1
|
Abstract
Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.
Collapse
|
2
|
Gottlieb P, Alimova A. Heterologous RNA Recombination in the Cystoviruses φ6 and φ8: A Mechanism of Viral Variation and Genome Repair. Viruses 2022; 14:v14112589. [PMID: 36423198 PMCID: PMC9697746 DOI: 10.3390/v14112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic shifts mediated by reassortment are responsible for radical changes in the influenza antigenic determinants that can result in pandemics requiring rapid preventative responses by vaccine modifications. In contrast, smaller mutational changes brought about by the error-prone viral RNA polymerases that, for the most part, lack a replication base mispairing editing function produce small mutational changes in the RNA genome during replication. Referring again to the influenza example, the accumulated mutations-known as drift-require yearly vaccine updating and rapid worldwide distribution of each new formulation. Coronaviruses with a large positive-sense RNA genome have long been known to undergo intramolecular recombination likely mediated by copy choice of the RNA template by the viral RNA polymerase in addition to the polymerase-based mutations. The current SARS-CoV-2 origin debate underscores the importance of understanding the plasticity of viral genomes, particularly the mechanisms responsible for intramolecular recombination. This review describes the use of the cystovirus bacteriophage as an experimental model for recombination studies in a controlled manner, resulting in the development of a model for intramolecular RNA genome alterations. The review relates the sequence of experimental studies from the laboratory of Leonard Mindich, PhD at the Public Health Research Institute-then in New York City-and covers a period of approximately 12 years. Hence, this is a historical scientific review of research that has the greatest relevance to current studies of emerging RNA virus pathogens.
Collapse
|
3
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
4
|
Genetic determinants restricting the reassortment of heterologous NSP2 genes into the simian rotavirus SA11 genome. Sci Rep 2017; 7:9301. [PMID: 28839154 PMCID: PMC5571167 DOI: 10.1038/s41598-017-08068-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023] Open
Abstract
Rotaviruses (RVs) can evolve through the process of reassortment, whereby the 11 double-stranded RNA genome segments are exchanged among strains during co-infection. However, reassortment is limited in cases where the genes or encoded proteins of co-infecting strains are functionally incompatible. In this study, we employed a helper virus-based reverse genetics system to identify NSP2 gene regions that correlate with restricted reassortment into simian RV strain SA11. We show that SA11 reassortants with NSP2 genes from human RV strains Wa or DS-1 were efficiently rescued and exhibit no detectable replication defects. However, we could not rescue an SA11 reassortant with a human RV strain AU-1 NSP2 gene, which differs from that of SA11 by 186 nucleotides (36 amino acids). To map restriction determinants, we engineered viruses to contain chimeric NSP2 genes in which specific regions of AU-1 sequence were substituted with SA11 sequence. We show that a region spanning AU-1 NSP2 gene nucleotides 784–820 is critical for the observed restriction; yet additional determinants reside in other gene regions. In silico and in vitro analyses were used to predict how the 784–820 region may impact NSP2 gene/protein function, thereby informing an understanding of the reassortment restriction mechanism.
Collapse
|
5
|
Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine 2016; 34:6610-6616. [PMID: 27346303 PMCID: PMC5204448 DOI: 10.1016/j.vaccine.2016.04.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
Abstract
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus-vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains.
Collapse
|
6
|
Genetic characterization of a novel G3P[14] rotavirus strain causing gastroenteritis in 12year old Australian child. INFECTION GENETICS AND EVOLUTION 2014; 25:97-109. [DOI: 10.1016/j.meegid.2014.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
|
7
|
Abstract
I pictured myself as a virus…and tried to sense what it would be like. --Jonas Salk. Ecology as a science evolved from natural history, the observational study of the interactions of plants and animals with each other and their environments. As natural history matured, it became increasingly quantitative, experimental, and taxonomically broad. Focus diversified beyond the Eukarya to include the hidden world of microbial life. Microbes, particularly viruses, were shown to exist in unfathomable numbers, affecting every living organism. Slowly viruses came to be viewed in an ecological context rather than as abstract, disease-causing agents. This shift is exemplified by an increasing tendency to refer to viruses as living organisms instead of inert particles. In recent years, researchers have recognized the critical contributions of viruses to fundamental ecological processes such as biogeochemical cycling, competition, community structuring, and horizontal gene transfer. This review describes virus ecology from a virus's perspective. If we are, like Jonas Salk, to imagine ourselves as a virus, what kind of world would we experience?
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College and the Graduate Center of the City University of New York, Queens, New York 11367;
| |
Collapse
|
8
|
Genetics and reverse genetics of rotavirus. Curr Opin Virol 2012; 2:399-407. [PMID: 22749758 DOI: 10.1016/j.coviro.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 11/23/2022]
Abstract
Rotavirus is a member of the family Reoviridae, which have genomes consisting of 10-12 double-stranded RNA segments. The functions of proteins encoded by each segment of the rotavirus genome have been studied extensively by several methods including reassortants, temperature-sensitive mutants, isolates with rearranged RNA segments, RNAi analysis, and other procedures. However, as found for most RNA viruses, the technique of reverse genetics is required for precise genotype/phenotype correlation, for the analysis of the role of specific mutation in replication process and pathogenesis, and for the development of vectors and vaccines. In 2006, we presented the first description of a reverse genetics system for rotavirus, although a helper virus and a selection system are required. Since then, two other approaches have been reported for rotavirus reverse genetics, both requiring the presence of a helper virus. A tractable, helper virus-free reverse genetics system for rotavirus has not been developed so far, in contrast to the recent developments of plasmid only-based reverse genetics systems for other members of the Reoviridae.
Collapse
|
9
|
|
10
|
[Present and future of reverse genetics of rotavirus]. Uirusu 2009; 59:91-8. [PMID: 19927993 DOI: 10.2222/jsv.59.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rotavirus is the leading pathogen for acute gastroenteritis in mammals and birds. Although the reverse genetics system has been utilized in many viruses, the system using a helper virus was developed for rotavirus in 2006. As a step for antigenic analysis of VP4 antigen of rotavirus, we prepared an infectious rotavirus with a spike protein VP4 having an antigenic mosaic by substituting one of the cross-reactive neutralization epitopes of a simian strain SA-11 with the corresponding one of a human strain DS-1. The future improvement and application of the rotavirus reverse genetics were discussed in this review.
Collapse
|
11
|
Esona M, Geyer A, Page N, Trabelsi A, Fodha I, Aminu M, Agbaya V, Tsion B, Kerin T, Armah G, Steele A, Glass R, Gentsch J. Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses. J Med Virol 2009; 81:937-51. [DOI: 10.1002/jmv.21468] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Roner MR, Steele BG. Features of the mammalian orthoreovirus 3 Dearing l1 single-stranded RNA that direct packaging and serotype restriction. J Gen Virol 2008; 88:3401-3412. [PMID: 18024910 DOI: 10.1099/vir.0.83209-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of recombinant mammalian orthoreoviruses (mammalian orthoreovirus 3 Dearing, MRV-3De) were generated that express an MRV-3De lambda3-CAT fusion protein. Individual viruses contain L1CAT double-stranded (ds) RNAs that range in length from a minimum of 1020 bp to 4616 bp. The engineered dsRNAs were generated from in vitro-transcribed single-stranded (ss) RNAs and incorporated into infectious virus particles by using reverse genetics. In addition to defining the sequences required for these ssRNAs to be 'identified' as l1 ssRNAs, the individual nucleotides in these regions that 'mark' each ssRNA as originating from mammalian orthoreovirus 1 Lang (MRV-1La), mammalian orthoreovirus 2 D5/Jones (MRV-2Jo) or MRV-3De have been identified. A C at position 81 in the MRV-1La 5' 129 nt sequence was able to be replaced with a U, as normally present in MRV-3De; this toggled the activity of the MRV-1La ssRNA to that of an MRV-3De 5' l1. RNA secondary-structure predictions for the 5' 129 nt of both the biologically active MRV-3De l1 ssRNA and the U81-MRV-3De-restored MRV-1La 5' ssRNA predicted a common structure.
Collapse
Affiliation(s)
- Michael R Roner
- Department of Biology, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Bradley G Steele
- Department of Biology, The University of Texas Arlington, Arlington, TX 76019, USA
| |
Collapse
|
13
|
Abstract
The rotavirus genome is composed of 11 segments of double-stranded RNA (dsRNA). Rotavirus is the leading etiological agent of severe gastroenteritis in infants and young children worldwide. Reverse genetics is the powerful and ideal methodology for the molecular study of virus replication, which enables the virus genome to be artificially manipulated. Very recently, we developed the first reverse genetics system for rotavirus, which enables one to generate an infectious rotavirus containing a novel gene segment derived from cDNA. In this review, we describe each steps of rotavirus replication to understand the background to the establishment of a reverse genetics system for rotavirus, and summarize the reverse genetics systems for segmented dsRNA viruses including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|
14
|
Komoto S, Taniguchi K. Reverse genetics systems of segmented double-stranded RNA viruses including rotavirus. Future Virol 2006. [DOI: 10.2217/17460794.1.6.833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rotavirus genome is composed of 11 segments of double-stranded (ds)RNA. Recent studies have elucidated the precise mechanisms in transcription and replication of rotavirus RNA mainly by in vitro experiments. However, the ideal methodology for the molecular study of rotavirus replication is reverse genetics, which enables the viral genome to be artifically manipulated. Since the development of the first reverse genetics system for RNA virus in bacteriophage QB in 1978, the methodology has been developed for a variety of RNA viruses with plus-strand, minus-strand or dsRNA as a genome. However, there have been no reports on the reverse genetics of the viruses in the family Reoviridae with a genome of 10–12 segmented dsRNA, except for reovirus. This review describes the replication cycle of rotavirus with the aim of providing a general background to the development of rotavirus reverse genetics, and summarizes the reverse genetics system for dsRNA viruses, including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
15
|
Localizing the reovirus packaging signals using an engineered m1 and s2 ssRNA. Virology 2006; 358:89-97. [PMID: 16987539 DOI: 10.1016/j.virol.2006.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/21/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
Using in vitro engineered and transcribed reovirus m1 and s2 ssRNAs, we demonstrate that the nucleotides used to identify these ssRNAs are localized to the 5' and not the 3' termini. To demonstrate this, we used our previously reported S2-CAT reovirus and we report the creation of an engineered M1-CAT reovirus. The M1 gene of this virus retains 124 nucleotides from the wild type M1 gene preceding the CAT gene and 172 nucleotides from the wild type gene following the CAT gene. The engineered M1-CAT ssRNA is 1048 nucleotides in length, much shorter than the wild type M1 at 2304 nucleotides. We have used a set of chimeric s2.m1 ssRNAs to localize the packaging signals within these RNAs. By packaging signals we mean that the presence of these signals in engineered ssRNAs results in these ssRNAs being replicated to dsRNA and packaged into progeny virus. An engineered ssRNA with a 5' sequence identical with the wild type s2 ssRNA, supported by a 3' sequence from either the m1 or s2 ssRNA, is incorporated into a virus as an S2 dsRNA. Likewise, an ssRNA with an m1 5' end is incorporated as an M1 dsRNA.
Collapse
|
16
|
Patton JT, Vasquez-Del Carpio R, Tortorici MA, Taraporewala ZF. Coupling of Rotavirus Genome Replication and Capsid Assembly. Adv Virus Res 2006; 69:167-201. [PMID: 17222694 DOI: 10.1016/s0065-3527(06)69004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Reoviridae family represents a diverse collection of viruses with segmented double-stranded (ds)RNA genomes, including some that are significant causes of disease in humans, livestock, and plants. The genome segments of these viruses are never detected free in the infected cell but are transcribed and replicated within viral cores by RNA-dependent RNA polymerase (RdRP). Insight into the replication mechanism has been provided from studies on Rotavirus, a member of the Reoviridae whose RdRP can specifically recognize viral plus (+) strand RNAs and catalyze their replication to dsRNAs in vitro. These analyses have revealed that although the rotavirus RdRP can interact with recognition signals in (+) strand RNAs in the absence of other proteins, the conversion of this complex to one that can support initiation of dsRNA synthesis requires the presence and partial assembly of the core capsid protein. By this mechanism, the viral polymerase can carry out dsRNA synthesis only when capsid protein is available to package its newly made product. By preventing the accumulation of naked dsRNA within the cell, the virus avoids triggering dsRNA-dependent interferon signaling pathways that can induce expression and activation of antiviral host proteins.
Collapse
Affiliation(s)
- John T Patton
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
17
|
Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 2005; 192 Suppl 1:S146-59. [PMID: 16088798 DOI: 10.1086/431499] [Citation(s) in RCA: 437] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The development of rotavirus vaccines that are based on heterotypic or serotype-specific immunity has prompted many countries to establish programs to assess the disease burden associated with rotavirus infection and the distribution of rotavirus strains. Strain surveillance helps to determine whether the most prevalent local strains are likely to be covered by the serotype antigens found in current vaccines. After introduction of a vaccine, this surveillance could detect which strains might not be covered by the vaccine. Almost 2 decades ago, studies demonstrated that 4 globally common rotavirus serotypes (G1-G4) represent >90% of the rotavirus strains in circulation. Subsequently, these 4 serotypes were used in the development of reassortant vaccines predicated on serotype-specific immunity. More recently, the application of reverse-transcription polymerase chain reaction genotyping, nucleotide sequencing, and antigenic characterization methods has confirmed the importance of the 4 globally common types, but a much greater strain diversity has also been identified (we now recognize strains with at least 42 P-G combinations). These studies also identified globally (G9) or regionally (G5, G8, and P2A[6]) common serotype antigens not covered by the reassortant vaccines that have undergone efficacy trials. The enormous diversity and capacity of human rotaviruses for change suggest that rotavirus vaccines must provide good heterotypic protection to be optimally effective.
Collapse
Affiliation(s)
- Jon R Gentsch
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maunula L, Von Bonsdorff CH. Frequent reassortments may explain the genetic heterogeneity of rotaviruses: analysis of Finnish rotavirus strains. J Virol 2002; 76:11793-800. [PMID: 12414921 PMCID: PMC136853 DOI: 10.1128/jvi.76.23.11793-11800.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predominant rotavirus electropherotypes (e-types) during 17 epidemic seasons (1980 through 1997) in Finland were established, and representative virus isolates were studied by nucleotide sequencing and phylogenetic analysis. The virus isolates were either P[8]G1 or P[8]G4 types. The G1 and G4 strains formed one G1 lineage (VP7-G1-1) and one G4 lineage, respectively. Otherwise, they belonged to two P[8] lineages (VP4-P[8]-1 and -2) unrelated to their G types. Phylogenetic analysis of partial sequences of all 11 RNA segments obtained from the strains also revealed genetic diversity among gene segments other than those defining P and G types. With the exception of segments 1, 3, and 10, the sequences of the other segments could be assigned to 2 to 4 different genetic clusters. The results of this study suggest that, in addition to the RNA segments encoding VP4 and VP7, the other RNA segments may segregate independently as well. In total, the 9 predominant e-types represented 7 different RNA segment combinations when the phylogenetic clusters of their 11 genes were determined. The extensive genetic diversity and number of e-types among rotaviruses are best explained by frequent genetic reassortment.
Collapse
Affiliation(s)
- Leena Maunula
- Division of Virology, HD Laboratories, Helsinki University Central Hospital, Helsinki, Finland
| | | |
Collapse
|
19
|
Kim Y, Chang KO, Kim WY, Saif LJ. Production of hybrid double- or triple-layered virus-like particles of group A and C rotaviruses using a baculovirus expression system. Virology 2002; 302:1-8. [PMID: 12429511 DOI: 10.1006/viro.2002.1610] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dual infections by group A and group C rotaviruses have been reported, but no reassortants between group A and group C rotaviruses have been described. The VP6 major inner capsid protein of group A and C rotaviruses shares common antigens detected by monoclonal antibodies and also shares 40-43% amino acid identity. Coinfection of Spodoptera frugiperda (Sf9) insect cells with different combinations of the recombinant baculoviruses encoding either group A [RF VP2 (A-VP2), IND VP6 (A-VP6), and VP7 (A-VP7[IND]), 2292B VP7 (A-VP7[2292B])] or C [Shintoku VP6 (C-VP6) and VP7 (C-VP7)] bovine rotavirus proteins produced hybrid group A/C triple-layered VP2/6/7 virus-like particles (TLPs) composed of A-VP2/C-VP6/C-VP7, A-VP2/C-VP6/A-VP7(IND), A-VP2/C-VP6/A-VP7(2292B), and A-VP2/A-VP6/C-VP7. To our knowledge, this is the first report that the inner capsid VP6 of group A or group C rotavirus can support attachment of the heterologous, antigenically distinct group A (G6, IND or G10, 2292B) or group C rotavirus outer capsid VP7 to produce hybrid TLPs in vitro.
Collapse
Affiliation(s)
- Yunjeong Kim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | | | | | | |
Collapse
|
20
|
Miranda GJ, Azzam O, Shirako Y. Comparison of nucleotide sequences between northern and southern philippine isolates of rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 2000; 266:26-32. [PMID: 10612657 DOI: 10.1006/viro.1999.0068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rice grassy stunt virus is a member of the genus Tenuivirus, is persistently transmitted by a brown planthopper, and has occurred in rice plants in South, Southeast, and East Asia [corrected]. We determined the complete nucleotide (nt) sequences of RNAs 1 (9760 nt), 2 (4069 nt), 3 (3127 nt), 4 (2909 nt), 5 (2704 nt), and 6 (2590 nt) of a southern Philippine isolate from South Cotabato and compared them with those of a northern Philippine isolate from Laguna (Toriyama et al., 1997, 1998). The numbers of nucleotides in the terminal untranslated regions and open reading frames were identical between the two isolates except for the 5' untranslated region of the complementary strand of RNA 4. Overall nucleotide differences between the two isolates were only 0.08% in RNA 1, 0.58% in RNA 4, and 0.26% in RNA 5, whereas they were 2.19% in RNA 2, 8.38% in RNA 3, and 3.63% in RNA 6. In the intergenic regions, the two isolates differed by 9.12% in RNA 2, 11.6% in RNA 3, and 6.86% in RNA 6 with multiple consecutive nucleotide deletion/insertions, whereas they differed by only 0.78% in RNA 4 and 0.34% in RNA 5. The nucleotide variation in the intergenic region of RNA 6 within the South Cotabato isolate was only 0.33%. These differences in accumulation of mutations among individual RNA segments indicate that there was genetic reassortment in the two geographical isolates; RNAs 1, 4, and 5 of the two isolates came from a common ancestor, whereas RNAs 2, 3, and 6 were from two different ancestors.
Collapse
Affiliation(s)
- G J Miranda
- Graduate School of Agricultural Life Science, University of Tokyo, Tokyo, Bunkyo-ku, 113-8657, Japan
| | | | | |
Collapse
|
21
|
Affiliation(s)
- R F Ramig
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Oberhaus SM, Dermody TS, Tyler KL. Apoptosis and the cytopathic effects of reovirus. Curr Top Microbiol Immunol 1998; 233:23-49. [PMID: 9599930 DOI: 10.1007/978-3-642-72095-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S M Oberhaus
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | |
Collapse
|
23
|
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
24
|
Okada J, Kobayashi N, Taniguchi K, Urasawa S. Preferential selection of heterologous G3-VP7 gene in the genetic background of simian rotavirus SA11 detected by using a homotypic single-VP7 gene-substitution reassortant. Antiviral Res 1998; 38:15-24. [PMID: 9614000 DOI: 10.1016/s0166-3542(98)00006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction of segmented genomes into virion is an important process in viral replication of rotavirus. We previously studied the assortment of the VP7 gene segment (encoding outer capsid protein VP7) in the genetic background of simian rotavirus SA11 (G serotype 3, G3) and found the preferential selection of homologous G3 VP7 gene over VP7 gene of heterologous G serotype (G1, G2 or G4). In the present study, in order to clarify whether or not VP7 gene derived from different G3 rotavirus (heterologous G3-VP7 gene) is also preferentially selected in the SA11 background, a single-VP7 gene-substitution reassortant was prepared from SA11 through multiple steps of coinfection with rotaviruses in vitro. The isolated reassortant, SNR1, possessed VP7 gene derived from canine G3 rotavirus K9 and all other gene segments of SA11 origin, and showed an identical growth characteristic to that of SA11. Amino acid sequence of K9 VP7 gene showed a high degree of identity (93.6%) to SA11 VP7 gene. In analysis by mixed infection and multiple passages of SNR1 and a single VP7 gene (with G1, G2 or G4 specificity) reassortant in the SA11 background, the G3-VP7 gene became predominant at early passage numbers. However, in mixed infection with SA11 and SNR1, homologous G3-VP7 gene (SA11-VP7 gene) was preferentially selected into progenies over heterologous one (K9-VP7 gene). These results together with our previous findings suggested that G3-VP7 gene, irrespective of origin of species, was functionally adapted to the genetic background of SA11, although the homologous gene had a better fit with other SA11 genes than did heterologous one, providing suggestions for efficaciousness of multivalent reassortant rotavirus vaccine.
Collapse
Affiliation(s)
- J Okada
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan
| | | | | | | |
Collapse
|
25
|
Keirstead ND, Coombs KM. Absence of superinfection exclusion during asynchronous reovirus infections of mouse, monkey, and human cell lines. Virus Res 1998; 54:225-35. [PMID: 9696130 PMCID: PMC7126977 DOI: 10.1016/s0168-1702(98)00023-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reovirus is a gastroenteric virus with a genome that consists of ten segments of double-stranded RNA. The segmented nature of the genome allows for genetic mixing when cells are simultaneously infected with two different viral serotypes. The ability of viral reassortment to take place in asynchronous infections has not previously been investigated with mammalian reoviruses. In this study, five different cell lines, representing mouse, monkey, and human, were infected synchronously or asynchronously with various sets of two different temperature-sensitive (ts) reovirus mutants in order to study the genetic interactions which occur. Recombinant viruses were detected at high frequency when infection by the two different ts mutants was separated by as much as 24 h, suggesting that superinfection exclusion does not play a role in reovirus mixed infections. The apparent lack of superinfection exclusion in reovirus infections may have important implications in its evolution.
Collapse
Affiliation(s)
| | - Kevin M Coombs
- Corresponding author. Tel: +1 204 7893309; fax: +1 204 7893926;
| |
Collapse
|
26
|
Abstract
To test for nonrandom segregations among their 10 genomic RNA segments, we examined a set of 83 reassortants derived from mammalian reovirus type 1 Lang and type 3 Dearing. After confirming the genotypes of the reassortants, we performed statistical analyses on the distributions of parental alleles for each of the 10 gene segments, as well as for the 45 possible pairings of the 10 segments. The analyses revealed nonrandom associations of parental alleles in the L1-L2, L1-M1, L1-S1, and L3-S1 segment pairs, at levels indicating high statistical significance (P < 0.005). Such associations may reflect specific interactions between viral components (protein-protein, protein-RNA, or RNA-RNA) and may influence both the evolution of reoviruses in nature and their genetic analysis in the laboratory. The data may also support an hypothesis that reovirus reassortants commonly contain mutations that improve their fitness for independent replication.
Collapse
Affiliation(s)
- M L Nibert
- Institute for Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
27
|
Xu Z, Tuo W, Clark KI, Woode GN. A major rearrangement of the VP6 gene of a strain of rotavirus provides replication advantage. Vet Microbiol 1996; 52:235-47. [PMID: 8972049 DOI: 10.1016/s0378-1135(96)00069-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During coinfection of BSC-1 cells with bovine rotavirus B223 and human rotavirus 69M and subsequent serial passages at low multiplicity of infection (0.1 m.o.i.), a reassortant virus (BMR) with a rearranged VP6 gene became the predominant strain. At passage 24 virus extracted from 50 of 51 plaques (98%) contained the rearranged gene 6, which had been first observed in passage 19. The analyses of the clones obtained from passages before the appearance of the rearranged VP6 gene (passage 15) and after (passage 20) indicated that the B223 VP6 gene was the origin of the rearranged VP6 gene. To test whether the rearranged VP6 gene was responsible for the selection advantage observed, reassortant C11 was generated with BMR and WA rotavirus, containing the rearranged VP6 gene and the other 10 genes from WA. Coinfection of WA rotavirus and reassortant C11 and subsequent serial passages at low m.o.i. resulted in 100% of virus from clones extracted at passage 18 being identical to reassortant C11; demonstrating that the rearranged VP6 gene was once again selected over the normal VP6 gene. The selection advantage of the rearranged VP6 gene could not be explained by comparison of the growth curves of the viruses, as there was no significant difference between the growth cycles of rotavirus B223 and reassortant BMR, nor between rotavirus Wa and reassortant C11. However, the plaque and electropherotype analysis at passage 1 of Wa and C11 coinfection revealed that 85% of the progeny viruses contained the rearranged gene 6. These data show that the gene 6 rearrangement resulted in selection of the relevant reassortant, possibly by suppression of competitive strains, and may indicate a new mechanism for the evolution of rotavirus.
Collapse
Affiliation(s)
- Z Xu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4467, USA
| | | | | | | |
Collapse
|
28
|
Kobayashi N, Taniguchi K, Kojima K, Urasawa T, Urasawa S. G (VP7) serotype-dependent preferential VP7 gene selection detected in the genetic background of simian rotavirus SA11. Arch Virol 1996; 141:1167-76. [PMID: 8774679 DOI: 10.1007/bf01718822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously found the preferential selection of VP7 gene from a parent rotavirus strain SA11 with G serotype 3 (G3) in the sequential passages after mixed infection of simian rotavirus SA11 and SA11-human rotavirus single-VP7 gene-substitution reassortants with G1, G2, or G4 specificity. However, it has not been known whether or not VP7 genes derived from other strains with G3 specificity (G3-VP7 gene) are preferentially selected in the genetic background of SA11. To address this question, mixed infections followed by multiple passages were performed with a reassortant SA11-L2/KU-R1 (SKR1) (which possesses VP7 gene derived from G1 human rotavirus KU and other 10 genes of SA11 origin) and one of the five G3-rotaviruses, RRV, K9, YO, AK35, and S3. After the 10th passage, selection rates of SA11-L2/KU-R1 gene 9 (G1-VP7 gene) and gene 5 (NSP1 gene) reduced considerably (0 to 20.4%) in the clones obtained from all the coinfection experiments, while all or some of other segments were preferentially selected from SKR1 depending on the pairs of coinfection. When viral growth kinetics was examined, SKR1 exhibited better growth and reached a higher titer than any G3 viruses. Although the generated reassortants with VP7 gene and NSP1 gene derived from G3 viruses showed almost similar growth kinetics to that of SKR1 during the first 20 h of replication, the titers of these reassortants were higher than that of SKR1 after 36 h postinfection. The results obtained in this study suggested that G3-VP7 gene is functionally more adapted to the genetic background of SA11.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
29
|
Taniguchi K, Kojima K, Kobayashi N, Urasawa T, Urasawa S. Structure and function of rotavirus NSP1. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1996; 12:53-8. [PMID: 9015101 DOI: 10.1007/978-3-7091-6553-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Studies on the structure and function of the nonstructural proteins (NSP1-NSP5) of rotaviruses are important for dissection of the morphogenesis and replication processes of rotavirus. Above all, NSP1, the product of gene 5, has several interesting features, such as extreme sequence diversity, a highly conserved cysteine-rich region, RNA-binding activity, accumulation on the cytoskeleton, and non-random segregation in reassortment. Recently, comparable NSP1 sequence analysis has been performed on a number of rotavirus strains from various species. Furthermore, characterization of mutants with rearranged NSP1 genes has helped to elucidate the structure-function interaction of NSP1. We isolated and characterized two interesting mutants which have a large deletion including the cysteine-rich region or a nonsense codon at the early portion in the open reading frame (ORF) of the NSP1 gene. In this report, we summarize the structure and function of NSP1.
Collapse
Affiliation(s)
- K Taniguchi
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
30
|
Kojima K, Taniguchi K, Kobayashi N. Species-specific and interspecies relatedness of NSP1 sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch Virol 1996; 141:1-12. [PMID: 8629937 DOI: 10.1007/bf01718584] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have sequenced gene 5 encoding NSP1 for three human, two porcine, two bovine, one feline, and five equine rotavirus strains, and compared the nucleotide and deduced amino acid sequences with the published sequences for other various strains. Subgroup I human strains L26, 69M, and DS-1 were found to have a similar NSP1 sequence despite their different G serotypes, VP4 genotypes, and RNA patterns. The NSP1 sequence of the human strain K8 showed a high degree of homology to those of porcine strains OSU and YM. A high degree of homology was found among three equine strains (H2, FI-14, and FI23), but they differed from the other equine strains L338 and H1. The strain H1 was similar to the porcine strains. The feline strain Cat2 showed a high homology to bovine strains UK, RF, and A44. Thus, species-specific and interspecies relatedness of NSP1 sequences among human, porcine, bovine, feline and equine rotaviruses was found. Overall genomic relatedness of strains L26 and YM to various human and animal strains was also examined by RNA-RNA hybridization assay. The present and previous hybridization results showed that there is a good correlation in most strains between overall genomic property (or genogroup) and NSP1 sequence homology.
Collapse
Affiliation(s)
- K Kojima
- Department of Hygiene, Sapporo Medical University School of Medicine, Japan
| | | | | |
Collapse
|
31
|
Tyler KL, Squier MK, Rodgers SE, Schneider BE, Oberhaus SM, Grdina TA, Cohen JJ, Dermody TS. Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 1995; 69:6972-9. [PMID: 7474116 PMCID: PMC189616 DOI: 10.1128/jvi.69.11.6972-6979.1995] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reoviruses are important models for studies of viral pathogenesis; however, the mechanisms by which these viruses produce cytopathic effects in infected cells have not been defined. In this report, we show that murine L929 (L) cells infected with prototype reovirus strains type 1 Lang (TIL) and type 3 Dearing (T3D) undergo apoptosis and that T3D induces apoptosis to a substantially greater extent than T1L. Using T1L x T3D reassortant viruses, we found that differences in the capacity of T1L and T3D to induce apoptosis are determined by the viral S1 gene segment, which encodes the viral attachment protein sigma 1 and the non-virion-associated protein sigma 1s. Apoptosis was induced by UV-inactivated, replication-incompetent reovirus virions, which do not contain sigma 1s and do not mediate its synthesis in infected cells. Additionally, T3D-induced apoptosis was inhibited by anti-reovirus monoclonal antibodies that inhibit T3D cell attachment and disassembly. These results indicate that sigma 1, rather than sigma 1s, is required for induction of apoptosis by the reovirus and suggest that interaction of virions with cell surface receptors is an essential step in this mechanism of cell killing.
Collapse
Affiliation(s)
- K L Tyler
- Department of Neurology, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kobayashi N, Taniguchi K, Urasawa T, Urasawa S. Preferential selection of specific rotavirus gene segments in coinfection and multiple passages with reassortant viruses and their parental strain. RESEARCH IN VIROLOGY 1995; 146:333-42. [PMID: 8578007 DOI: 10.1016/0923-2516(96)80596-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported non-random selections of human rotavirus (HRV) Wa genes 2 and 5 in reassortant formation between HRV strains Wa and HN126 under selection pressure with neutralizing monoclonal antibodies. In order to study whether or not these genes are preferentially selected in the genetic background of a parental strain HN126 in vitro without selection pressures, coinfection and multiple passage experiments were performed between HN126 and one of three reassortants, C1, C1T and C1F; C1 possessed genes 2 and 5 derived from Wa and the other genes derived from HN126, while C1T and C1F were single gene reassortants having Wa gene 2 or Wa gene 5 in the genetic background of HN126, respectively. When MA-104 cells were coinfected with the same infectious units of HN126 and C1, Wa genes 2 and 5 of reassortant C1 became predominant within 10 repeated passages, although Wa gene 5 was selected more preferably than Wa gene 2. Similar results were obtained under different experimental conditions in which different doses of parental strains or different type of cells were used. Also, in coinfections of MA-104 cells with HN126 and C1T, or HN126 and C1F, Wa gene 2 or Wa gene 5 became predominant at the sixth passage. Analysis of viral growth curves indicated that two reassortants, C1 and C1F, replicated to a titre higher than HN126, while no difference in viral growth was observed between C1T and HN126. These results indicated that in the genetic background of HN126, Wa gene 5 might provide viruses with a growth advantage compared with its HN126 counterpart, while Wa gene 2 might be preferentially selected into reassortant clones through its greater functional capacity for assortment during viral replication.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, Japan
| | | | | | | |
Collapse
|
33
|
Crameri GS, Wang LF, Eaton BT. Differentiation of cognate dsRNA genome segments of bluetongue virus reassortants by temperature gradient gel electrophoresis. J Virol Methods 1995; 51:211-9. [PMID: 7738141 DOI: 10.1016/0166-0934(94)00106-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The analysis of reassortant viruses has been a valuable tool in the investigation of protein interaction and function in double-stranded (ds) RNA virus research. The differentiation of cognate dsRNA genome segments of reassortants is conventionally achieved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). However, due to a high degree of sequence homology among different bluetongue virus (BTV) serotypes, it is not uncommon to find that certain cognate dsRNA segments cannot be differentiated by SDS-PAGE. Temperature gradient gel electrophoresis (TGGE) has been shown to be a much more sensitive method of differentiating RNA or DNA fragments of high sequence homology. Here we report the preliminary application of TGGE in analysis of genomic reassortants of two BTV serotypes, 1 and 23. While six out of ten genome segments between BTV-1 and BTV-23 could not be resolved by SDS-PAGE, all of them were differentiated by TGGE. The ability of TGGE to distinguish between dsRNA segments of high sequence homology may also make it useful in the search for BTV genes responsible for defined characteristics, such as virulence, by differentiating wild-type and mutated gene segments of viruses displaying altered phenotypes.
Collapse
Affiliation(s)
- G S Crameri
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | | |
Collapse
|
34
|
Chen D, Zeng CQ, Wentz MJ, Gorziglia M, Estes MK, Ramig RF. Template-dependent, in vitro replication of rotavirus RNA. J Virol 1994; 68:7030-9. [PMID: 7933085 PMCID: PMC237140 DOI: 10.1128/jvi.68.11.7030-7039.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A template-dependent, in vitro rotavirus RNA replication system was established. The system initiated and synthesized full-length double-stranded RNAs on rotavirus positive-sense template RNAs. Native rotavirus mRNAs or in vitro transcripts, with bona fide 3' and 5' termini, derived from rotavirus cDNAs functioned as templates. Replicase activity was associated with a subviral particle containing VP1, VP2, and VP3 and was derived from native virions or baculovirus coexpression of rotavirus genes. A cis-acting signal involved in replication was localized within the 26 3'-terminal nucleotides of a reporter template RNA. Various biochemical and biophysical parameters affecting the efficiency of replication were examined to optimize the replication system. A replication system capable of in vitro initiation has not been previously described for Reoviridae.
Collapse
Affiliation(s)
- D Chen
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
35
|
Kobayashi N, Taniguchi K, Urasawa T, Urasawa S. Effect of the selection pressure with anti-VP7 and anti-VP4 neutralizing monoclonal antibodies on reassortant formation between two human rotaviruses. Arch Virol 1994; 135:383-96. [PMID: 7802855 DOI: 10.1007/bf01310022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to study the effect of selection pressure of anti-VP4 and anti-VP7 neutralizing monoclonal antibodies(N-MAbs) on reassortant formation, 424 reassortant clones were produced from mixed cultures of human rotavirus strains Wa and HN126 and their genotypes were analysed. Reassortant selection was done with four types of N-MAb: anti-VP4 MAb to Wa and anti-VP7 MAb to HN126(selection A); anti-VP4 MAb to HN126 and anti-VP7 MAb to Wa(selection B); anti-VP7 MAb to Wa(selection C); and anti-VP4 MAb to Wa(selection D). In each selection experiment, more than 100 clones were isolated, and the parental origin of RNA segments was identified by polyacrylamide gel electrophoresis. All clones isolated by selections A and B were found to be antigenic mosaic reassortants with the VP4 gene of HN126 and the VP7 gene of Wa and antigenic mosaic reassortants with the VP4 gene of Wa and the VP7 gene of HN126, respectively. Although in reassortants of both selections, RNA segments 2, 3, 5 and 6 were selected from strain Wa at considerably high rates, selection rates of RNA segments 1, 7, 8, and 11 were significantly different between selection A and B. In reassortants from selection C and D, selection rates of RNA segments 1, 3, 6, 7, 8, and 11 from Wa were significantly lower than those in selection A and B, whereas RNA segments 2 and 5 were almost exclusively selected from Wa as observed in selection A and B. These results indicated the presence of two types of nonrandom gene selection in reassortant formation, one strongly dependent on, and another irrespective of, the selection pressure with N-MAbs.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, Japan
| | | | | | | |
Collapse
|
36
|
Coombs KM, Mak SC, Petrycky-Cox LD. Studies of the major reovirus core protein sigma 2: reversion of the assembly-defective mutant tsC447 is an intragenic process and involves back mutation of Asp-383 to Asn. J Virol 1994; 68:177-86. [PMID: 8254727 PMCID: PMC236276 DOI: 10.1128/jvi.68.1.177-186.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The reovirus group C temperature-sensitive mutant tsC447, whose defect maps to the S2 gene, which encodes the major core protein sigma 2, fails to assemble core particles at the nonpermissive temperature. To identify other proteins that may interact with sigma 2 during assembly, we generated and examined 10 independent revertants of the mutant. To determine which gene(s) carried a compensatory suppressor mutation(s), we generated intertypic reassortants between wild-type reovirus serotype 1 Lang and each revertant and determined the temperature sensitivities of the reassortants by efficiency-of-plating assays. Results of the efficiency-of-plating analyses indicated that reversion of the tsC447 defect was an intragenic process in all revertants. To identify the region(s) of sigma 2 that had reverted, we determined the nucleotide sequences of the S2 genes. In all revertant sequences examined, the G at nucleotide position 1166 in tsC447 had reverted to the A present in the wild-type sequence. This reversion leads to the restoration of a wild-type asparagine (in place of a mutant aspartic acid) at amino acid 383 in the sigma 2 sequence. These results collectively indicate that the functional lesion in tsC447 is Asp-383 and that this lesion cannot be corrected by alterations in other core proteins. These observations suggest that this region of sigma 2, which may be important in mediating assembly of the core particle, does not interact significantly with other reovirus proteins.
Collapse
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
37
|
Kobayashi N, Taniguchi K, Urasawa T, Urasawa S. Analysis of gene selection in reassortant formation between canine rotavirus K9 and human rotaviruses with different antigenic specificities. RESEARCH IN VIROLOGY 1993; 144:361-70. [PMID: 7506839 DOI: 10.1016/s0923-2516(06)80051-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A number of antigenic mosaic reassortants which have neutralization proteins VP4 and VP7 derived from different parental strains were analysed in order to study gene selection in reassortant formation between animal and human rotaviruses (HRV). These reassortants were isolated from mixed infection of MA-104 cells with canine rotavirus strain K9 (subgroup I and G serotype 3) and HRV strains (with subgroup I or II antigen and G serotype 1-4, 9 or 12 antigen), through repeated selections with anti-VP4 and anti-VP7 neutralizing monoclonal antibodies directed specifically at HRV and K9, respectively. By serological and genomic analyses, all the isolated clones were found to be antigenic mosaic reassortants possessing VP4 of K9 and VP7 of HRV. In the reassortants between strain K9 and one of the six strains of subgroup II HRV, a single or a few genotypes with particular constellations of RNA segments were predominant, with only a few RNA segments including gene 4 (encoding VP4) being derived from K9. In contrast, in the reassortants between strain K9 and any one of the subgroup I HRV, more than nine different genotypes were identified and various RNA segments, except for segments 8 and 10, were derived from K9. These findings indicated that the RNA segments of K9 might be reassorted more readily with those of subgroup I HRV than with those of subgroup II HRV, suggesting the possible existence of functional mechanisms which determine the extent of diversity of genome selection depending on the pairs of parent strains in the reassortant formation.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, Japan
| | | | | | | |
Collapse
|
38
|
Shaw AL, Rothnagel R, Chen D, Ramig RF, Chiu W, Prasad BV. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 1993; 74:693-701. [PMID: 8395350 PMCID: PMC7133302 DOI: 10.1016/0092-8674(93)90516-s] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1993] [Revised: 06/10/1993] [Indexed: 01/30/2023]
Abstract
Three-dimensional structures of a native simian and reassortant rotavirus have been determined by electron cryomicroscopy and computer image processing. The structural features of the native virus confirm that the hemagglutinin spike is a dimer of VP4, substantiated by in vivo radiolabeling studies. Exchange of native VP4 with a bovine strain equivalent results in a poorly infectious reassortant. No VP4 spikes are detected in the three-dimensional reconstruction of the reassortant. The difference map between the two structures reveals a novel large globular domain of VP4 buried within the virion that interacts extensively with the intermediate shell protein, VP6. Our results suggest that assembly of VP4 precedes that of VP7, the major outer shell protein, and that VP4 may play an important role in the receptor recognition and budding process through the rough endoplasmic reticulum during virus maturation.
Collapse
Affiliation(s)
- A L Shaw
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Three lines of observation demonstrate the role of arthropods in transmission and evolution of viruses. a) Recent outbreaks of viruses from their niches took place and insects have played a major role in propagating the viruses. b) Examination of the list of viral families and their hosts shows that many infect invertebrates (I) and vertebrates (V) or (I) and plants (P) or all kingdoms (VIPs). This notion holds true irrespective of the genome type. At first glance the argument seems to be weak in the case of enveloped and non-enveloped RNA viruses with single-stranded (ss) segmented or non-segmented genomes of positive (+) or negative polarity. Here, there are several families infecting V or P only; no systematic relation to arthropods is found. c) In the non-enveloped plant viruses with ss RNA genomes there is a strong tendency for segmentation and individual packaging of the genome pieces. This is in contrast to ss+ RNA animal viruses and can only be explained by massive transmission by seed or insects or both, because individual packaging necessitates a multihit infection. Comparisons demonstrate relationships in the nonstructural proteins of double-stranded and ss+ RNA viruses irrespective of host range, segmentation, and envelope. Similar conclusions apply for the negative-stranded RNA viruses. Thus, viral supergroups can be created that infect V or P and exploit arthropods for infection or transmission or both. Examples of such relationships and explanations for viral evolution are reviewed and the arthropod orders important for cell culture are given.
Collapse
Affiliation(s)
- H Koblet
- Institute for Medical Microbiology, University of Berne, Switzerland
| |
Collapse
|
40
|
Abstract
Candidate rotavirus vaccines tested to date have been developed using a 'Jennerian' approach. Strains of bovine and simian rotaviruses that are naturally attenuated for humans have been assessed and found to confer immunity that is serotype specific in a varying proportion of recipients. The spectrum of protection has been widened by developing reassortants in which the bovine or simian gene coding for VP7 (the major outer capsid protein) has been replaced by the corresponding gene from human VP7 types 1, 2, 3 or 4. Once the protective antigen(s) are identified it may be possible to develop subunit vaccines that eliminate side effects sometimes observed with live vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Capsid/genetics
- Capsid/immunology
- Capsid Proteins
- Cattle/microbiology
- Cattle Diseases/microbiology
- Child, Preschool
- Clinical Trials as Topic
- Cohort Studies
- Developing Countries
- Diarrhea, Infantile/epidemiology
- Diarrhea, Infantile/microbiology
- Diarrhea, Infantile/prevention & control
- Humans
- Infant
- Infant, Newborn
- Macaca mulatta/microbiology
- Mice
- Monkey Diseases/microbiology
- North America/epidemiology
- Recurrence
- Rotavirus/classification
- Rotavirus/immunology
- Rotavirus/isolation & purification
- Rotavirus Infections/epidemiology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/veterinary
- Vaccines, Attenuated
- Vaccines, Synthetic
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
- Virus Replication
Collapse
Affiliation(s)
- R F Bishop
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|