1
|
Abstract
Cytomegaloviruses (CMVs) are among the largest pathogenic viruses in mammals. To enable replication of their long double-stranded DNA genomes, CMVs induce profound changes in cell cycle regulation. A hallmark of CMV cell cycle control is the establishment of an unusual cell cycle arrest at the G1/S transition, which is characterized by the coexistence of cell cycle stimulatory and inhibitory activities. While CMVs interfere with cellular DNA synthesis and cell division, they activate S-phase-specific gene expression and nucleotide metabolism. This is facilitated by a set of CMV gene products that target master regulators of G1/S progression such as cyclin E and A kinases, Rb-E2F transcription factors, p53-p21 checkpoint proteins, the APC/C ubiquitin ligase, and the nucleotide hydrolase SAMHD1. While the major themes of cell cycle regulation are well conserved between human and murine CMVs (HCMV and MCMV), there are considerable differences at the level of viral cell cycle effectors and their mechanisms of action. Furthermore, both viruses have evolved unique mechanisms to sense the host cell cycle state and modulate the infection program accordingly. This review provides an overview of conserved and divergent features of G1/S control by MCMV and HCMV.
Collapse
|
2
|
Dantoft W, Robertson KA, Watkins WJ, Strobl B, Ghazal P. Metabolic Regulators Nampt and Sirt6 Serially Participate in the Macrophage Interferon Antiviral Cascade. Front Microbiol 2019; 10:355. [PMID: 30886604 PMCID: PMC6409323 DOI: 10.3389/fmicb.2019.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Molecular determinants underlying interferon (IFN)-macrophage biology can help delineate enzyme systems, pathways and mechanisms for enabling host-directed therapeutic approaches against infection. Notably, while the IFN antiviral response is known to be directly coupled to mevalonate-sterol biosynthesis, mechanistic insight for providing host pathway-therapeutic targets remain incomplete. Here, we show that Nampt and Sirt6 are coordinately regulated upon immune activation of macrophages and contribute to the IFN-sterol antiviral response. In silico analysis of the Nampt and Sirt6 promoter regions identified multiple core immune gene-regulatory transcription factor sites, including Stat1, implicating a molecular link to IFN control. Experimentally, we show using a range of genetically IFN-defective macrophages that the expression of Nampt is stringently regulated by the Jak/Stat-pathway while Sirt6 activation is temporally displaced in a partial IFN-dependent manner. We further show that pharmacological inhibition of Nampt and small interfering RNA (siRNA)-mediated inhibition of Nampt and Sirt6 promotes viral growth of cytomegalovirus in both fibroblasts and macrophages. Our results support the notion of pharmacologically exploiting immune regulated enzyme systems of macrophages for use as an adjuvant-based therapy for augmenting host protective pathway responses to infection.
Collapse
Affiliation(s)
- Widad Dantoft
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin A Robertson
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - W John Watkins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Ghazal
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Long and Short Isoforms of the Human Cytomegalovirus UL138 Protein Silence IE Transcription and Promote Latency. J Virol 2016; 90:9483-94. [PMID: 27512069 DOI: 10.1128/jvi.01547-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The UL133-138 locus present in clinical strains of human cytomegalovirus (HCMV) encodes proteins required for latency and reactivation in CD34(+) hematopoietic progenitor cells and virion maturation in endothelial cells. The encoded proteins form multiple homo- and hetero-interactions and localize within secretory membranes. One of these genes, UL136 gene, is expressed as at least five different protein isoforms with overlapping and unique functions. Here we show that another gene from this locus, the UL138 gene, also generates more than one protein isoform. A long form of UL138 (pUL138-L) initiates translation from codon 1, possesses an amino-terminal signal sequence, and is a type one integral membrane protein. Here we identify a short protein isoform (pUL138-S) initiating from codon 16 that displays a subcellular localization similar to that of pUL138-L. Reporter, short-term transcription, and long-term virus production assays revealed that both pUL138-L and pUL138-S are able to suppress major immediate early (IE) gene transcription and the generation of infectious virions in cells in which HCMV latency is studied. The long form appears to be more potent at silencing IE transcription shortly after infection, while the short form seems more potent at restricting progeny virion production at later times, indicating that both isoforms of UL138 likely cooperate to promote HCMV latency. IMPORTANCE Latency allows herpesviruses to persist for the lives of their hosts in the face of effective immune control measures for productively infected cells. Controlling latent reservoirs is an attractive antiviral approach complicated by knowledge deficits for how latently infected cells are established, maintained, and reactivated. This is especially true for betaherpesviruses. The functional consequences of HCMV UL138 protein expression during latency include repression of viral IE1 transcription and suppression of virus replication. Here we show that short and long isoforms of UL138 exist and can themselves support latency but may do so in temporally distinct manners. Understanding the complexity of gene expression and its impact on latency is important for considering potential antivirals targeting latent reservoirs.
Collapse
|
4
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
5
|
Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 2008; 325:417-70. [PMID: 18637519 DOI: 10.1007/978-3-540-77349-8_23] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with human cytomegalovirus (HCMV) are a major cause of morbidity and mortality in humans with acquired or developmental deficits in innate and adaptive immunity. In the normal immunocompetent host, symptoms rarely accompany acute infections, although prolonged virus shedding is frequent. Virus persistence is established in all infected individuals and appears to be maintained by both a chronic productive infections as well as latency with restricted viral gene expression. The contributions of the each of these mechanisms to the persistence of this virus in the individual is unknown but frequent virus shedding into the saliva and genitourinary tract likely accounts for the near universal incidence of infection in most populations in the world. The pathogenesis of disease associated with acute HCMV infection is most readily attributable to lytic virus replication and end organ damage either secondary to virus replication and cell death or from host immunological responses that target virus-infected cells. Antiviral agents limit the severity of disease associated with acute HCMV infections, suggesting a requirement for virus replication in clinical syndromes associated with acute infection. End organ disease secondary to unchecked virus replication can be observed in infants infected in utero, allograft recipients receiving potent immunosuppressive agents, and patients with HIV infections that exhibit a loss of adaptive immune function. In contrast, diseases associated with chronic or persistent infections appear in normal individuals and in the allografts of the transplant recipient. The manifestations of these infections appear related to chronic inflammation, but it is unclear if poorly controlled virus replication is necessary for the different phenotypic expressions of disease that are reported in these patients. Although the relationship between HCMV infection and chronic allograft rejection is well known, the mechanisms that account for the role of this virus in graft loss are not well understood. However, the capacity of this virus to persist in the midst of intense inflammation suggests that its persistence could serve as a trigger for the induction of host-vs-graft responses or alternatively host responses to HCMV could contribute to the inflammatory milieu characteristic of chronic allograft rejection.
Collapse
Affiliation(s)
- W Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital, Harbor Bldg. 104, 1600 7th Ave. South Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B. Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 2008; 89:359-368. [PMID: 18198366 DOI: 10.1099/vir.0.83286-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strain TB40/E, replicates efficiently, exhibits a broad cell tropism and is widely used for infection of endothelial cells and monocyte-derived cells yet has not been available in a phenotypically homogeneous form compatible with genetic analysis. To overcome this problem, we cloned the TB40/E strain into a bacterial artificial chromosome (BAC) vector. Both highly endotheliotropic and poorly endotheliotropic virus clones, representing three distinct restriction fragment patterns, were reconstituted after transfection of BAC clones derived from previously plaque-purified strain TB40/E. For one of the highly endotheliotropic clones, TB40-BAC4, we provide the genome sequence. Two BACs with identical restriction fragment patterns but different cell tropism were further analysed in the UL128-UL131A gene region. Sequence analysis revealed one coding-relevant adenine insertion at position 332 of UL128 in the BAC of the poorly endotheliotropic virus, which caused a frameshift in the C-terminal part of the coding sequence. Removal of this insertion by markerless mutagenesis restored the highly endotheliotropic phenotype, indicating that the loss of endothelial cell tropism was caused by this insertion. In conclusion, HCMV strain TB40/E, which combines the high endothelial cell tropism of a clinical isolate with the high titre growth of a cell culture adapted strain, is now available as a BAC clone suitable for genetic engineering. The results also suggest BAC cloning as a suitable method for selection of genetically defined virus clones.
Collapse
Affiliation(s)
- Christian Sinzger
- Institut für Medizinische Virologie, Eberhard-Karls-Universität, Tübingen, Germany
| | | | - Margarete Digel
- Institut für Medizinische Virologie, Eberhard-Karls-Universität, Tübingen, Germany
| | - Ruth Katona
- Institut für Medizinische Virologie, Eberhard-Karls-Universität, Tübingen, Germany
| | - Kerstin Laib Sampaio
- Institut für Medizinische Virologie, Eberhard-Karls-Universität, Tübingen, Germany
| | - Martin Messerle
- Abteilung für Virologie, Medizinische Hochschule Hannover, Germany
| | - Hartmut Hengel
- Institut für Virologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ulrich Koszinowski
- Max von Pettenkofer-Institut für Virologie, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Brune
- Fachgebiet Virale Infektionen, Robert Koch-Institut, Berlin, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institut für Virologie, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
7
|
Tang Q, Murphy EA, Maul GG. Experimental confirmation of global murine cytomegalovirus open reading frames by transcriptional detection and partial characterization of newly described gene products. J Virol 2006; 80:6873-82. [PMID: 16809293 PMCID: PMC1489029 DOI: 10.1128/jvi.00275-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Murine cytomegalovirus (MCMV) and human CMV (HCMV) share many features making the mouse system a potential small-animal model for HCMV. Although the genomic DNA sequence and the predicted open reading frames (ORFs) of MCMV have been determined, experimental evidence that the ORFs are actually transcribed has been lacking. We developed an MCMV global-DNA microarray that includes all previously predicted ORFs and 14 potential ones. A total of 172 ORFs were confirmed to be transcribed, including 7 newly discovered ORFs not previously predicted. No gene products from 10 previously predicted ORFs were detected by either DNA microarray analysis or reverse transcriptase PCR in MCMV-infected mouse fibroblasts, although 2 of those were expressed in a macrophage cell line, suggesting that potential gene products from these open reading frames are silenced in fibroblasts and required in macrophages. Immunohistochemical localization of the six newly described ORF products and three recently identified ones in cells transfected with the respective construct revealed four of the products in the nucleus and five in mitochondria. Analysis of two ORFs using site-directed mutagenesis showed that deletion of one of the mitochondrion-localized gene products led to significantly decreased replication in fibroblasts.
Collapse
Affiliation(s)
- Qiyi Tang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Drebber U, Haferkamp K, Kern MA, Müller M, Zur Hausen A, Kasper HU, Odenthal M, Dienes HP. Induction of early murine cytomegalovirus infection by different reporter gene-associated recombinant viruses. J Viral Hepat 2006; 13:363-70. [PMID: 16842438 DOI: 10.1111/j.1365-2893.2005.00696.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Murine cytomegalovirus (MCMV) has provided useful models for acute, chronic and latent CMV infection because of its similarities in structure and biology with human CMV. We report the induction of acute MCMV hepatitis with different bacterial artificial chromosome (BAC)-cloned virus constructs [MCMV-SEAP which includes the gene for secreted alkaline phosphatase (SEAP) under Rous sarcoma virus (RSV)-promoter control, MCMV-GFP which includes the gene for enhanced green fluorescent protein (eGFP) under HCMV-ie promoter control, MCMV-HBs includes the gene for hepatitis B surface antigen (HBsAg) under simian virus (SV)40-promoter control and the DeltaMC95.21 virus in which the m152 gene was deleted and substituted by the reporter gene lacZ] in order to elucidate the histopathological changes together with different reporter-gene products in the liver tissue and the effect of the deletion of a certain gene. All the virus constructs induced a similar mild acute hepatitis which had its climax from days 3 to 5 post-infection in immunocompetent mice. In situ, the reporter-gene products beta-galactosidase and secreted alkaline phosphatase could be visualized in relation to the inflammatory changes. The composition of the invading cell populations did not change even in the absence of the m152 gene. Additionally discrete inflammatory changes were seen in kidney and serosa while the other organs were not involved. This model helps us understand the immunological and histopathological mechanisms of the CMV-induced hepatitis, which plays an important role especially in the immunocompromised patient. The morphological changes can be analysed while the respective reporter gene product is expressed by the virus construct.
Collapse
Affiliation(s)
- U Drebber
- Institute of Pathology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Deng H, Chu JT, Park NH, Sun R. Identification of cis sequences required for lytic DNA replication and packaging of murine gammaherpesvirus 68. J Virol 2004; 78:9123-31. [PMID: 15308708 PMCID: PMC506910 DOI: 10.1128/jvi.78.17.9123-9131.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human gammaherpesviruses are associated with lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) infection of mice has emerged as a model for understanding gammaherpesvirus pathogenesis in vivo. In contrast to human gammaherpesviruses, MHV-68 replicates in permissive cell lines in a robust manner, presenting an efficient model to study the basic mechanisms for DNA replication and recombination processes. In addition, MHV-68 also infects a broad range of cells of different tissue types and from different host species, and the viral genome persists as an episome in infected cells. These features make MHV-68 an attractive system on which to build gene delivery vectors. We have therefore undertaken a study to identify the cis elements required for MHV-68 genome replication and packaging. Here we report that an 8.4-kb MHV-68 genomic fragment between ORF66 and ORF73 conferred on the plasmid the ability to replicate; replication required the presence of either de novo viral infection or viral reactivation from latency. We further mapped the origin of lytic replication (oriLyt) to a 1.25-kb region. Moreover, we demonstrated that the terminal repeat of the viral genome is sufficient for packaging of the replicated oriLyt plasmid into mature viral particles. Functional identification of the MHV-68 oriLyt and packaging signal has laid a foundation for investigating the mechanisms controlling gammaherpesvirus DNA replication during the viral lytic phase and will also serve as a base on which to design gene delivery vectors.
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Molecular & Medical Pharmacology, Dental Research Intsitute, UCLA AIDS Institute, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles 90095-1735, USA.
| | | | | | | |
Collapse
|
10
|
Nevels M, Brune W, Shenk T. SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol 2004; 78:7803-12. [PMID: 15220454 PMCID: PMC434104 DOI: 10.1128/jvi.78.14.7803-7812.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The 72-kDa immediate-early 1 protein (IE1-72kDa) of human cytomegalovirus has been previously shown to be posttranslationally modified by covalent conjugation to the ubiquitin-related protein SUMO-1. Using an infectious bacterial artificial chromosome clone of human cytomegalovirus, we constructed a mutant virus (BADpmIE1-K450R) that is deficient for SUMOylation of IE1-72 kDa due to a single amino acid exchange in the SUMO-1 attachment site. Compared to wild-type virus, this mutant grew more slowly and generated a reduced yield in infected human fibroblasts, indicating that SUMO modification is required for the full activity of IE1-72 kDa. The lack of SUMOylation did not affect the intranuclear localization of IE1-72 kDa, including its ability to target to and disrupt PML bodies and to bind to mitotic chromatin. Likewise, SUMOylation-deficient IE1-72 kDa activated several viral promoters as efficiently as the wild-type protein. However, the failure to modify IE1-72 kDa resulted in substantially reduced levels of the IE2 transcript and its 86-kDa protein (IE2-86 kDa). These observations suggest that SUMO modification of IE1-72 kDa contributes to efficient HCMV replication by promoting the accumulation of IE2-86 kDa.
Collapse
Affiliation(s)
- Michael Nevels
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
11
|
Falk CS, Mach M, Schendel DJ, Weiss EH, Hilgert I, Hahn G. NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3257-66. [PMID: 12218145 DOI: 10.4049/jimmunol.169.6.3257] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A highly attractive approach to investigate the influence and hierarchical organization of viral proteins on cellular immune responses is to employ mutant viruses carrying deletions of various virus-encoded, immune-modulating genes. Here, we introduce a novel set of deletion mutants of the human CMV (HCMV) lacking the UL40 region either alone or on the background of a deletion mutant devoid of the entire US2-11 region. Deletion of UL40 had no significant effect on lysis of infected cells by NK cells, indicating that the expected enhancement of HLA-E expression by specific peptides derived from HCMV-encoded gpUL40 leader sequences was insufficient to confer target cell protection. Moreover, the kinetics of MHC class I down-regulation by US2-11 genes observed at early and late phases postinfection with wild-type virus correlated with increased susceptibility to NK lysis. Thus, the influence of HCMV genes on NK reactivity follows a hierarchy dominated by the US2-11 region, which encodes all viral genes capable of down-modulating expression of classical and non-classical MHC class I molecules. The insights gained from studies of such virus mutants may impact on future therapeutic strategies and vaccine development and incorporate NK cells in the line of defense mechanisms against HCMV infection.
Collapse
Affiliation(s)
- Christine S Falk
- Institute of Molecular Immunology, GSF National Research Center for the Environment and Health, Munich, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Chan CK, Brignole EJ, Gibson W. Cytomegalovirus assemblin (pUL80a): cleavage at internal site not essential for virus growth; proteinase absent from virions. J Virol 2002; 76:8667-74. [PMID: 12163586 PMCID: PMC136994 DOI: 10.1128/jvi.76.17.8667-8674.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) maturational proteinase is synthesized as an enzymatically active 74-kDa precursor that cleaves itself at four sites. Two of these, called the maturational (M) and release (R) sites, are conserved in the homologs of all herpesviruses. The other two, called the internal (I) and cryptic (C) sites, have recognized consensus sequences only among cytomegalovirus (CMV) homologs and are located in the 28-kDa proteolytic portion of the precursor, called assemblin. I-site cleavage cuts assemblin in half without detected effect on its enzymatic behavior in vitro. To investigate the requirement for this cleavage during virus infection, we used the CMV-bacterial artificial chromosome system (E. M. Borst, G. Hahn, U. H. Koszinowski, and M. Messerle, J. Virol. 73:8320-8329, 1999) to construct a virus encoding a mutant I site (Ala143 to Val) intended to be blocked for cleavage. Characterizations of the resulting mutant (i) confirmed the presence of the mutation in the viral genome and the inability of the mutant virus to effect I-site cleavage in infected cells; (ii) determined that the mutation has no gross effect on the rate of virus production or on the amounts of extracellular virions, noninfectious enveloped particles (NIEPs), and dense bodies; (iii) established that assemblin and its cleavage products are present in NIEPs but are absent from CMV virions, an apparent difference from what is found for virions of herpes simplex virus; and (iv) showed that the 23-kDa protein product of C-site cleavage is more abundant in mutant virus-than in wild-type virus-infected cells and NIEPs. We conclude that the production of infectious CMV requires neither I-site cleavage of assemblin nor the presence of assemblin in the mature virion.
Collapse
Affiliation(s)
- Chee-Kai Chan
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
13
|
Hahn G, Khan H, Baldanti F, Koszinowski UH, Revello MG, Gerna G. The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 2002; 76:9551-5. [PMID: 12186938 PMCID: PMC136448 DOI: 10.1128/jvi.76.18.9551-9555.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An endothelial cell-tropic and leukotropic human cytomegalovirus (HCMV) clinical isolate was cloned as a fusion-inducing factor X-bacterial artificial chromosome in Escherichia coli, and the ribonucleotide reductase homolog UL45 was deleted. Reconstituted virus RVFIX and RV Delta UL45 grew equally well in human fibroblasts and human endothelial cells. Thus, UL45 is dispensable for growth of HCMV in both cell types.
Collapse
Affiliation(s)
- Gabriele Hahn
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Theiler RN, Compton T. Characterization of the signal peptide processing and membrane association of human cytomegalovirus glycoprotein O. J Biol Chem 2001; 276:39226-31. [PMID: 11504733 DOI: 10.1074/jbc.m106300200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a structurally complex envelope that contains multiple glycoproteins. These glycoproteins are involved in virus entry, virus maturation, and cell-cell spread of infection. Glycoprotein H (gH), glycoprotein L (gL), and glycoprotein O (gO) associate covalently to form a unique disulfide-bonded tripartite complex. Glycoprotein O was recently discovered, and its basic structure, as well as that of the tripartite complex, remains uncharacterized. Based on hydropathy analysis, we hypothesized that gO could adopt a type II transmembrane orientation. The data presented here, however, reveal that the single hydrophobic domain of gO functions as a cleavable signal peptide that is absent from the mature molecule. Although it lacks a membrane anchor, glycoprotein O is associated with the membranes of HCMV-infected cells. The sophisticated organization of the gH.gL.gO complex reflects the intricate nature of the multicomponent entry and fusion machinery encoded by HCMV.
Collapse
Affiliation(s)
- R N Theiler
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Abstract
The large, complex genomes of herpesviruses document the high degree of adaptation of these viruses to their hosts. Not surprisingly, the methods developed over the past 30 years to analyse herpesvirus genomes have paralleled those used to investigate the genetics of eukaryotic cells. The recent use of bacterial artificial chromosome (BAC) technology in herpesvirus genetics has made their genomes accessible to the tools of bacterial genetics. This has opened up new avenues for reverse and forward genetics of this virus family in basic research, and also for vector and vaccine development.
Collapse
Affiliation(s)
- W Brune
- Max von Pettenkofer Institute, Department of Virology, University of Munich, Germany.
| | | | | |
Collapse
|