Secretion by Prostate Stromal Cells and Upregulation of E-cadherin by Prostate Cancer Epithelial Cells. Int J Mol Sci 2020; 21:ijms21051760. [PMID: 32143478 PMCID: PMC7084722 DOI: 10.3390/ijms21051760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer mortality is primarily attributed to metastasis and the resulting compromise of organs secondary to the initial tumor site. Metastasis is a multi-step process in which the tumor cells must first acquire a migratory phenotype and invade through the surrounding tissue for spread to distant organs in the body. The ability of malignant cells to migrate and breach surrounding tissue/matrix barriers is among the most daunting challenges to disease management for men in the United States diagnosed with prostate cancer (CaP), especially since, at diagnosis, a high proportion of patients already have occult or clinically-detectable metastasis. The interaction between hepatocyte growth factor (HGF) secreted by the stroma, with its receptor c-Met located in the epithelium, must occur for epithelial CaP cells to become migratory. We studied the effects of grape-derived phytochemical resveratrol on the transition of epithelial tumor cells from sedentary to a mobile, penetrant phenotype. A time lapse microscopy assay was used to monitor the acquisition of the migratory phenotype by resveratrol. The results show that resveratrol inhibits HGF-mediated interaction between the stroma and epithelium and suppresses epithelial CaP cell migration by attenuating the control of epithelial-to-mesenchymal transition (EMT).
Collapse
|
8
|
Russo GI, Bier S, Hennenlotter J, Beger G, Pavlenco L, van de Flierdt J, Hauch S, Maas M, Walz S, Rausch S, Bedke J, Morgia G, Stenzl A, Todenhöfer T. Expression of tumour progression-associated genes in circulating tumour cells of patients at different stages of prostate cancer. BJU Int 2018. [PMID: 29542849 DOI: 10.1111/bju.14200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To evaluate the presence of circulating tumour cells (CTCs) at different stages of prostate cancer using the AdnaTest® ProstateCancerDetect kit (Qiagen). Moreover, we aimed to assess the expression of transcripts that are specific for cancer stem cells (AdnaTest StemCell) and epithelial-mesenchymal transition (EMT) in CTCs (AdnaTest EMT), as well as additional genes that are known to promote prostate cancer progression. PATIENTS AND METHODS In this prospective study, we included 81 patients who underwent treatment for prostate cancer between 07/2014 and 02/2015, including: Group A, 18 patients (22.2%) with low-risk clinically localised prostate cancer; Group B, 25 patients (30.9%) with high-risk clinically localised prostate cancer; Group C, 11 patients (13.6%) with metastatic castration-sensitive prostate cancer (mCSPC); and Group D, 27 patients (33.3%) with metastatic castration-resistant prostate cancer (mCRPC). AdnaTest ProstateCancer and AdnaTest StemCell/EMT were performed in all cases. In addition, expression of the androgen receptor (AR), c-met, c-kit and thymidylate synthase (TYMS) in CTCs was assessed using specific polymerase chain reaction assays. RESULTS A positive AdnaTest ProstateCancer was present in three (16.7%), two (8.0%), six (54.5%) and 19 (70.5%) patients in groups A, B, C and D, respectively (P < 0.01, chi-squared test). The AdnaTest EMT and AdnaTest StemCell were positive in zero (0.0%), zero (0.0%), one (9.1%), and two (7.4%); and in five (27.8%), four (16.0%), three (27.3%), and 11 (40.7%) patients in groups A, B, C and D, respectively, with no significant differences noted between groups. CTCs expressing TYMS (44.4% and 50.0% vs 13.9%) or AR (18.2% and 25.9% vs 0.0%) were seen more commonly in patients in groups C and D vs patients with non-metastatic disease (all P < 0.05). Expression of c-kit and c-met were rare events, with only two patients positive for either marker. CONCLUSIONS AdnaTest ProstateCancerDetect exhibits positive results mainly in patients with metastatic disease. Expression of AR and TYMS are frequent events in CTCs of patients with advanced disease, whereas c-met and c-kit gene expression is seen in only a small proportion of patients. The implications of these results for the use of CTC analysis as a decision factor for personalised treatment strategies in advanced prostate cancer remain to be determined.
Collapse
Affiliation(s)
- Giorgio I Russo
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany.,Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Simone Bier
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | | | - Gunthild Beger
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | - Moritz Maas
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Simon Walz
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Giuseppe Morgia
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | | |
Collapse
|
9
|
C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition. Oncogene 2017; 36:3718-3728. [PMID: 28192399 DOI: 10.1038/onc.2016.505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/06/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Although a significant subset of prostate tumors remain indolent during the entire life, the advanced forms are still one of the leading cause of cancer-related death. There are not reliable markers distinguishing indolent from aggressive forms. Here we highlighted a new molecular circuitry involving microRNA and coding genes promoting cancer progression and castration resistance. Our preclinical and clinical data demonstrated that c-Met activation increases miR-130b levels, inhibits androgen receptor expression, promotes cancer spreading and resistance to hormone ablation therapy. The relevance of these findings was confirmed on patients' samples and by in silico analysis on an independent patient cohort from Taylor's platform. Data suggest c-Met/miR-130b axis as a new prognostic marker for patients' risk assessment and as an indicator of therapy resistance. Our results propose new biomarkers for therapy decision-making in all phases of the pathology. Data may help identify high-risk patients to be treated with adjuvant therapy together with alternative cure for castration-resistant forms while facilitating the identification of possible patients candidates for anti-Met therapy. In addition, we demonstrated that it is possible to evaluate Met/miR-130b axis expression in exosomes isolated from peripheral blood of surgery candidates and advanced patients offering a new non-invasive tool for active surveillance and therapy monitoring.
Collapse
|
10
|
Chattopadhyay I, Wang J, Qin M, Gao L, Holtz R, Vessella RL, Leach RW, Gelman IH. Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget 2017; 8:10324-10347. [PMID: 28055971 PMCID: PMC5354662 DOI: 10.18632/oncotarget.14401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Progression of prostate cancer (PC) to castration-recurrent growth (CRPC) remains dependent on sustained expression and transcriptional activity of the androgen receptor (AR). A major mechanism contributing to CRPC progression is through the direct phosphorylation and activation of AR by Src-family (SFK) and ACK1 tyrosine kinases. However, the AR-dependent transcriptional networks activated by Src during CRPC progression have not been elucidated. Here, we show that activated Src (Src527F) induces androgen-independent growth in human LNCaP cells, concomitant with its ability to induce proliferation/survival genes normally induced by dihydrotestosterone (DHT) in androgen-dependent LNCaP and VCaP cells. Src induces additional gene signatures unique to CRPC cell lines, LNCaP-C4-2 and CWR22Rv1, and to CRPC LuCaP35.1 xenografts. By comparing the Src-induced AR-cistrome and/or transcriptome in LNCaP to those in CRPC and LuCaP35.1 tumors, we identified an 11-gene Src-regulated CRPC signature consisting of AR-dependent, AR binding site (ARBS)-associated genes whose expression is altered by DHT in LNCaP[Src527F] but not in LNCaP cells. The differential expression of a subset (DPP4, BCAT1, CNTNAP4, CDH3) correlates with earlier PC metastasis onset and poorer survival, with the expression of BCAT1 required for Src-induced androgen-independent proliferation. Lastly, Src enhances AR binding to non-canonical ARBS enriched for FOXO1, TOP2B and ZNF217 binding motifs; cooperative AR/TOP2B binding to a non-canonical ARBS was both Src- and DHT-sensitive and correlated with increased levels of Src-induced phosphotyrosyl-TOP2B. These data suggest that CRPC progression is facilitated via Src-induced sensitization of AR to intracrine androgen levels, resulting in the engagement of canonical and non-canonical ARBS-dependent gene signatures.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation
- Dihydrotestosterone/pharmacology
- Disease Progression
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Phosphorylation
- Promoter Regions, Genetic
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/enzymology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptome
- Transfection
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Maochun Qin
- Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Renae Holtz
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
11
|
Abstract
Research on cancer prevention and therapy must focus on the refractory disease, the fatal end-stage of cancer that develops in patients with organ-related solid tumors. Refractory cancers develop spontaneously in advanced-stage tumors or in relapsed cases after failed therapy. Because neither prevention nor therapy is currently feasible, refractory cancer is a major impediment to survival. There is a great need for an animal model of prostate cancer (PC), one that develops cancer from initial premalignant to the terminal refractory stages. We describe here a model of hormone-refractory prostate cancer (HRPC) that develops spontaneously through two stages by endogenous mechanisms in the Lobund-Wistar (LW) rat. The early premalignant, testosterone (T)-dependent stage is promoted by high levels of endogenous T, and up to age 12 months is reversible by T deprivation; without this intervention, the tumorigenic process progresses to the refractory stage, which is highly aggressive and does not respond to T deprivation or to a wide range of therapies. Initial refractory tumors are palpable at approximately 18 months of age. As they continue to grow, the tumors express characteristics seen in refractory cancers in humans (i.e., hypoxia, expression of hypoxia-inducible factors, and metastasis). Chemically induced HRPCs in LW rats manifest the same two developmental stages, but with shorter latency periods. A transplantable, metastasizing cell line (PAID) was derived from a germfree LW rat with advanced-stage cancer. Both spontaneous and chemically induced autochthonous HRPC model systems serve as outstanding models for studies on the prevention and therapy of refractory cancer.
Collapse
Affiliation(s)
- Morris Pollard
- Lobund Institute, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
12
|
Wu JC, Wang CT, Hung HC, Wu WJ, Wu DC, Chang MC, Sung PJ, Chou YW, Wen ZH, Tai MH. Heteronemin Is a Novel c-Met/STAT3 Inhibitor Against Advanced Prostate Cancer Cells. Prostate 2016; 76:1469-1483. [PMID: 27416770 DOI: 10.1002/pros.23230] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prostate cancer is one of the most prevalent cancers in men worldwide. Aberrant activation of c-Met/signal transducer and activator of transcription-3 (STAT3) signaling is involved in prostate carcinogenesis, underscoring the demand for developing c-Met/STAT3-targeting drugs. Thus, we first utilized virtual screening strategy to identify STAT3-inhibiting marine compound, heteronemin, and then validated the STAT3-inhibiting function of heteronemin in prostate cancer cells. METHODS Human prostate cancer LNCaP, DU145, and PC-3 cell lines were treated with heteronemin for 24 hr, then the cell viability was evaluated by MTT assay. Flow cytometry was performed to analyze the apoptosis in heteronemin-treated cells. Western blot and quantitative real-time PCR were executed to further confirm the c-Met/STAT3 signaling inhibition by heteronemin in DU145 and PC-3 cells. RESULTS In this study, we employed the virtual screening strategy to identify heteronemin, a spongean sesterterpene, as a potential STAT3 inhibitor from Taiwan marine drugs library. Application of heteronemin potently suppressed the viability and anchorage-independent growth of human prostate cancer cells. Besides, heteronemin induced apoptosis in prostate cancer cells by activation of both intrinsic (caspase-9) and extrinsic (caspase-8) apoptotic pathways. By luciferase assay and expression analysis, it was confirmed that heteronemin inhibited the phosphorylation of c-Met/src/STAT3 signaling axis, STAT3-driven luciferase activities and expression of STAT3-regulated genes including Bcl-xL, Bcl-2, and Cyclin D1. Finally, heteronemin effectively antagonized the hepatocyte growth factor (HGF)-stimulated c-Met/STAT3 activation as well as the proliferation and colonies formation in refractory prostate cancer cells. CONCLUSIONS These findings suggest that heteronemin may constitute a novel c-Met/STAT3-targeting agent for prostate cancer. Prostate 76:1469-1483, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian-Ching Wu
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiang-Ting Wang
- Department of Urological Surgery, Kaohsiung Armed Force General Hospital, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Chi Chang
- Division of Colorectal Surgery, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Yu-Wei Chou
- Tissue Bank and BioBank, Kaohsiung Chang Gung Memorial Hospital, Niao-Song District, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Lo Iacono M, Buttigliero C, Monica V, Bollito E, Garrou D, Cappia S, Rapa I, Vignani F, Bertaglia V, Fiori C, Papotti M, Volante M, Scagliotti GV, Porpiglia F, Tucci M. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer. Oncotarget 2016; 7:14394-404. [PMID: 26887047 PMCID: PMC4924723 DOI: 10.18632/oncotarget.7343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) has a highly heterogeneous outcome. Beyond Gleason Score, Prostate Serum Antigen and tumor stage, nowadays there are no biological prognostic factors to discriminate between indolent and aggressive tumors.The most common known genomic alterations are the TMPRSS-ETS translocation and mutations in the PI3K, MAPK pathways and in p53, RB and c-MYC genes.The aim of this retrospective study was to identify by next generation sequencing the most frequent genetic variations (GVs) in localized and locally advanced PCa underwent prostatectomy and to investigate their correlation with clinical-pathological variables and disease progression. RESULTS Identified non-synonymous GVs included TP53 p.P72R (78% of tumors), two CSFR1 SNPs, rs2066934 and rs2066933 (70%), KDR p.Q472H (67%), KIT p.M541L (28%), PIK3CA p.I391M (19%), MET p.V378I (10%) and FGFR3 p.F384L/p.F386L (8%). TP53 p.P72R, MET p.V378I and CSFR1 SNPs were significantly associated with the HI risk group, TP53 and MET variations with T≥T2c. FGFR3 p.F384L/p.F386L was correlated with T≤T2b. MET p.V378I mutation, detected in 20% of HI risk patients, was associated with early biochemical recurrence. EXPERIMENTAL DESIGN Nucleic acids were obtained from tissue samples of 30 high (HI) and 30 low-intermediate (LM) risk patients, according to D'Amico criteria. Genomic DNA was explored with the Ion_AmpliSeq_Cancer_Hotspot_Panel_v.2 including 50 cancer-associated genes. GVs with allelic frequency (AF) ≥10%, affecting protein function or previously associated with cancer, were correlated with clinical-pathological variables. CONCLUSION Our results confirm a complex mutational profile in PCa, supporting the involvement of TP53, MET, FGFR3, CSF1R GVs in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Marco Lo Iacono
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Enrico Bollito
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Diletta Garrou
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Susanna Cappia
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Ida Rapa
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Cristian Fiori
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Mauro Papotti
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Marco Volante
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Marcello Tucci
- University of Turin, Department of Oncology, Orbassano, Italy
| |
Collapse
|
14
|
Morley S, Hager MH, Pollan SG, Knudsen B, Di Vizio D, Freeman MR. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian J Androl 2015; 16:530-5. [PMID: 24589458 PMCID: PMC4104075 DOI: 10.4103/1008-682x.122877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Ueda T, Ito S, Shiraishi T, Taniguchi H, Kayukawa N, Nakanishi H, Nakamura T, Naya Y, Hongo F, Kamoi K, Okihara K, Kawauchi A, Miki T. PAX2 promoted prostate cancer cell invasion through transcriptional regulation of HGF in an in vitro model. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2467-73. [PMID: 26296757 DOI: 10.1016/j.bbadis.2015.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Elucidating the mechanism of prostate cancer cell invasion may lead to the identification of novel therapeutic strategies for its treatment. Paired box 2 (PAX2) and hepatocyte growth factor (HGF) proteins are promoters of prostate cancer cell invasion. We found that PAX2 protein activated the HGF gene promoter through histone H3 acetylation and upregulated HGF gene expression. Deletion analysis revealed that the region from -637 to -314 of the HGF gene was indispensable for HGF promoter activation by PAX2. This region contains consensus PAX2 binding sequences and mutations of the sequences attenuated HGF promoter activation. Using an in vitro invasion model, we found that PAX2 and HGF promoted prostate cancer cell invasion in the same pathway. Knockdown of HGF expression attenuated the cells' invasive capacity. Moreover, in tissue samples of human prostate cancers, HGF and PAX2 expression levels were positively correlated. These results suggested that upregulation of HGF gene expression by PAX2 enhanced the invasive properties of prostate cancer cells. The PAX2/HGF pathway in prostate cancer cells may be a novel therapeutic target in prostate cancer patients.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Saya Ito
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takumi Shiraishi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hidefumi Taniguchi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naruhiro Kayukawa
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroyuki Nakanishi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Terukazu Nakamura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshio Naya
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Fumiya Hongo
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Kamoi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koji Okihara
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192, Japan
| | - Tsuneharu Miki
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Lett 2015; 367:12-7. [PMID: 26185001 DOI: 10.1016/j.canlet.2015.06.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Androgen deprivation therapy (ADT) is considered as the standard therapy for men with de novo or recurrent metastatic prostate cancer. ADT commonly leads to initial biochemical and clinical responses. However, several months after the beginning of treatment, tumors become castration-resistant and virtually all patients show disease progression. At this stage, tumors are no longer curable and cancer treatment options are only palliative. In this review, we describe molecular alterations in tumor cells during ADT, which lead to deregulation of different signaling pathways and castration-resistance, and how they might interfere with the clinical outcome of different second-line therapeutics. A recent breakthrough finding that early chemotherapy is associated with a significant survival benefit in metastatic hormone-sensitive disease highlights the fact that there is time for a fundamental paradigm shift in the treatment of advanced prostate cancer. Therapeutic intervention seems to be indicated before a castration-resistant stage is reached to improve therapeutic outcome and to reduce undesirable side effects.
Collapse
Affiliation(s)
- Arndt Katzenwadel
- Department of Urology, Medical Center, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, Engesser Strasse 4b, D-79108 Freiburg, Germany.
| |
Collapse
|
17
|
Yu Y, Chen Y, Ding G, Wang M, Wu H, Xu L, Rui X, Zhang Z. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts. Biochem Biophys Res Commun 2015; 464:154-60. [PMID: 26093299 DOI: 10.1016/j.bbrc.2015.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/14/2023]
Abstract
The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqing Ding
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liwei Xu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefang Rui
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigen Zhang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Expression of human kallikrein 1-related peptidase 4 (KLK4) and MET phosphorylation in prostate cancer tissue: immunohistochemical analysis. Hum Cell 2015; 28:133-42. [DOI: 10.1007/s13577-015-0114-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
19
|
Cook LM, Shay G, Araujo A, Aruajo A, Lynch CC. Integrating new discoveries into the "vicious cycle" paradigm of prostate to bone metastases. Cancer Metastasis Rev 2015; 33:511-25. [PMID: 24414228 DOI: 10.1007/s10555-014-9494-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In prostate to bone metastases, the "vicious cycle" paradigm has been traditionally used to illustrate how metastases manipulate the bone forming osteoblasts and resorbing osteoclasts in order to yield factors that facilitate growth and establishment. However, recent advances have illustrated that the cycle is far more complex than this simple interpretation. In this review, we will discuss the role of exosomes and hematopoietic/mesenchymal stem/stromal cells (MSC) that facilitate the establishment and activation of prostate metastases and how cells including myeloid-derived suppressor cells, macrophages, T cells, and nerve cells contribute to the momentum of the vicious cycle. The increased complexity of the tumor-bone microenvironment requires a system level approach. The evolution of computational models to interrogate the tumor-bone microenvironment is also discussed, and the application of this integrated approach should allow for the development of effective therapies to treat and cure prostate to bone metastases.
Collapse
Affiliation(s)
- Leah M Cook
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., SRB-3, Tampa, FL, 33612, USA
| | | | | | | | | |
Collapse
|
20
|
Miyata Y, Asai A, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Met in urological cancers. Cancers (Basel) 2014; 6:2387-403. [PMID: 25521854 PMCID: PMC4276973 DOI: 10.3390/cancers6042387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Met is a tyrosine kinase receptor that is considered to be a proto-oncogene. The hepatocyte growth factor (HGF)-Met signaling system plays an important role in tumor growth, invasion, and metastasis in many types of malignancies. Furthermore, Met expression has been reported to be a useful predictive biomarker for disease progression and patient survival in these malignancies. Many studies have focused on the clinical significance and prognostic role of Met in urological cancers, including prostate cancer (PCa), renal cell carcinoma (RCC), and urothelial cancer. Several preclinical studies and clinical trials are in progress. In this review, the current understanding of the pathological role of Met in cancer cell lines, its clinical significance in cancer tissues, and its predictive value in patients with urological cancers are summarized. In particular, Met-related malignant behavior in castration-resistant PCa and the different pathological roles Met plays in papillary RCC and other histological types of RCC are the subjects of focus. In addition, the pathological significance of phosphorylated Met in these cancers is shown. In recent years, Met has been recognized as a potential therapeutic target in various types of cancer; therapeutic strategies used by Met-targeted agents in urological cancers are summarized in this review.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
21
|
Karanika S, Karantanos T, Yin J, Li L, Thompson TC. WITHDRAWN: Novel anti-androgen receptor signaling agents: Understanding the mechanisms of resistance. Asian J Urol 2014. [DOI: 10.1016/j.ajur.2014.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol 2014; 67:470-9. [PMID: 25306226 DOI: 10.1016/j.eururo.2014.09.049] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
CONTEXT Various molecular mechanisms play a role in the development of resistance to androgen deprivation therapy in castration-resistant prostate cancer (CRPC). OBJECTIVE To understand the mechanisms and biological pathways associated with the progression of prostate cancer (PCa) under systemic androgen depletion or administration of the novel antiandrogens abiraterone, enzalutamide, and ARN-509. This review also examines the introduction of novel combinational approaches for patients with CRPC. EVIDENCE ACQUISITION PubMed was the data source. Keywords for the search were castrate resistant prostate cancer, abiraterone, enzalutamide resistance mechanisms, resistance to androgen deprivation, AR mutations, amplifications, splice variants, and AR alterations. Papers published before 1990 were excluded from the review, and only English-language papers were included. EVIDENCE SYNTHESIS This review summarizes the current literature regarding the mechanisms implicated in the development of CRPC and the acquisition of resistance to novel antiandrogen axis agents. The review focuses on androgen biosynthesis in the tumor microenvironment, androgen receptor (AR) alterations and post-transcriptional modifications, the role of glucocorticoid receptor, and alternative oncogenic signaling that is derepressed on maximum AR inhibition and thus promotes cancer survival and progression. CONCLUSIONS The mechanisms implicated in the development of resistance to AR inhibition in PCa are multiple and complex, involving virtually all classes of genomic alteration and leading to a host of selective/adaptive responses. Combinational therapeutic approaches targeting both AR signaling and alternative oncogenic pathways may be reasonable for patients with CRPC. PATIENT SUMMARY We looked for mechanisms related to the progression of PCa in patients undergoing hormonal therapy and treatment with novel drugs targeting the AR. Based on recent data, combining maximal AR inhibition with novel agents targeting other tumor-compensatory, non-AR-related pathways may improve the survival and quality of life of patients with castration-resistant PCa.
Collapse
|
23
|
Novel anti-androgen receptor signaling agents: Understanding the mechanisms of resistance. Asian J Urol 2014; 1:30-39. [PMID: 29511635 PMCID: PMC5832885 DOI: 10.1016/j.ajur.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer remains an intractable threat to the lives of men worldwide. Although deaths from prostate cancer (PCa) in the United States have declined in recent years, in other parts of the world Pca mortality is increasing. The introduction of 2nd generation anti-androgen receptor agents into the therapeutic armamentarium for metastatic castration-resistant prostate cancer (mCRPC) has resulted in modestly increased survival advantages as demonstrated by initial clinical trials. However, analysis of the molecular pathways affected by these agents may lead to new insight into mechanisms of resistance that drive mCRPC, including proliferation and survival signaling pathways that are derepressed by maximum repression of androgen signaling. Combination therapies that involve anti-AR signaling agents together with agents that target these pathways establish a paradigm for the development of more effective treatment of mCRPC. In this review, we briefly summarize the current clinical trial literature with regard to novel anti-AR signaling agents such as abiraterone acetate and enzalutamide. We discuss observational data that point to mechanisms of resistance that emerged from these studies. We further present and discuss recent experimental studies that address the mechanisms of resistance to these treatments. Finally, we discuss novel and rational therapeutic approaches, including combination therapy, for patients with mCRPC.
Collapse
|
24
|
Wozney JL, Antonarakis ES. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev 2014; 33:581-94. [PMID: 24402967 PMCID: PMC4090293 DOI: 10.1007/s10555-013-9475-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.
Collapse
Affiliation(s)
- Jocelyn L. Wozney
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Prostate Cancer Research Program, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, CRB1-1 M45, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
25
|
The clinical value of serum hepatocyte growth factor levels in patients undergoing primary radiotherapy for glioma: effect on progression-free survival. Med Oncol 2014; 31:122. [PMID: 25064731 DOI: 10.1007/s12032-014-0122-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Hepatocyte growth factor (HGF) has been shown to be overexpressed in gliomas, and high-grade gliomas (glioblastoma multiforme) express more HGF than lower-grade astrocytoma, and HGF enhances their resistance to radiotherapy. To examine the effect of serum HGF levels on the likelihood of response to radiotherapy and the disease-free survival in patients with glioma, the blood samples of the patients were collected before commencing treatment and serum HGF was measured by quantitative ELISA in 48 patients with glioma grade I-IV, and all patients underwent primary conventionally fractionated radiotherapy. For statistical analysis, SPSS Version 13.0 software was used. Thirty-eight of the 48 patients had a response to treatment, and ten patients had persistent disease at 3 months. Overall, the median serum HGF level was 1,219.5 pg/ml (range 650.4-2,264.7 pg/ml). Eight patients with local failure had HGF levels >1,219.5 pg/ml, and 28 patients with response had serum HGF level of ≤ 1,219.5 pg/ml (P = 0.01). The median time to progression was 6 months in patients with HGF level of >1,219.5 pg/ml compared with 17 months in patients with HGF level of ≤ 1,219.5 pg/ml (log-rank, P = 0.041). In multivariate analysis, serum HGF, the KPS, tumour size and pathological grade, but not the patient's age, gender and oligodendroglial component influenced the progression-free survival. Elevated pre-therapeutic serum HGF levels are associated with poor response and a shorter time to progression in patients with glioma undergoing primary radiotherapy.
Collapse
|
26
|
Gelman IH. Androgen receptor activation in castration-recurrent prostate cancer: the role of Src-family and Ack1 tyrosine kinases. Int J Biol Sci 2014; 10:620-6. [PMID: 24948875 PMCID: PMC4062955 DOI: 10.7150/ijbs.8264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
There is growing appreciation that castration-recurrent prostate cancer (CR-CaP) is driven by the continued expression of androgen receptor (AR). AR activation in CR-CaP through various mechanisms, including AR overexpression, expression of AR splice variants or mutants, increased expression of co-regulator proteins, and by post-translational modification, allows for the induction of AR-regulated genes in response to very low levels of tissue-expressed, so-called intracrine androgens, resulting in pathways that mediate CaP proliferation, anti-apoptosis and oncogenic aggressiveness. The current review focuses on the role played by Src-family (SFK) and Ack1 non-receptor tyrosine kinases in activating AR through direct phosphorylation, respectively, on tyrosines 534 or 267, and how these modifications facilitate progression to CR-CaP. The fact that SFK and Ack1 are central mediators for multiple growth factor receptor signaling pathways that become activated in CR-CaP, especially in the context of metastatic growth in the bone, has contributed to recent therapeutic trials using SFK/Ack1 inhibitors in monotherapy or in combination with antagonists of the AR activation axis.
Collapse
Affiliation(s)
- Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
27
|
Chu GCY, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung LWK. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 2014; 21:311-326. [PMID: 24478054 PMCID: PMC3959765 DOI: 10.1530/erc-13-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) metastasis to bone is lethal and there is no adequate animal model for studying the mechanisms underlying the metastatic process. Here, we report that receptor activator of NF-κB ligand (RANKL) expressed by PCa cells consistently induced colonization or metastasis to bone in animal models. RANK-mediated signaling established a premetastatic niche through a feed-forward loop, involving the induction of RANKL and c-Met, but repression of androgen receptor (AR) expression and AR signaling pathways. Site-directed mutagenesis and transcription factor (TF) deletion/interference assays identified common TF complexes, c-Myc/Max, and AP4 as critical regulatory nodes. RANKL-RANK signaling activated a number of master regulator TFs that control the epithelial-to-mesenchymal transition (Twist1, Slug, Zeb1, and Zeb2), stem cell properties (Sox2, Myc, Oct3/4, and Nanog), neuroendocrine differentiation (Sox9, HIF1α, and FoxA2), and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1α, and Runx2). Abrogating RANK or its downstream c-Myc/Max or c-Met signaling network minimized or abolished skeletal metastasis in mice. RANKL-expressing LNCaP cells recruited and induced neighboring non metastatic LNCaP cells to express RANKL, c-Met/activated c-Met, while downregulating AR expression. These initially non-metastatic cells, once retrieved from the tumors, acquired the potential to colonize and grow in bone. These findings identify a novel mechanism of tumor growth in bone that involves tumor cell reprogramming via RANK-RANKL signaling, as well as a form of signal amplification that mediates recruitment and stable transformation of non-metastatic bystander dormant cells.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - André Rogatko
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Biostatistics and Bioinformatics Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Xu Feng
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Majd Zayzafoon
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Youhua Liu
- Department of PathologyUniversity of PittsburghPittsburgh, PennsylvaniaUSA
| | | | - Sungyong You
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Jayoung Kim
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Michael R Freeman
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Leland W K Chung
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| |
Collapse
|
28
|
Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling. PLoS One 2013; 8:e78881. [PMID: 24205338 PMCID: PMC3808282 DOI: 10.1371/journal.pone.0078881] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.
Collapse
|
29
|
Dai J, Zhang H, Karatsinides A, Keller JM, Kozloff KM, Aftab DT, Schimmoller F, Keller ET. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res 2013; 20:617-30. [PMID: 24097861 DOI: 10.1158/1078-0432.ccr-13-0839] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Cabozantinib, an orally available multityrosine kinase inhibitor with activity against mesenchymal epithelial transition factor (MET) and VEGF receptor 2 (VEGFR2), induces resolution of bone scan lesions in men with castration-resistant prostate cancer bone metastases. The purpose of this study was to determine whether cabozantinib elicited a direct antitumor effect, an indirect effect through modulating bone, or both. EXPERIMENTAL DESIGN Using human prostate cancer xenograft studies in mice, we determined the impact of cabozantinib on tumor growth in soft tissue and bone. In vitro studies with cabozantinib were performed using (i) prostate cancer cell lines to evaluate its impact on cell growth, invasive ability, and MET and (ii) osteoblast cell lines to evaluate its impact on viability and differentiation and VEGFR2. RESULTS Cabozantinib inhibited progression of multiple prostate cancer cell lines (Ace-1, C4-2B, and LuCaP 35) in bone metastatic and soft tissue murine models of prostate cancer, except for PC-3 prostate cancer cells in which it inhibited only subcutaneous growth. Cabozantinib directly inhibited prostate cancer cell viability and induced apoptosis in vitro and in vivo and inhibited cell invasion in vitro. Cabozantinib had a dose-dependent biphasic effect on osteoblast activity and inhibitory effect on osteoclast production in vitro that was reflected in vivo. It blocked MET and VEGFR2 phosphorylation in prostate cancer cells and osteoblast-like cells, respectively. CONCLUSION These data indicate that cabozantinib has direct antitumor activity, and that its ability to modulate osteoblast activity may contribute to its antitumor efficacy.
Collapse
Affiliation(s)
- Jinlu Dai
- Authors' Affiliations: Departments of Urology and Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan; and Exelixis Inc., South San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Abiraterone acetate: targeting persistent androgen dependence in castration-resistant prostate cancer. Adv Ther 2013; 30:727-47. [PMID: 23979793 PMCID: PMC3778906 DOI: 10.1007/s12325-013-0050-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 12/15/2022]
Abstract
Abiraterone acetate is the first second-line hormonal agent proven to improve survival in metastatic castration-resistant prostate cancer. It selectively inhibits cytochrome P450 17 (CYP17) α-hydroxylase and cytochrome17,20 (C17,20)-lyase, which are enzymes critical for androgen synthesis. Abiraterone acetate was initially approved in the United States in 2011 after demonstrating a 4-month survival benefit in docetaxel-refractory metastatic prostate cancer. The FDA recently expanded its indication for use in the pre-chemotherapy setting after it elicited significant delays in disease progression and a strong trend for increased overall survival in phase III studies. Ongoing investigations of abiraterone are evaluating its efficacy in earlier disease states, exploring its synergy in combination with other therapeutic agents, and assessing the necessity for administration of concurrent steroids and gonadal suppression. The identification and development of predictive biomarkers will optimize the incorporation of abiraterone into the management of advanced prostate cancer.
Collapse
|
32
|
Novel chemotherapies in development for management of castration-resistant prostate cancer. Curr Opin Urol 2013; 23:220-9. [DOI: 10.1097/mou.0b013e32835f7da2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Nishida S, Hirohashi Y, Torigoe T, Inoue R, Kitamura H, Tanaka T, Takahashi A, Asanuma H, Masumori N, Tsukamoto T, Sato N. Prostate cancer stem-like cells/cancer-initiating cells have an autocrine system of hepatocyte growth factor. Cancer Sci 2013; 104:431-6. [PMID: 23320511 DOI: 10.1111/cas.12104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/31/2012] [Accepted: 01/04/2013] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer cells include a small population of cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) that have roles in initiation and progression of the cancer. Recently, we isolated prostate CSCs/CICs as aldehyde dehydrogenase 1-highh (ALDH1(high) ) cells using the ALDEFLUOR assay; however, the molecular mechanisms of prostate CSCs/CICs are still elusive. Prostate CSCs/CICs were isolated as ALDH1(high) cells using the ALDEFLUOR assay, and the gene expression profiles were analyzed using a cDNA microarray and RT-PCR. We found that prostate CSCs/CICs expressed higher levels of growth factors including hepatocyte growth factor (HGF). Hepatocyte growth factor protein expression was confirmed by enzyme linked immunosorbent assay and Western blotting. On the other hand, c-MET HGF receptor was expressed in both CSCs/CICs and non-CSCs/CICs at similar levels. Hepatocyte growth factor and the supernatant of myofibloblasts derived from the prostate augmented prostasphere formation in vitro, and prostasphere formation was inhibited by an anti-HGF antibody. Furthermore, c-MET gene knockdown by siRNA inhibited the prostasphere-forming ability in vitro and tumor-initiating ability in vivo. Taken together, the results indicate that HGF secreted by prostate CSCs/CICs and prostate myofibroblasts has a role in the maintenance of prostate CSCs/CICs in an autocrine and paracrine fashion.
Collapse
Affiliation(s)
- Sachiyo Nishida
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, Reuter V, Carver B, de Stanchina E, Enomoto K, Greenberg NM, Scardino PT, Scher HI, Sawyers CL, Giancotti FG. β4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest 2013; 123:682-99. [PMID: 23348745 PMCID: PMC3561800 DOI: 10.1172/jci60720] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 02/03/2023] Open
Abstract
The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Javier Otero
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Yu Chen
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Young-Mi Kim
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jason A. Koutcher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jaya Satagopan
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Victor Reuter
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Brett Carver
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Elisa de Stanchina
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Katsuhiko Enomoto
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Norman M. Greenberg
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Peter T. Scardino
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Howard I. Scher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Charles L. Sawyers
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Filippo G. Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| |
Collapse
|
35
|
Sheikh H, Abdulghani J, Ali S, Sinha R, Lipton A. Impact of Genetic Targets on Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:359-83. [DOI: 10.1007/978-1-4614-6176-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Ryan CJ, Rosenthal M, Ng S, Alumkal J, Picus J, Gravis G, Fizazi K, Forget F, Machiels JP, Srinivas S, Zhu M, Tang R, Oliner KS, Jiang Y, Loh E, Dubey S, Gerritsen WR. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res 2012; 19:215-24. [PMID: 23136195 DOI: 10.1158/1078-0432.ccr-12-2605] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the efficacy, safety, biomarkers, and pharmacokinetics of rilotumumab, a fully human, monoclonal antibody against hepatocyte growth factor (HGF)/scatter factor, combined with mitoxantrone and prednisone (MP) in patients with castration-resistant prostate cancer (CRPC). EXPERIMENTAL DESIGN This double-blinded phase II study randomized (1:1:1) patients with progressive, taxane-refractory CRPC to receive MP (12 mg/m(2) i.v. day 1, 5 mg twice a day orally days 1-21, respectively) plus 15 mg/kg rilotumumab, 7.5 mg/kg rilotumumab, or placebo (i.v. day 1) every 3 weeks. The primary endpoint was overall survival (OS). RESULTS One hundred and forty-four patients were randomized. Median OS was 12.2 versus 11.1 months [HR, 1.10; 80% confidence interval (CI), 0.82-1.48] in the combined rilotumumab versus control arms. Median progression-free survival was 3.0 versus 2.9 months (HR, 1.02; 80% CI, 0.79-1.31). Treatment appeared well tolerated with peripheral edema (24% vs. 8%) being more common with rilotumumab. A trend toward unfavorable OS was observed in patients with high tumor MET expression regardless of treatment. Soluble MET levels increased in all treatment arms. Total HGF levels increased in the rilotumumab arms. Rilotumumab showed linear pharmacokinetics when co-administered with MP. CONCLUSIONS Rilotumumab plus MP had manageable toxicities and showed no efficacy improvements in this estimation study. High tumor MET expression may identify patients with CRPC with poorer prognosis.
Collapse
Affiliation(s)
- Charles J Ryan
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sankpal UT, Abdelrahim M, Connelly SF, Lee CM, Madero-Visbal R, Colon J, Smith J, Safe S, Maliakal P, Basha R. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 2012; 72:1648-1658. [PMID: 22473873 DOI: 10.1002/pros.22518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Specificity protein (Sp) transcription factors are implicated in critical cellular and molecular processes associated with cancer that impact tumor growth and metastasis. The non-steroidal anti-inflammatory drug, tolfenamic acid (TA) is known to inhibit Sp proteins in some human cancer cells and laboratory animal models. We evaluated the anti-cancer activity of TA using in vitro and in vivo models for prostate cancer. METHODS The anti-proliferative efficacy of TA was evaluated using DU-145, PC-3, and LNCaP cells. PC-3 cells were treated with DMSO or 50 µM TA for 48 hr. Whole cell lysates were evaluated for the expression of Sp1, survivin, c-PARP, Akt/p-Akt, c-Met, cdk4, cdc2, cyclin D3, and E2F1 by Western blot analysis. Cell invasion was assessed by Boyden-chamber assay and flow cytometry analysis was used to study apoptosis and cell cycle distribution. An orthotopic mouse model for prostate cancer with PC-3-Luc cells was used to study the in vivo effect of TA. RESULTS TA inhibited the expression of Sp1, c-Met, p-Akt, and survivin; increased c-PARP expression and caspases activity in PC-3 cells. TA caused cell arrest at G(0) /G(1) phase accompanied by a decrease in cdk4, cdc2, cyclin D3, and E2F1 and an increase in critical apoptotic markers. TA augmented annexin-V staining, caspase activity, and c-PARP expression indicating the activation of apoptotic pathways. TA also decreased PC-3 cell invasion. TA significantly decreased the tumor weight and volume which was associated with low expression of Sp1 and survivin in tumor sections. CONCLUSION TA targets critical pathways associated with tumorigenesis and invasion. These pre-clinical data strongly demonstrated the anti-cancer activity of TA in prostate cancer.
Collapse
Affiliation(s)
- Umesh T Sankpal
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jacobsen F, Ashtiani SN, Tennstedt P, Heinzer H, Simon R, Sauter G, Sirma H, Tsourlakis MC, Minner S, Schlomm T, Michl U. High c-MET expression is frequent but not associated with early PSA recurrence in prostate cancer. Exp Ther Med 2012; 5:102-106. [PMID: 23251249 PMCID: PMC3524275 DOI: 10.3892/etm.2012.764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/14/2012] [Indexed: 12/02/2022] Open
Abstract
c-MET is considered a possible therapeutic target in numerous tumor types and is also a candidate regulator of response to anti-HER2 and anti-epidermal growth factor receptor (EGFR) therapy. The aim of this study was to determine the prevalence and clinical significance of c-MET expression in hormone-naïve prostate cancers. A pre-existing prostate tissue microarray (TMA) containing samples of 4,177 patients treated by radical prostatectomy was used. A total of 3,378 different prostate cancers were successfully analyzed for c-MET expression by immunohistochemistry and follow-up data were available for 4,104 patients. Membranous c-MET immunostaining was performed for 2,655 (78.6%) tumors. High c-MET protein expression was significantly associated with a high Gleason grade (P=0.0018). However, c-MET was not a prognostic marker for biochemical recurrence. c-MET levels were also not associated with other parameters, including tumor stage, nodal stage and surgical margin status. The c-MET protein is often overexpressed in prostate cancer, but has no prognostic relevance. However, the frequent presence of high levels of membranous c-MET protein in prostate cancer cells makes c-MET an attractive target for imaging and treatment.
Collapse
|
39
|
Park JJ, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer. BMC Cancer 2012; 12:81. [PMID: 22390300 PMCID: PMC3313899 DOI: 10.1186/1471-2407-12-81] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/06/2012] [Indexed: 01/24/2023] Open
Abstract
Background KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF) of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM), KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1), which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression. Methods We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8) and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6) were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level. Results We demonstrated that Hypoxia-inducible factor 1α (HIF-1α) and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL) protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α. Conclusions These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF expression.
Collapse
Affiliation(s)
- Jung-Jin Park
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Nowon-Ku, Seoul 139-706, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Gallick GE, Corn PG, Zurita AJ, Lin SH. Small-molecule protein tyrosine kinase inhibitors for the treatment of metastatic prostate cancer. Future Med Chem 2012; 4:107-19. [PMID: 22168167 PMCID: PMC3285098 DOI: 10.4155/fmc.11.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microenvironment is critical to the growth of prostate cancer (PCa) in the bone. Thus, for clinical efficacy, therapies must target tumor-microenvironment interactions. Several protein tyrosine kinases have been implicated in the development and growth of PCa bone metastasis. In this review, specific protein tyrosine kinases that regulate these complex interactions, including PDGFR, the EGFR family, c-Src, VEGFR, IGF-1R, FGFR and c-Met will be discussed, with an emphasis on why these kinases are promising therapeutic targets for metastatic PCa treatment. For each of these kinases, small-molecule inhibitors have reached clinical trials. Current results of these trials and future prospects for the use of tyrosine kinase inhibitors for the treatment of PCa bone metastases are also discussed.
Collapse
Affiliation(s)
- Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Molecular Pathology, Unit 89, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
41
|
Dayyani F, Gallick GE, Logothetis CJ, Corn PG. Novel therapies for metastatic castrate-resistant prostate cancer. J Natl Cancer Inst 2011; 103:1665-75. [PMID: 21917607 DOI: 10.1093/jnci/djr362] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in tumor biology have made remarkable achievements in the development of therapy for metastatic castrate-resistant prostate cancer. These advances reflect a growing appreciation for the role of the tumor microenvironment in promoting prostate cancer progression. Prostate cancer is no longer viewed predominantly as a disease of abnormally proliferating epithelial cells but rather as a disease of complex interactions between prostate cancer epithelial cells (epithelial compartment) and the surrounding tissues (stromal compartment) in which they reside. For example, prostate cancers frequently metastasize to bone, an organ that contains a microenvironment rich in extracellular matrix proteins and stromal cells including hematopoietic cells, osteoblasts, osteoclasts fibroblasts, endothelial cells, adipocytes, immune cells, and mesenchymal stem cells. Multiple signaling pathways provide crosstalk between the epithelial and the stromal compartments to enhance tumor growth, including androgen receptor signaling, tyrosine kinase receptor signaling, and immune surveillance. The rationale to disrupt this "two-compartment" crosstalk has led to the development of drugs that target tumor stromal elements in addition to the cancer epithelial cell.
Collapse
Affiliation(s)
- Farshid Dayyani
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Tu WH, Zhu C, Clark C, Christensen JG, Sun Z. Efficacy of c-Met inhibitor for advanced prostate cancer. BMC Cancer 2010; 10:556. [PMID: 20946682 PMCID: PMC2964640 DOI: 10.1186/1471-2407-10-556] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/14/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. METHODS We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. RESULTS We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. CONCLUSIONS The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- William H Tu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA.
| | | | | | | | | |
Collapse
|
43
|
Yang D, Kedei N, Li L, Tao J, Velasquez JF, Michalowski AM, Tóth BI, Marincsák R, Varga A, Bíró T, Yuspa SH, Blumberg PM. RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype. Cancer Res 2010; 70:7905-17. [PMID: 20876802 DOI: 10.1158/0008-5472.can-09-4729] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RasGRP3 mediates the activation of the Ras signaling pathway that is present in many human cancers. Here, we explored the involvement of RasGRP3 in the formation and maintenance of the prostate cancer phenotype. RasGRP3 expression was elevated in multiple human prostate tumor tissue samples and in the human androgen-independent prostate cancer cell lines PC-3 and DU 145 compared with the androgen-dependent prostate cancer cell line LNCaP. Downregulation of endogenous RasGRP3 in PC-3 and DU 145 cells reduced Ras-GTP formation, inhibited cell proliferation, impeded cell migration, and induced apoptosis. Anchorage-independent growth of the PC-3 cells and tumor formation in mouse xenografts of both cell lines were likewise inhibited. Inhibition of RasGRP3 expression reduced AKT and extracellular signal-regulated kinase 1/2 phosphorylation and sensitized the cells to killing by carboplatin. Conversely, exogenous RasGRP3 elevated Ras-GTP, stimulated proliferation, and provided resistance to phorbol 12-myristate 13-acetate-induced apoptosis in LNCaP cells. RasGRP3-overexpressing LNCaP cells displayed a markedly enhanced rate of xenograft tumor formation in both male and female mice compared with the parental line. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses, caused the cells to resume the LNCaP morphology, and suppressed growth, confirming the functional role of RasGRP3 in the altered behavior of these cells. We conclude that RasGRP3 contributes to the malignant phenotype of the prostate cancer cells and may constitute a novel therapeutic target for human prostate cancer.
Collapse
Affiliation(s)
- Dazhi Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255 , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dai Y, Siemann DW. BMS-777607, a Small-Molecule Met Kinase Inhibitor, Suppresses Hepatocyte Growth Factor–Stimulated Prostate Cancer Metastatic Phenotype In vitro. Mol Cancer Ther 2010; 9:1554-61. [DOI: 10.1158/1535-7163.mct-10-0359] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103:1-23. [PMID: 19854350 DOI: 10.1016/s0065-230x(09)03001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jason A Hanna
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
46
|
Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 2009; 21:33-9. [PMID: 19896548 DOI: 10.1016/j.semcdb.2009.10.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 12/19/2022]
Abstract
In the past century, gradual but sustained advances in our understanding of the molecular mechanisms involved in the growth and invasive properties of cancer cells have led to better management of tumors. However, many tumors still escape regulation and progress to advanced disease. Until recently, there has not been an organized and sustained focus on the "normal" cells in the vicinity of tumors. Interactions between the tumor and these host cells, as well as autonomous qualities of the host cells themselves, might explain why tumors in people with histologically similar cancers often behave and respond differently to treatment. Cells of the tumor microenvironment, variously referred to as cancer stroma, reactive stroma or carcinoma-associated fibroblasts (CAF), exist in close proximity to the cancer epithelium. Both stromal and epithelial phenotypes co-evolve during tumorigenesis and it is now becoming clear that these stromal cells may not be the innocent bystanders they had been widely thought to be, but rather may be active contributors to carcinogenesis. Our group and others have shown the important role that CAF play in the progression of cancer. In this article we will address current trends in the study of the interactions between cancer stroma and tumor cells in different organs. We will also highlight perceived knowledge gaps and suggest research areas that need to be further explored to provide new targets for anticancer therapies.
Collapse
|
47
|
Li W, Wang BE, Moran P, Lipari T, Ganesan R, Corpuz R, Ludlam MJC, Gogineni A, Koeppen H, Bunting S, Gao WQ, Kirchhofer D. Pegylated kunitz domain inhibitor suppresses hepsin-mediated invasive tumor growth and metastasis. Cancer Res 2009; 69:8395-402. [PMID: 19843851 DOI: 10.1158/0008-5472.can-09-1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transmembrane serine protease hepsin is one of the most highly upregulated genes in prostate cancer. Here, we investigated its tumor-promoting activity by use of a mouse orthotopic prostate cancer model. First, we compared the tumor growth of low hepsin-expressing LnCaP-17 cells with hepsin-overexpressing LnCaP-34 cells. After implantation of cells into the left anterior prostate lobe, LnCaP-34 tumors not only grew faster based on increased serum prostate-specific antigen levels but also metastasized to local lymph nodes and, most remarkably, invaded the contralateral side of the prostate at a rate of 100% compared with only 18% for LnCaP-17 tumors. The increased tumor growth was not due to nonspecific gene expression changes and was not predicted from the unaltered in vitro growth and invasion of LnCaP-34 cells. A likely explanation is that the in vivo effects of hepsin were mediated by specific hepsin substrates present in the tumor stroma. In a second study, mice bearing LnCaP-34 tumors were treated with a PEGylated form of Kunitz domain-1, a potent hepsin active site inhibitor derived from hepatocyte growth factor activator inhibitor-1 (K(i)(app) 0.30 +/- 0.02 nmol/L). Treatment of established tumors with PEGylated Kunitz domain-1 decreased contralateral prostate invasion (46% weight reduction) and lymph node metastasis (50% inhibition). Moreover, serum prostate-specific antigen level remained reduced during the entire treatment period, reaching a maximal reduction of 76% after 5 weeks of dosing. The findings show that hepsin promotes invasive prostate tumor growth and metastasis and suggest that active site-directed hepsin inhibition could be effective in prostate cancer therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Protein Engineering, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl Immunohistochem Mol Morphol 2009; 17:57-67. [PMID: 18815565 DOI: 10.1097/pai.0b013e3181816ae2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inappropriate expression of the c-MET cell surface receptor in many human solid tumors necessitates the development of companion diagnostics to identify those patients who could benefit from c-MET targeted therapies. Tumor tissues are formalin fixed and paraffin embedded (FFPE) for histopathologic evaluation, making the development of an antibody against c-MET that accurately and reproducibly detects the protein in FFPE samples an urgent need. We have developed a monoclonal antibody (mAb), designated MET4, from a panel of MET-avid mAbs, based on its specific staining pattern in FFPE preparations. The accuracy of MET4 immunohistochemistry (MET4-IHC) was assessed by comparing MET4-IHC in FFPE cell pellets with immunoblotting analysis. The technical reproducibility of MET4-IHC possessed a percentage coefficient of variability of 6.25% in intra-assay and interassay testing. Comparison with other commercial c-MET antibody detection reagents demonstrated equal specificity and increased sensitivity for c-MET detection in prostate tissues. In cohorts of ovarian cancers and gliomas, MET4 reacted with ovarian cancers of all histologic subtypes (strong staining in 25%) and with 63% of gliomas. In addition, MET4 bound c-MET on the surfaces of cultured human cancer cells and tumor xenografts. In summary, the MET4 mAb accurately and reproducibly measures c-MET expression by IHC in FFPE tissues and can be used for molecular imaging in vivo. These properties encourage further development of MET4 as a multipurpose molecular diagnostics reagent to help to guide appropriate selection of patients being considered for treatment with c-MET-antagonistic drugs.
Collapse
|
49
|
Abstract
The critical role played by stroma-epithelium crosstalk in carcinogenesis and progression of prostate cancer has been increasingly recognized. These interactions are mediated by a variety of paracrine factors secreted by cancer cells and/or stromal cells. In human prostate cancer, reactive stroma is characterized by an increase in myofibroblasts and a corresponding amplification of extracellular matrix production and angiogenesis. Permanent genetic mutations have been reported in stromal cells as well as in tumour cells. Transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor signalling pathways are involved in the process of angiogenesis, whereas hepatocyte growth factor, insulin-like growth factor-1, epidermal growth factor, CXC12 and Interleukin-6 play active roles in the progression, androgen-independent conversion and distal metastasis of prostate cancer. Some soluble factors have reciprocal interactions with androgens and the androgen receptor (AR), and can even activate AR in the absence of the androgen ligand. In this article, we review the complex interactions between cancer cells and the surrounding microenvironment, and discuss the potential therapeutic targets in the stromal compartment of prostate cancer.
Collapse
Affiliation(s)
- Yi-Nong Niu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
50
|
Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, Dodson AR, Cooper CS, Eeles R, Falconer A, Kovacs G, Garrett MD, Norman AR, Shipley J, Hudson DL. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer 2008; 99:1849-58. [PMID: 19002168 PMCID: PMC2600693 DOI: 10.1038/sj.bjc.6604774] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed male cancer, and its clinical outcome is difficult to predict. The disease may involve the inappropriate expression of genes that normally control the proliferation of epithelial cells in the basal layer and their differentiation into luminal cells. Our aim was to identify novel basal cell markers and assess their prognostic and functional significance in prostate cancer. RNA from basal and luminal cells isolated from benign tissue by immunoguided laser-capture microdissection was subjected to expression profiling. We identified 112 and 267 genes defining basal and luminal populations, respectively. The transcription factor TEAD1 and the ubiquitin ligase c-Cbl were identified as novel basal cell markers. Knockdown of either marker using siRNA in prostate cell lines led to decreased cell growth in PC3 and disrupted acinar formation in a 3D culture system of RWPE1. Analyses of prostate cancer tissue microarray staining established that increased protein levels of either marker were associated with decreased patient survival independent of other clinicopathological metrics. These data are consistent with basal features impacting on the development and clinical course of prostate cancers.
Collapse
Affiliation(s)
- J F Knight
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - C J Shepherd
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Rizzo
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D Brewer
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Jhavar
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Dodson
- Department of Pathology and Molecular Genetics, University of Liverpool, Duncan Building, Liverpool, UK
| | - C S Cooper
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - R Eeles
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A Falconer
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Department of Oncology, Charing Cross Hospital, London W6 8RF, UK
| | - G Kovacs
- Ruprecht-Karls-Universitat, Heidelberg Klinikum, Molekular Onkologie, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - M D Garrett
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Norman
- Department of Medical Statistics, Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, UK
| | - J Shipley
- Department of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D L Hudson
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|