1
|
Bordet G, Bamgbose G, Bhuiyam SH, Johnson S, Tulin AV. Chromatin Immunoprecipitation Approach to Determine How PARP1 Domains Affect Binding Pattern to Chromatin. Methods Mol Biol 2022; 2609:297-313. [PMID: 36515842 DOI: 10.1007/978-1-0716-2891-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in the regulation of different cellular mechanisms, ranging from DNA repair to regulation of gene expression. The different PARP1 domains have been shown to influence PARP1 binding pattern to chromatin. However, which loci bound by PARP1 are affected in the absence of a specific domain is not known. To determine the binding pattern of the different PARP1 domains, we used a ChIP-seq approach on different GFP-tagged versions of PARP1. Here, we described how to perform and analyze ChIP-seq performed with a GFP antibody in Drosophila melanogaster third instar larvae.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sayem H Bhuiyam
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
2
|
Bordet G, Kotova E, Tulin AV. Poly(ADP-ribosyl)ating pathway regulates development from stem cell niche to longevity control. Life Sci Alliance 2021; 5:5/3/e202101071. [PMID: 34949666 PMCID: PMC8739260 DOI: 10.26508/lsa.202101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of poly(ADP-ribose) polymerase, the enzyme responsible for the synthesis of homopolymer ADP-ribose chains on nuclear proteins, has been extensively studied over the last decades for its involvement in tumorigenesis processes. However, the regulation of poly(ADP-ribose) glycohydrolase (PARG), the enzyme responsible for removing this posttranslational modification, has attracted little attention. Here we identified that PARG activity is partly regulated by two phosphorylation sites, ph1 and ph2, in Drosophila We showed that the disruption of these sites affects the germline stem-cells maintenance/differentiation balance as well as embryonic and larval development, but also the synchronization of egg production with the availability of a calorically sufficient food source. Moreover, these PARG phosphorylation sites play an essential role in the control of fly survivability from larvae to adults. We also showed that PARG is phosphorylated by casein kinase 2 and that this phosphorylation seems to protect PARG protein against degradation in vivo. Taken together, these results suggest that the regulation of PARG protein activity plays a crucial role in the control of several developmental processes.
Collapse
|
3
|
Richartz N, Pietka W, Gilljam KM, Skah S, Skålhegg BS, Bhagwat S, Naderi EH, Ruud E, Blomhoff HK. cAMP-Mediated Autophagy Promotes Cell Survival via ROS-Induced Activation of PARP1: Implications for Treatment of Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 20:400-411. [PMID: 34880123 DOI: 10.1158/1541-7786.mcr-21-0652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 12/09/2022]
Abstract
DNA-damaging therapy is the basis for treatment of most cancers, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL). We have previously shown that cAMP-activating factors present in the bone marrow render ALL cells less sensitive to DNA damage-induced apoptosis, by enhancing autophagy and suppressing p53. To sensitize ALL cells to DNA-damaging therapy, we have searched for novel targets that may counteract the effects induced by cAMP signaling. In the current study, we have identified PARP1 as a potential target. We show that the PARP1 inhibitors olaparib or PJ34 inhibit cAMP-mediated autophagy and thereby potentiate the DNA-damaging treatment. Furthermore, we reveal that cAMP-mediated PARP1 activation is preceded by induction of reactive oxygen species (ROS) and results in depletion of nicotinamide adenine dinucleotide (NAD), both of which are autophagy-promoting events. Accordingly, we demonstrate that scavenging ROS by N-acetylcysteine and repleting NAD independently reduce DNA damage-induced autophagy. In addition, olaparib augmented the effect of DNA-damaging treatment in a human xenograft model of ALL in NOD-scidIL2Rgammanull mice. On the basis of the current findings, we suggest that PARP1 inhibitors may enhance the efficiency of conventional genotoxic therapies and thereby provide a novel treatment strategy for pediatric patients with ALL. IMPLICATIONS: PARP1 inhibitors augment the DNA damage-induced killing of ALL cells by limiting the opposing effects of cAMP-mediated autophagy, which involves ROS-induced PARP1 activation and depletion of cellular NAD levels.
Collapse
Affiliation(s)
- Nina Richartz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wojciech Pietka
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karin M Gilljam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Seham Skah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sampada Bhagwat
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Hallan Naderi
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Oncology, Section of Head and Neck Oncology, Oslo University Hospital, Oslo, Norway
| | - Ellen Ruud
- Department of Hematology and Oncology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Staneva DP, Carloni R, Auchynnikava T, Tong P, Rappsilber J, Jeyaprakash AA, Matthews KR, Allshire RC. A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Res 2021; 31:2138-2154. [PMID: 34407985 PMCID: PMC8559703 DOI: 10.1101/gr.275368.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
Collapse
Affiliation(s)
- Desislava P Staneva
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | | | - Juri Rappsilber
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Keith R Matthews
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
5
|
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res 2020; 163:105299. [PMID: 33171306 DOI: 10.1016/j.phrs.2020.105299] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Parthanatos is a PARP1-dependent, caspase-independent, cell-death pathway that is distinct from apoptosis, necrosis, or other known forms of cell death. Parthanatos is a multistep pathway that plays a pivotal role in tumorigenesis. There are many molecules in the parthanatos cascade that can be exploited to create therapeutic interventions for cancer management, including PARP1, PARG, ARH3, AIF, and MIF. These critical molecules are involved in tumor cell proliferation, progression, invasion, and metastasis. Therefore, these molecular signals in the parthanatos cascade represent promising therapeutic targets for cancer therapy. In addition, intimate interactions occur between parthanatos and other forms of cancer cell death, such as apoptosis and autophagy. Thus, co-targeting a combination of parthanatos and other death pathways may further provide a new avenue for cancer precision treatment. In this review, we elaborate on the signaling pathways of canonical parthanatos and briefly introduce the non-canonical parthanatos. We also shed light on the role parthanatos and its associated components play in tumorigenesis, particularly with respect to the aforementioned five molecules, and discuss the promise targeted therapy of parthanatos and its associated components holds for cancer therapy.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lihong Liu
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sifeng Tao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yihan Yao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Yongchuan Deng
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
6
|
Divan A, Sibi MP, Tulin A. Structurally unique PARP-1 inhibitors for the treatment of prostate cancer. Pharmacol Res Perspect 2020; 8:e00586. [PMID: 32342655 PMCID: PMC7186898 DOI: 10.1002/prp2.586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
The prognosis for metastatic castration-resistant prostate cancer is unfavorable, and although Poly(ADP)-ribose polymerase-1 (PARP-1) inhibitors have shown efficacy in the treatment of androgen-receptor dependent malignancies, the limited number of options present obstacles for patients that are not responsive to these treatments. Here we utilize an integrated screening strategy that combines cellular screening assays, informatics, in silico computational approaches, and dose-response testing for reducing a compound library of confirmed PARP-1 inhibitors. Six hundred and sixty-four validated PARP-1 inhibitors were reduced to 9 small molecules with favorable physicochemical/ADME properties, unique chemical fingerprints, high dissimilarity to existing drugs, few off-target effects, and dose-responsivity in the 1 µmol/L - 20 µmol/L range. The top 9 unique molecules identified by our integrated screening strategy will be selected for further preclinical development including cytotoxicity testing, effects on mitosis, structure-activity relationship, physicochemical/ADME studies, and in vivo testing.
Collapse
Affiliation(s)
- Ali Divan
- School of Medicine & Health SciencesUniversity of North DakotaGrand ForksNDUSA
| | | | - Alexei Tulin
- School of Medicine & Health SciencesUniversity of North DakotaGrand ForksNDUSA
| |
Collapse
|
7
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
8
|
Tanuma SI, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly(ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol 2019; 167:163-172. [PMID: 31176615 DOI: 10.1016/j.bcp.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribosyl)ation is a unique post-translational modification of proteins. The metabolism of poly(ADP-ribose) (PAR) is tightly regulated mainly by poly(ADP-ribose) polymerases (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Accumulating evidence has suggested the biological functions of PAR metabolism in control of many cellular processes, such as cell proliferation, differentiation and death by remodeling chromatin structure and regulation of DNA transaction, including DNA repair, replication, recombination and transcription. However, the physiological roles of the catabolism of PAR catalyzed by PARG remain less understood than those of PAR synthesis by PARP. Noteworthy biochemical studies have revealed the importance of PAR catabolic pathway generating nuclear ATP via the coordinated actions of PARG and ADP-ribose pyrophosphorylase (ADPRPPL) for the driving of DNA repair and the maintenance of DNA replication apparatus while repairing DNA damage. Furthermore, genetic studies have shown the value of PARG as a therapeutic molecular target for PAR-mediated diseases, such as cancer, inflammation and many pathological conditions. In this review, we present the current knowledge of de-poly(ADP-ribosyl)ation catalyzed by PARG focusing on its role in DNA repair, replication and apoptosis. Furthermore, the induction of apoptosis code of DNA replication catastrophe by synthetic lethality of PARG inhibition and the recent progresses regarding the development of small molecule PARG inhibitors and their therapeutic potentials in cancer chemotherapy are highlighted in this review.
Collapse
Affiliation(s)
- Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Yuto Shibui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| |
Collapse
|
9
|
Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember†. Biol Reprod 2017; 97:784-797. [DOI: 10.1093/biolre/iox137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
|
10
|
|
11
|
PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget 2016; 6:15008-21. [PMID: 25938539 PMCID: PMC4558132 DOI: 10.18632/oncotarget.3634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosis.
Collapse
|
12
|
Hitchcock LN, Lattal KM. Histone-mediated epigenetics in addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:51-87. [PMID: 25410541 DOI: 10.1016/b978-0-12-800977-2.00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many of the brain regions, neurotransmitter systems, and behavioral changes that occur after occasional drug use in healthy subjects and after chronic drug abuse in addicted patients are well characterized. An emerging literature suggests that epigenetic processes, those processes that regulate the accessibility of DNA to regulatory proteins within the nucleus, are keys to how addiction develops and how it may be treated. Investigations of the regulation of chromatin, the organizational system of DNA, by histone modification are leading to a new understanding of the cellular and behavioral alterations that occur after drug use. We will describe how, when, and where histone tails are modified and how some of the most recognized histone regulation patterns are involved in the cycle of addiction, including initial and chronic drug intake, withdrawal, abstinence, and relapse. Finally, we consider how an approach that targets histone modifications may promote successful treatment.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Barboro P, Ferrari N, Capaia M, Petretto A, Salvi S, Boccardo S, Balbi C. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: New player in tumor progression. Int J Cancer 2015; 137:1574-86. [DOI: 10.1002/ijc.29531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Barboro
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Nicoletta Ferrari
- IRCCs AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Terapie Oncologiche Integrate; Genoa Italy
| | - Matteo Capaia
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Andrea Petretto
- Laboratorio di Spettrometria di Massa, Core Facility, Istituto Giannina Gaslini; Genoa Italy
| | - Sandra Salvi
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Simona Boccardo
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Cecilia Balbi
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| |
Collapse
|
14
|
Ye C, Ji G, Li L, Liang C. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation. PLoS One 2014; 9:e113349. [PMID: 25409465 PMCID: PMC4237412 DOI: 10.1371/journal.pone.0113349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022] Open
Abstract
Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.
Collapse
Affiliation(s)
- Congting Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China; Department of Biology, Miami University, Oxford, Ohio 45056, United States of America
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China; Innovation Center for Cell Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Li
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China; Department of Biology, Miami University, Oxford, Ohio 45056, United States of America
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio 45056, United States of America; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Pernin V, Mégnin-Chanet F, Pennaneach V, Fourquet A, Kirova Y, Hall J. [PARP inhibitors and radiotherapy: rational and prospects for a clinical use]. Cancer Radiother 2014; 18:790-8; quiz 799-802. [PMID: 25441760 DOI: 10.1016/j.canrad.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
Abstract
Poly(ADP-ribosyl)ation is a ubiquitous protein modification involved in the regulation of many cellular processes that is carried out by the poly(ADP-ribose) polymerase (PARP) family. The PARP-1, PARP-2 and PARP-3 are the only PARPs known to be activated by DNA damage. The absence of PARP-1 and PARP-2, that are both activated by DNA damage and participate in DNA damage repair processes, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site can be used in BRCA-deficient cells as single agent therapies acting through the principle of synthetic lethality exploiting these cells deficient DNA double-strand break repair. Preclinical data showing an enhancement of the response of tumors to radiation has been documented for several PARP inhibitors. However, whether this is due exclusively to impaired DNA damage responses or whether tumor re-oxygenation contributes to this radio-sensitization via the vasoactive effects of the PARP inhibitors remains to be fully determined. These promising results have paved the way for the evaluation of PARP inhibitors in combination with radiotherapy in phase I and phase II clinical trials for malignant glioma, head and neck, and breast cancers. A number of challenges remain that are also reviewed in this article, including the optimization of treatment schedules for combined therapies and the validation of biomarkers that will identify which patients will most benefit from either PARP inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- V Pernin
- Institut Curie, centre de recherche, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France; Inserm U612, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France; Département d'oncologie-radiothérapie, institut Curie, centre hospitalier, 26, rue d'Ulm, 75005 Paris, France.
| | - F Mégnin-Chanet
- Inserm U1030, 114, rue Édouard-Vaillant, 94805 Villejuif, France; Cancer Campus Grand-Paris, institut Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - V Pennaneach
- Institut Curie, centre de recherche, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France; Inserm U612, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France
| | - A Fourquet
- Département d'oncologie-radiothérapie, institut Curie, centre hospitalier, 26, rue d'Ulm, 75005 Paris, France
| | - Y Kirova
- Département d'oncologie-radiothérapie, institut Curie, centre hospitalier, 26, rue d'Ulm, 75005 Paris, France
| | - J Hall
- Institut Curie, centre de recherche, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France; Inserm U612, bâtiment 110-112, centre universitaire d'Orsay, 91405 Orsay, France
| |
Collapse
|
16
|
Bosch-Presegué L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 2014; 282:1745-67. [DOI: 10.1111/febs.13053] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Laia Bosch-Presegué
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| |
Collapse
|
17
|
Brunyanszki A, Olah G, Coletta C, Szczesny B, Szabo C. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress. Mol Pharmacol 2014; 86:450-62. [PMID: 25069723 PMCID: PMC4164979 DOI: 10.1124/mol.114.094318] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.
Collapse
Affiliation(s)
- Attila Brunyanszki
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
18
|
Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 2014; 10:e1004317. [PMID: 24810616 PMCID: PMC4014456 DOI: 10.1371/journal.pgen.1004317] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 03/07/2014] [Indexed: 12/20/2022] Open
Abstract
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. That not all histones are replaced by protamines in the sperm nucleus during spermiogenesis has been known for almost three decades, along with the notion that protamines do not bear any specific epigenetic information whereas histones typically carry posttranslational modifications with epigenetic regulatory functions. The enrichment of histones with distinct epigenetic modifications around transcriptional start sites, as well as unmethylated GC-rich promoter regions and exons in murine and human sperm, has recently been demonstrated by others at high resolution. The evolutionary conservation of the common principles underlying sperm histone retention provides a plausible rationale for epigenetic inheritance by nucleosomes. The present study takes a different approach towards testing the overarching hypothesis that sperm histones are linked to early embryonic gene expression by analyzing expression of genes in 2-cell embryos originating from sperm in which gene histone association of these genes was experimentally altered. The results are consistent with the aforementioned hypothesis and support the view of sperm histones as potential mediators of epigenetic inheritance through the male germ line, which could also contribute to phenotypic variation in mammals in response to environmental or dietary factors that affect sensitive chromatin-modulating pathways such as PAR metabolism.
Collapse
|
19
|
Xia Q, Deliard S, Yuan CX, Johnson ME, Grant SFA. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. Eur J Hum Genet 2014; 23:103-9. [PMID: 24667787 DOI: 10.1038/ejhg.2014.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/29/2022] Open
Abstract
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal variant within this gene. We carried out oligo pull-down combined with mass spectrophotometry (MS) to elucidate the specific transcriptional machinery across this SNP using protein extracts from HCT116 cells. We observed that poly (ADP-ribose) polymerase 1 (PARP-1) is by far the most abundant binding factor. Pursuing the possibility of a feedback mechanism, we observed that PARP-1, along with the next most abundant binding proteins, DNA topoisomerase I and ATP-dependent RNA helicase A, dimerize with the TCF7L2 protein and with each other. We uncovered further evidence of a feedback mechanism using a luciferase reporter approach, including observing expression differences between alleles for rs7903146. We also found that there was an allelic difference in the MS results for proteins with less abundant binding, namely X-ray repair cross-complementing 5 and RPA/p70. Our results point to a protein complex binding across rs7903146 within TCF7L2 and suggests a possible mechanism by which this locus confers its T2D risk.
Collapse
Affiliation(s)
- Qianghua Xia
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sandra Deliard
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chao-Xing Yuan
- Department of Proteomics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- 1] Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA [2] Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA [3] Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma 2013; 122:319-35. [PMID: 23729169 DOI: 10.1007/s00412-013-0416-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
The mammalian sperm nucleus is characterized by unique properties that are important for fertilization. Sperm DNA retains only small numbers of histones in distinct positions, and the majority of the genome is protamine associated, which allows for extreme condensation and protection of the genetic material. Furthermore, sperm nuclei display a highly ordered architecture that is characterized by a centrally located chromocenter comprising the pericentromeric chromosome regions and peripherally positioned telomeres. Establishment of this unique and well-conserved nuclear organization during spermiogenesis is not well understood. Utilizing fluorescence in situ hybridization (FISH), we show that a large fraction of the histone-associated sperm genome is repetitive in nature, while a smaller fraction is associated with unique DNA sequences. Coordinated activity of poly(ADP-ribose) (PAR) polymerase and topoisomerase II beta has been shown to facilitate DNA relaxation and histone to protamine transition during spermatid condensation, and altered PAR metabolism is associated with an increase in sperm histone content. Combining FISH with three-dimensional laser scanning microscopy technology, we further show that altered PAR metabolism by genetic or pharmacological intervention leads to a disturbance of the overall sperm nuclear architecture with a lower degree of organization and condensation of the chromocenters formed by chromosomal pericentromeric heterochromatin.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Poly-ADP-ribose polymerase: machinery for nuclear processes. Mol Aspects Med 2013; 34:1124-37. [PMID: 23624145 DOI: 10.1016/j.mam.2013.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/01/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
It is becoming increasingly clear that the nuclear protein, poly-ADP-ribose polymerase 1 (PARP1), plays essential roles in the cell, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Despite the exciting progress made in understanding the ubiquitous role of poly-ADP-ribose metabolism, a basic mechanism of PARP's activity regulating multiple nuclear processes is yet to be outlined. This review offers a holistic perspective on activity of PARP1, based on empirically observable phenomena. Primary attention is given to mechanisms by which PARP1 regulates a broad range of essential nuclear events, including two complementary processes (1) regulation of protein-nucleic acid interactions by means of protein shuttling and (2) utilizing poly-ADP-ribose as an anionic matrix for trapping, recruiting, and scaffolding proteins.
Collapse
|
22
|
Park ES, Kang JC, Kang DH, Jang YC, Yi KY, Chung HJ, Park JS, Kim B, Feng ZP, Shin HS. 5-AIQ inhibits H2O2-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes. Toxicol Appl Pharmacol 2013; 268:90-8. [PMID: 23352507 DOI: 10.1016/j.taap.2013.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Eun-Seok Park
- Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM, McCue P, Gomella LG, Raj GV, Dicker AP, Brody JR, Pascal JM, Centenera MM, Butler LM, Tilley WD, Feng FY, Knudsen KE. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2:1134-49. [PMID: 22993403 DOI: 10.1158/2159-8290.cd-12-0120] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED PARP-1 is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair and also functions as a context-specific regulator of transcription factors. With multiple models, data show that PARP-1 elicits protumorigenic effects in androgen receptor (AR)-positive prostate cancer cells, in both the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced prostate cancer, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses show that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human prostate cancer to suppress tumor growth and progression to castration resistance. SIGNIFICANCE These studies introduce a paradigm shift with regard to PARP-1 function in human malignancy, and suggest that the dual functions of PARP-1 in DNA damage repair and transcription factor regulation can be leveraged to suppress pathways critical for promalignant phenotypes in prostate cancer cells by modulation of the DNA damage response and hormone signaling pathways. The combined studies highlight the importance of dual PARP-1 function in malignancy and provide the basis for therapeutic targeting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Departments of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Doetsch M, Gluch A, Poznanović G, Bode J, Vidaković M. YY1-binding sites provide central switch functions in the PARP-1 gene expression network. PLoS One 2012; 7:e44125. [PMID: 22937159 PMCID: PMC3429435 DOI: 10.1371/journal.pone.0044125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Evidence is presented for the involvement of the interplay between transcription factor Yin Yang 1 (YY1) and poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of mouse PARP-1 gene (muPARP-1) promoter activity. We identified potential YY1 binding motifs (BM) at seven positions in the muPARP-1 core-promoter (-574/+200). Binding of YY1 was observed by the electrophoretic supershift assay using anti-YY1 antibody and linearized or supercoiled forms of plasmids bearing the core promoter, as well as with 30 bp oligonucleotide probes containing the individual YY1 binding motifs and four muPARP-1 promoter fragments. We detected YY1 binding to BM1 (-587/-558), BM4 (-348/-319) and a very prominent association with BM7 (+86/+115). Inspection of BM7 reveals overlap of the muPARP-1 translation start site with the Kozak sequence and YY1 and PARP-1 recognition sites. Site-directed mutagenesis of the YY1 and PARP-1 core motifs eliminated protein binding and showed that YY1 mediates PARP-1 binding next to the Kozak sequence. Transfection experiments with a reporter gene under the control of the muPARP-1 promoter revealed that YY1 binding to BM1 and BM4 independently repressed the promoter. Mutations at these sites prevented YY1 binding, allowing for increased reporter gene activity. In PARP-1 knockout cells subjected to PARP-1 overexpression, effects similar to YY1 became apparent; over expression of YY1 and PARP-1 revealed their synergistic action. Together with our previous findings these results expand the PARP-1 autoregulatory loop principle by YY1 actions, implying rigid limitation of muPARP-1 expression. The joint actions of PARP-1 and YY1 emerge as important contributions to cell homeostasis.
Collapse
Affiliation(s)
- Martina Doetsch
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Angela Gluch
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- BIOBASE GmbH, Wolfenbuettel, Germany
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Juergen Bode
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Hannover Medical School (MHH), Experimental Hematology, Hannover, Germany
| | - Melita Vidaković
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Ji Y, Tulin AV. Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun 2012; 3:760. [PMID: 22453833 DOI: 10.1038/ncomms1759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/24/2012] [Indexed: 11/09/2022] Open
Abstract
Within the short span of the cell cycle, poly(ADP-ribose) (pADPr) can be rapidly produced by poly(ADP-ribose) polymerases and degraded by poly(ADP-ribose) glycohydrolases. Here we show that changes in association between pADPr and heterogeneous nuclear ribonucleoproteins (hnRNPs) regulate germline stem cell (GSC) maintenance and egg chamber polarity during oogenesis in Drosophila. The association of pADPr and Hrp38, an orthologue of human hnRNPA1, disrupts the interaction of Hrp38 with the 5'-untranslated region of DE-cadherin messenger RNA, thereby diminishing DE-cadherin translation in progenitor cells. Following the reduction of DE-cadherin level, GSCs leave the stem cell niche and differentiate. Defects in either pADPr catabolism or Hrp38 function cause a decrease in DE-cadherin translation, leading to a loss of GSCs and mislocalization of oocytes in the ovary. Taken together, our findings suggest that Hrp38 and its association with pADPr control GSC self-renewal and oocyte localization by regulating DE-cadherin translation.
Collapse
Affiliation(s)
- Yingbiao Ji
- Cancer Biology Program, Epigenetics and Progenitor Cell Program, Fox Chase Cancer Center, Philadephia 19111, USA
| | | |
Collapse
|
26
|
Boamah EK, Kotova E, Garabedian M, Jarnik M, Tulin AV. Poly(ADP-Ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli. PLoS Genet 2012; 8:e1002442. [PMID: 22242017 PMCID: PMC3252306 DOI: 10.1371/journal.pgen.1002442] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/14/2011] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis. Ribosome assembly happens primarily in the subnuclear organelle nucleolus. In the nucleolus, ribosomes are assembled into a multmeric complex, composed of rRNA and ribosomal proteins. Although a lot is known about ribosomes and how they function, very little is known about the mechanism that facilitates the assembly of these multimeric protein complexes in the nucleolus. Here, we provide evidence that a nuclear protein, PARP1, primarily known for its DNA damage repair and transcriptional activities, also plays a critical role in the assembly of ribosomes. Using the Drosophila model system, we show that PARP1 localization within the nucleolus impacts such nucleolar activities as rRNA processing and ribosome biogenesis. We show that, when PARP1 activity is disrupted, nucleolar proteins that normally co-localize under wild-type conditions disperse into the nucleoplasm and do not show any co-localization. We also show that some nucleolar proteins, essential for rRNA processing, also interact with pADPr, which keeps these proteins close to precursor rRNA. When PARP1 activity was disrupted, we observed precursors rRNA accumulation and a concomitant decrease in the levels of ribosomes. Together, our data suggest a novel activity for PARP1 and highlight a potential mechanism associated with ribosome biogenesis in the nucleolus.
Collapse
Affiliation(s)
- Ernest K. Boamah
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Elena Kotova
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Mikael Garabedian
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Michael Jarnik
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Alexei V. Tulin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011; 15:551-89. [PMID: 20919933 PMCID: PMC3118659 DOI: 10.1089/ars.2010.3492] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD(+), S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses.
Collapse
Affiliation(s)
- Anthony R Cyr
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242-1181, USA
| | | |
Collapse
|
29
|
Kvon EZ, Demakov SA, Zhimulev IF. Chromatin decompaction in the interbands of Drosophila polytene chromosomes does not correlate with high transcription level. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411060135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 2011; 84:900-9. [PMID: 21228215 DOI: 10.1095/biolreprod.110.090035] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To achieve the specialized nuclear structure in sperm necessary for fertilization, dramatic chromatin reorganization steps in developing spermatids are required where histones are largely replaced first by transition proteins and then by protamines. This entails the transient formation of DNA strand breaks to allow for, first, DNA relaxation and then chromatin compaction. However, the nature and origin of these breaks are not well understood. We previously reported that these DNA strand breaks trigger the activation of poly(ADP-ribose) (PAR) polymerases PARP1 and PARP2 and that interference with PARP activation causes poor chromatin integrity with abnormal retention of histones in mature sperm and impaired embryonic survival. Here we show that the activity of topoisomerase II beta (TOP2B), an enzyme involved in DNA strand break formation in elongating spermatids, is strongly inhibited by the activity of PARP1 and PARP2 in vitro, and this is in turn counteracted by the PAR-degrading activity of PAR glycohydrolase. Moreover, genetic and pharmacological PARP inhibition both lead to increased TOP2B activity in murine spermatids in vivo as measured by covalent binding of TOP2B to the DNA. In summary, the available data suggest a functional relationship between the DNA strand break-generating activity of TOP2B and the DNA strand break-dependent activation of PARP enzymes that in turn inhibit TOP2B. Because PARP activity also facilitates histone H1 linker removal and local chromatin decondensation, cycles of PAR formation and degradation may be necessary to coordinate TOP2B-dependent DNA relaxation with histone-to-protamine exchange necessary for spermatid chromatin remodeling.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lodhi N, Tulin AV. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq). Methods Mol Biol 2011; 780:191-208. [PMID: 21870262 DOI: 10.1007/978-1-61779-270-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(ADP-ribose) polymerase1 (PARP1) is a global regulator of different cellular mechanisms, ranging from DNA damage repair to control of gene expression. Since PARP1 protein and pADPr have been shown to persist in chromatin through cell cycle, they may both act as epigenetic markers. However, it is not known how many loci are occupied by PARP1 protein during mitosis genome-wide. To reveal the genome-wide PARP1 binding sites, we used the ChIP-seq approach, an emerging technique to study genome-wide PARP1 protein interaction with chromatin. Here, we describe how to perform ChIP-seq in the context of PARP1 binding sites identification in chromatin, using human embryonic kidney cell lines.
Collapse
Affiliation(s)
- Niraj Lodhi
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Mégnin-Chanet F, Bollet MA, Hall J. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Cell Mol Life Sci 2010; 67:3649-62. [PMID: 20725763 PMCID: PMC2955921 DOI: 10.1007/s00018-010-0490-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD(+). The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated.
Collapse
Affiliation(s)
- Frédérique Mégnin-Chanet
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| | - Marc A. Bollet
- Département d’oncologie radiothérapique, Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - Janet Hall
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
33
|
Krishnakumar R, Kraus WL. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 2010; 39:736-49. [PMID: 20832725 DOI: 10.1016/j.molcel.2010.08.014] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/26/2010] [Accepted: 07/16/2010] [Indexed: 11/26/2022]
Abstract
PARP-1 is an abundant nuclear enzyme that regulates gene expression, although the underlying mechanisms are unclear. We examined the interplay between PARP-1, histone 3 lysine 4 trimethylation (H3K4me3), and linker histone H1 in the chromatin-dependent control of transcription. We show that PARP-1 is required for a series of molecular outcomes at the promoters of PARP-1-regulated genes, leading to a permissive chromatin environment that allows loading of the RNA Pol II machinery. PARP-1 does so by (1) preventing demethylation of H3K4me3 through the PARylation, inhibition, and exclusion of the histone demethylase KDM5B; and (2) promoting the exclusion of H1 and the opening of promoter chromatin. Upon depletion of PARP-1, these outcomes do not occur efficiently. Interestingly, cellular signaling pathways can use the regulated depletion of PARP-1 to modulate these chromatin-related molecular outcomes. Collectively, our results help to elucidate the roles of PARP-1 in the regulation of chromatin structure and transcription.
Collapse
Affiliation(s)
- Raga Krishnakumar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 2010; 84:218-28. [PMID: 20881315 DOI: 10.1095/biolreprod.110.087361] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm chromatin is organized in a protamine-based, highly condensed form, which protects the paternal chromosome complement in transit, facilitates fertilization, and supports correct gene expression in the early embryo. Very few histones remain selectively associated with genes and defined regulatory sequences essential to embryonic development, while most of the genome becomes bound to protamine during spermiogenesis. Chromatin remodeling processes resulting in the dramatically different nuclear structure of sperm are poorly understood. This study shows that perturbation of poly(ADP-ribose) (PAR) metabolism, which is mediated by PAR polymerases and PAR glycohydrolase in response to naturally occurring endogenous DNA strand breaks during spermatogenesis, results in the abnormal retention of core histones and histone linker HIST1H1T (H1t) and H1-like linker protein HILS1 in mature sperm. Moreover, genetic or pharmacological alteration of PAR metabolism caused poor sperm chromatin quality and an abnormal nuclear structure in mice, thus reducing male fertility.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010; 39:8-24. [PMID: 20603072 DOI: 10.1016/j.molcel.2010.06.017] [Citation(s) in RCA: 687] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023]
Abstract
The abundant nuclear enzyme PARP-1, a multifunctional regulator of chromatin structure, transcription, and genomic integrity, plays key roles in a wide variety of processes in the nucleus. Recent studies have begun to connect the molecular functions of PARP-1 to specific physiological and pathological outcomes, many of which can be altered by an expanding array of chemical inhibitors of PARP enzymatic activity.
Collapse
Affiliation(s)
- Raga Krishnakumar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
36
|
Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009; 7:143. [PMID: 19961617 PMCID: PMC2800114 DOI: 10.1186/1477-7827-7-143] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/05/2009] [Indexed: 12/13/2022] Open
Abstract
Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Reda Z Mahfouz
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh K Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oli Sarkar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
- McGill University Health Center, Montreal, Canada
| | - Devna Mangrola
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Premendu P Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| |
Collapse
|
37
|
Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y, Sauve AA, Kraus WL. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 2009; 284:33926-38. [PMID: 19812418 DOI: 10.1074/jbc.m109.023879] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.
Collapse
Affiliation(s)
- Kristine M Frizzell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 2009; 66:3219-34. [PMID: 19672559 PMCID: PMC11115941 DOI: 10.1007/s00018-009-0105-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/29/2009] [Accepted: 07/14/2009] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (Parp-1) and the protein deacetylase SirT1 are two of the most effective NAD(+)-consuming enzymes in the cell with key functions in genome integrity and chromatin-based pathways. Here, we examined the in vivo crosstalk between both proteins. We observed that the double disruption of both genes in mice tends to increase late post-natal lethality before weaning consistent with important roles of both proteins in genome integrity during mouse development. We identified increased spontaneous telomeric abnormalities associated with decreased cell growth in the absence of either SirT1 or SirT1 and Parp-1 in mouse cells. In contrast, the additional disruption of Parp-1 rescued the abnormal pericentric heterochromatin, the nucleolar disorganization and the mitotic defects observed in SirT1-deficient cells. Together, these findings are in favor of key functions of both proteins in cellular response to DNA damage and in the modulation of histone modifications associated with constitutive heterochromatin integrity.
Collapse
Affiliation(s)
- Rosy El Ramy
- IREBS-FRE3211, ESBS, Bld S. Brant, BP10413, 67412 Illkirch, France
| | - Najat Magroun
- IREBS-FRE3211, ESBS, Bld S. Brant, BP10413, 67412 Illkirch, France
| | | | - Laurent R. Gauthier
- Laboratoire de Radiopathologie, CEA, IRCM-INSERM U967, 92265 Fontenay-aux-Roses, France
| | - François D. Boussin
- Laboratoire de Radiopathologie, CEA, IRCM-INSERM U967, 92265 Fontenay-aux-Roses, France
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 India
| | | | - Michael W. McBurney
- Center for Cancer Therapeutics, Ottawa Health Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Paolo Sassone-Corsi
- Department of Pharmacology, University of California, GNRF, Irvine, CA 92697 USA
| | | |
Collapse
|
40
|
Kummar S, Kinders R, Gutierrez ME, Rubinstein L, Parchment RE, Phillips LR, Ji J, Monks A, Low JA, Chen A, Murgo AJ, Collins J, Steinberg SM, Eliopoulos H, Giranda VL, Gordon G, Helman L, Wiltrout R, Tomaszewski JE, Doroshow JH. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 2009; 27:2705-11. [PMID: 19364967 DOI: 10.1200/jco.2008.19.7681] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We conducted the first phase 0 clinical trial in oncology of a therapeutic agent under the Exploratory Investigational New Drug Guidance of the US Food and Drug Administration. It was a first-in-human study of the poly (ADP-ribose) polymerase (PARP) inhibitor ABT-888 in patients with advanced malignancies. PATIENTS AND METHODS ABT-888 was administered as a single oral dose of 10, 25, or 50 mg to determine the dose range and time course over which ABT-888 inhibits PARP activity in tumor samples and peripheral blood mononuclear cells, and to evaluate ABT-888 pharmacokinetics. Blood samples and tumor biopsies were obtained pre- and postdrug administration for evaluation of PARP activity and pharmacokinetics. A novel statistical approach was developed and utilized to study pharmacodynamic modulation as the primary end point for trials of limited sample size. RESULTS Thirteen patients with advanced malignancies received the study drug; nine patients underwent paired tumor biopsies. ABT-888 demonstrated good oral bioavailability and was well tolerated. Statistically significant inhibition of poly (ADP-ribose) levels was observed in tumor biopsies and peripheral blood mononuclear cells at the 25-mg and 50-mg dose levels. CONCLUSION Within 5 months of study activation, we obtained pivotal biochemical and pharmacokinetic data that have guided the design of subsequent phase I trials of ABT-888 in combination with DNA-damaging agents. In addition to accelerating the development of ABT-888, the rapid conclusion of this trial demonstrates the feasibility of conducting proof-of-principle phase 0 trials as part of an alternative paradigm for early drug development in oncology.
Collapse
Affiliation(s)
- Shivaani Kummar
- Center for Cancer Research and the Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sala A, La Rocca G, Burgio G, Kotova E, Di Gesù D, Collesano M, Ingrassia AMR, Tulin AV, Corona DFV. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation. PLoS Biol 2009; 6:e252. [PMID: 18922045 PMCID: PMC2567001 DOI: 10.1371/journal.pbio.0060252] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/09/2008] [Indexed: 12/22/2022] Open
Abstract
ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin
set the functional state of chromatin. However, how these enzymatic activities
are coordinated in the nucleus is largely unknown. We found that the
evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose
polymerase PARP genetically interact. We present evidence showing that ISWI is
target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function
in vitro and in vivo. Our work suggests that ISWI is a physiological target of
PARP and that poly-ADP-ribosylation can be a new, important post-translational
modification regulating the activity of ATP-dependent nucleosome remodelers. The ISWI protein is a highly conserved nucleosome remodeler that plays essential
roles in regulating chromosome structure, DNA replication, and gene expression.
The variety of functions associated with ISWI activity are probably connected to
the ability of other cellular factors to regulate its ATP-dependent
nucleosome-remodeling activity. We identified one factor—the poly-ADP-ribose
polymerase, PARP—that can counteract ISWI function. PARP is an abundant nuclear
protein that catalyzes the transfer of ADP-ribose units to specific proteins
involved in DNA repair, transcription, and chromatin structure. Our work
suggests that the activity of an ATP-dependent remodeler can be modulated by
poly-ADP-ribosylation in order to regulate chromatin function in vivo. Enzymes that mediate nucleosome remodeling and poly-ADP-ribosylation play
essential roles in the eukaryotic cell. A new study suggests a mechanism to
explain how two nuclear enzymes can coordinate their activities to regulate
chromatin structure and function.
Collapse
Affiliation(s)
- Anna Sala
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
| | - Gaspare La Rocca
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
| | - Giosalba Burgio
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
- Dipartimento di Scienze Biochimiche, Universita' degli Studi di
Palermo, Palermo, Italy
| | - Elena Kotova
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
of America
| | - Dario Di Gesù
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
- Dipartimento di Scienze Biochimiche, Universita' degli Studi di
Palermo, Palermo, Italy
| | - Marianna Collesano
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
| | | | - Alexei V Tulin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
of America
| | - Davide F. V Corona
- Istituto Telethon Dulbecco, Universita' degli Studi di Palermo,
Palermo, Italy
- Dipartimento di Scienze Biochimiche, Universita' degli Studi di
Palermo, Palermo, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Oh KS, Lee S, Yi KY, Seo HW, Koo HN, Lee BH. A novel and orally active poly(ADP-ribose) polymerase inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl) methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], attenuates injury in in vitro model of cell death and in vivo model of cardiac ischemia. J Pharmacol Exp Ther 2009; 328:10-8. [PMID: 18836068 DOI: 10.1124/jpet.108.143719] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blocking of poly(ADP-ribose) polymerase (PARP)-1 has been expected to protect the heart from ischemia-reperfusion injury. We have recently identified a novel and orally active PARP-1 inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl)-methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], and its major metabolite, KR-34285 [2-[carboxy(4-methoxyphenyl)methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide]. KR-33889 potently inhibited PARP-1 activity with an IC(50) value of 0.52 +/- 0.10 microM. In H9c2 myocardial cells, KR-33889 (0.03-30 microM) showed a resistance to hydrogen peroxide (2 mM)-mediated oxidative insult and significantly attenuated activation of intracellular PARP-1. In anesthetized rats subjected to 30 min of coronary occlusion and 3 h of reperfusion, KR-33889 (0.3-3 mg/kg i.v.) dose-dependently reduced myocardial infarct size. KR-34285, a major metabolite of KR-33889, exerted similar patterns to the parent compound with equi- or weaker potency in the same studies described above. In separate experiments for the therapeutic time window study, KR-33889 (3 mg/kg i.v.) given at preischemia, at reperfusion or in both, in rat models also significantly reduced the myocardial infarction compared with their respective vehicle-treated group. Furthermore, the oral administration of KR-33889 (1-10 mg/kg p.o.) at 1 h before occlusion significantly reduced myocardial injury. The ability of KR-33889 to inhibit PARP in the rat model of ischemic heart was confirmed by immunohistochemical detection of poly(ADP-ribose) activation. These results indicate that the novel PARP inhibitor KR-33889 exerts its cardioprotective effect in in vitro and in vivo studies of myocardial ischemia via potent PARP inhibition and also suggest that KR-33889 could be an attractive therapeutic candidate with oral activity for several cardiovascular disorders, including myocardial infarction.
Collapse
Affiliation(s)
- Kwang-Seok Oh
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, Daejeon 305-343, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Kerns JA, Emerman M, Malik HS. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 2008; 4:e21. [PMID: 18225958 PMCID: PMC2213710 DOI: 10.1371/journal.pgen.0040021] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 12/10/2007] [Indexed: 01/08/2023] Open
Abstract
Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP) from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose) polymerase (PARP)–like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes. Host–virus interactions are a classic example of genetic conflict in which both entities try to gain an evolutionary advantage over the other. This “back-and-forth” evolution is predicted to result in rapid changes of both host and viral proteins, which results in an evolutionary signature of positive selection, especially at the direct interaction interface. Recent studies have demonstrated that host proteins can target intracellular stages of the viral life cycle to potently inhibit viruses. Collectively, these host proteins are referred to as “intrinsic immunity” proteins. One such protein, zinc-finger antiviral protein (ZAP), was previously described from rats and shown to inhibit retroviruses and alphaviruses. We queried the primate orthologs of ZAP to ascertain both whether they have evolved under positive selection, and whether they have antiviral activity. We found that the signature of positive selection was restricted to a poly(ADP-ribose) polymerase–like domain in a longer isoform of primate ZAP. The longer human ZAP isoform has increased antiviral activity against both retroviruses and alphaviruses. Thus, positive selection correctly predicted the more potent antiviral isoform of this protein.
Collapse
Affiliation(s)
- Julie A Kerns
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Droit A, Hunter JM, Rouleau M, Ethier C, Picard-Cloutier A, Bourgais D, Poirier GG. PARPs database: a LIMS systems for protein-protein interaction data mining or laboratory information management system. BMC Bioinformatics 2007; 8:483. [PMID: 18093328 PMCID: PMC2266781 DOI: 10.1186/1471-2105-8-483] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools. DESCRIPTION We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified. CONCLUSION Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5.
Collapse
Affiliation(s)
- Arnaud Droit
- Health and Environment Unit, Laval University Medical research Center, CHUQ, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
45
|
Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, Cox BF, DeWeese TL, Dillehay LE, Ferguson DC, Ghoreishi-Haack NS, Grimm DR, Guan R, Han EK, Holley-Shanks RR, Hristov B, Idler KB, Jarvis K, Johnson EF, Kleinberg LR, Klinghofer V, Lasko LM, Liu X, Marsh KC, McGonigal TP, Meulbroek JA, Olson AM, Palma JP, Rodriguez LE, Shi Y, Stavropoulos JA, Tsurutani AC, Zhu GD, Rosenberg SH, Giranda VL, Frost DJ. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007; 13:2728-37. [PMID: 17473206 DOI: 10.1158/1078-0432.ccr-06-3039] [Citation(s) in RCA: 600] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. EXPERIMENTAL DESIGN In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. RESULTS ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K(i)s of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d x 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. CONCLUSIONS ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.
Collapse
|
46
|
Amiri KI, Ha HC, Smulson ME, Richmond A. Differential regulation of CXC ligand 1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene 2006; 25:7714-22. [PMID: 16799643 PMCID: PMC2665274 DOI: 10.1038/sj.onc.1209751] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The continuous production of the CXC ligand 1 (CXCL1) chemokine by melanoma cells is a major effector of tumor growth. We have previously shown that the constitutive expression of this chemokine is dependent upon transcription factors nuclear factor-kappa B (NF-kappaB), stimulating protein-1 (SP1), high-mobility group-I/Y (HMGI/Y), CAAT displacement protein (CDP) and poly(ADP-ribose) polymerase-1 (PARP-1). In this study, we demonstrate for the first time the mechanism of transcriptional regulation of CXCL1 through PARP-1 in melanoma cells. In its inactive state, PARP-1 binds to the CXCL1 promoter in a sequence-specific manner and prevents binding of NF-kappaB (p65/p50) to its element. However, activation of the PARP-1 enzymatic activity enhances CXCL1 expression, owing to the loss of PARP-1 binding to the CXCL1 promoter, accompanied by enhanced binding of p65 to the promoter. The delineation of the role of NF-kappaB-interacting factors in the putative CXCL1 enhanceosome will provide key information in developing strategies to block constitutive expression of this and other chemokines in cancer and to develop targeted therapy.
Collapse
Affiliation(s)
- KI Amiri
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Microbiology, Meharry Medical College, Nashville, TN, USA
| | - HC Ha
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - ME Smulson
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - A Richmond
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
47
|
Buszczak M, Spradling AC. The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 2006; 20:977-89. [PMID: 16598038 PMCID: PMC1472305 DOI: 10.1101/gad.1396306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/07/2006] [Indexed: 11/25/2022]
Abstract
Terminating a gene's activity requires that pre-existing transcripts be matured or destroyed and that the local chromatin structure be returned to an inactive configuration. Here we show that the Drosophila homolog of the mammalian P68 RNA helicase plays a novel role in RNA export and gene deactivation. p68 mutations phenotypically resemble mutations in small bristles (sbr), the Drosophila homolog of the human mRNA export factor NXF1. Full-length hsp70 mRNA accumulates in the nucleus near its sites of transcription following heat shock of p68 homozygotes, and hsp70 gene shutdown is delayed. Unstressed mutant larvae show similar defects in transcript accumulation and gene repression at diverse loci, and we find that p68 mutations are allelic to Lighten-up, a known suppressor of position effect variegation. Our observations reveal a strong connection between transcript clearance and gene repression. P68 may be needed to rapidly remove transcripts from a gene before its activity can be shut down and its chromatin reset to an inactive state.
Collapse
Affiliation(s)
- Michael Buszczak
- Howard Hughes Laboratories/Embryology Department, Carnegie Institution of Washington, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
48
|
Tulin A, Naumova NM, Menon AK, Spradling AC. Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 2005; 172:363-71. [PMID: 16219773 PMCID: PMC1456164 DOI: 10.1534/genetics.105.049239] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins.
Collapse
Affiliation(s)
- Alexei Tulin
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|