1
|
Zhao X, Ma D, Yang B, Wang Y, Zhang L. Research progress of T cell autophagy in autoimmune diseases. Front Immunol 2024; 15:1425443. [PMID: 39104538 PMCID: PMC11298352 DOI: 10.3389/fimmu.2024.1425443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Jiang T, Ma C, Chen H. Unraveling the ultrastructure and dynamics of autophagic vesicles: Insights from advanced imaging techniques. FASEB Bioadv 2024; 6:189-199. [PMID: 38974114 PMCID: PMC11226998 DOI: 10.1096/fba.2024-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024] Open
Abstract
Autophagy, an intracellular self-degradation process, is governed by a complex interplay of signaling pathways and interactions between proteins and organelles. Its fundamental purpose is to efficiently clear and recycle cellular components that are damaged or redundant. Central to this process are autophagic vesicles, specialized structures that encapsulate targeted cellular elements, playing a pivotal role in autophagy. Despite growing interest in the molecular components of autophagic machinery and their regulatory mechanisms, capturing the detailed ultrastructural dynamics of autophagosome formation continues to present significant challenges. However, recent advancements in microscopy, particularly in electron microscopy, have begun to illuminate the dynamic regulatory processes underpinning autophagy. This review endeavors to provide an exhaustive overview of contemporary research on the ultrastructure of autophagic processes. By synthesizing observations from diverse technological methodologies, this review seeks to deepen our understanding of the genesis of autophagic vesicles, their membrane origins, and the dynamic alterations that transpire during the autophagy process. The aim is to bridge gaps in current knowledge and foster a more comprehensive comprehension of this crucial cellular mechanism.
Collapse
Affiliation(s)
- Ting Jiang
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
| | - Chaoye Ma
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
| | - Hao Chen
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
- Guangzhou Women and Children’s Medical Center, GMU‐GIBH Joint School of Life ScienceGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Wu XY, Dong B, Zhu XM, Cai YY, Li L, Lu JP, Yu B, Cheng JL, Xu F, Bao JD, Wang Y, Liu XH, Lin FC. SP-141 targets Trs85 to inhibit rice blast fungus infection and functions as a potential broad-spectrum antifungal agent. PLANT COMMUNICATIONS 2024; 5:100724. [PMID: 37771153 PMCID: PMC10873891 DOI: 10.1016/j.xplc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Rice blast is a devastating disease worldwide, threatening rice production and food security. The blast fungus Magnaporthe oryzae invades the host via the appressorium, a specialized pressure-generating structure that generates enormous turgor pressure to penetrate the host cuticle. However, owing to ongoing evolution of fungicide resistance, it is vitally important to identify new targets and fungicides. Here, we show that Trs85, a subunit of the transport protein particle III complex, is essential for appressorium-mediated infection in M. oryzae. We explain how Trs85 regulates autophagy through Ypt1 (a small guanosine triphosphatase protein) in M. oryzae. We then identify a key conserved amphipathic α helix within Trs85 that is associated with pathogenicity of M. oryzae. Through computer-aided screening, we identify a lead compound, SP-141, that affects autophagy and the Trs85-Ypt1 interaction. SP-141 demonstrates a substantial capacity to effectively inhibit infection caused by the rice blast fungus while also exhibiting wide-ranging potential as an antifungal agent with broad-spectrum activity. Taken together, our data show that Trs85 is a potential new target and that SP-141 has potential for the control of rice blast. Our findings thus provide a novel strategy that may help in the fight against rice blast.
Collapse
Affiliation(s)
- Xi-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bo Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China; Department of Pharmacology and Nutritional Science, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing-Li Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
4
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
5
|
Yin H, Shan Y, Xia T, Ji Y, Yuan L, You Y, You B. Emerging Roles of Lipophagy in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14184526. [PMID: 36139685 PMCID: PMC9496701 DOI: 10.3390/cancers14184526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Metastasis is the main cause of death in patients with malignant tumors worldwide. Mounting evidence suggests lipid droplet metabolism is involved in the process of metastasis. As a mechanism to selectively degrade lipid droplets, the current research on lipophagy and tumor metastasis is quite limited. This review summarizes the crosstalk among lipophagy, tumor lipid metabolism and cancer metastasis, which will provide a new reference for the development of effective targeted drugs. Abstract Obesity is a prominent risk factor for certain types of tumor progression. Adipocytes within tumor stroma contribute to reshaping tumor microenvironment (TME) and the metabolism and metastasis of tumors through the production of cytokines and adipokines. However, the crosstalk between adipocytes and tumor cells remains a major gap in this field. Known as a subtype of selective autophagy, lipophagy is thought to contribute to lipid metabolism by breaking down intracellular lipid droplets (LDs) and generating free fatty acids (FAs). The metastatic potential of cancer cells closely correlates with the lipid degradation mechanisms, which are required for energy generation, signal transduction, and biosynthesis of membranes. Here, we discuss the recent advance in the understanding of lipophagy with tumor lipid metabolism and review current studies on the roles of lipoghagy in the metastasis of certain human malignancies. Additionally, the novel candidate drugs targeting lipophagy are integrated for effective treatment strategies.
Collapse
Affiliation(s)
- Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ying Shan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Tian Xia
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Yan Ji
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ling Yuan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| |
Collapse
|
6
|
Chu JYK, Chuang YC, Tsai KN, Pantuso J, Ishida Y, Saito T, Ou JHJ. Autophagic membranes participate in hepatitis B virus nucleocapsid assembly, precore and core protein trafficking, and viral release. Proc Natl Acad Sci U S A 2022; 119:e2201927119. [PMID: 35858426 PMCID: PMC9335259 DOI: 10.1073/pnas.2201927119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/05/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.
Collapse
Affiliation(s)
- Ja Yeon Kim Chu
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jessica Pantuso
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Research and Development Department, PhoenixBio, Co., Ltd, Kagamiyama, Higashi-Hiroshima City, 739-0046 Japan
| | - Takeshi Saito
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
7
|
Deng L, Feng Y, OuYang P, Chen D, Huang X, Guo H, Deng H, Fang J, Lai W, Geng Y. Autophagy induced by largemouth bass virus inhibits virus replication and apoptosis in epithelioma papulosum cyprini cells. FISH & SHELLFISH IMMUNOLOGY 2022; 123:489-495. [PMID: 35364259 DOI: 10.1016/j.fsi.2022.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Autophagy and apoptosis play important roles in the occurrence and development of diseases. Largemouth bass virus (LMBV) is a primary agent that causes infectious skin ulcerative syndrome in largemouth bass and threatens the aquaculture of the species. We investigated the relationship between LMBV and autophagy, as well as the effect of autophagy on apoptosis induced by LMBV. Results showed that LMBV could induce autophagy in epithelioma papulosum cyprinid (EPC) cells. There was also an increase in LC3-II protein and decrease in p62 protein, along with autophagosome-like membranous vesicles and punctate autophagosomes fluorescent spots being observed in EPC cells. Enhancing autophagy inhibited the replication of LMBV and apoptosis in EPC cells while inhibiting autophagy produced the opposite effect. These results offer new insights into the pathogenesis of LMBV and anti-LMBV strategies.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Ping OuYang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
8
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
9
|
Li HY, Peng ZG. Targeting lipophagy as a potential therapeutic strategy for nonalcoholic fatty liver disease. Biochem Pharmacol 2022; 197:114933. [PMID: 35093393 DOI: 10.1016/j.bcp.2022.114933] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/09/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Deng J, Lu C, Liu C, Oveissi S, Fairlie WD, Lee EF, Bilsel P, Puthalakath H, Chen W. Influenza A virus infection-induced macroautophagy facilitates MHC class II-restricted endogenous presentation of an immunodominant viral epitope. FEBS J 2020; 288:3164-3185. [PMID: 33830641 DOI: 10.1111/febs.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.
Collapse
Affiliation(s)
- Jieru Deng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Chunni Lu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,School of Medicine, Deakin University, Waurn Ponds, Vic., Australia
| | - Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Erinna F Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | | | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
11
|
Zhuang J, Nie G, Yang F, Cao H, Xing C, Dai X, Hu G, Zhang C. Molybdenum and Cadmium co-induced the levels of autophagy-related genes via adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney. Poult Sci 2020; 98:6533-6541. [PMID: 31424537 PMCID: PMC8913950 DOI: 10.3382/ps/pez477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate Molybdenum (Mo) and Cadmium (Cd) co-induced the levels of autophagy-related genes via AMPK/mTOR signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney, 60 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses on the basal diet for 120 d. Kidney samples were collected on day 120 to determine the mRNA expression levels of adenosine 5′-monophosphate (AMP)-activated protein kinase α1 (AMPKα1), mammalian target of rapamycin (mTOR), Beclin-1, autophagy-related gene-5 (Atg5), microtubule-associated protein light chain A (LC3A), microtubule-associated protein light chain B (LC3B), sequestosome-1, and Dynein by real-time quantitative polymerase chain reaction. Meanwhile, ultrastructural changes of the kidney were observed. The results indicated that the mTOR and P62 mRNA expression levels were significantly downregulated, but the Atg5 and Beclin-1 mRNA levels were remarkably upregulated in all treated groups compared to control group, and their changes were greater in joint groups. Additionally, compared to control group, the Dynein mRNA expression level was apparently downregulated in co-treated groups, the LC3B, LC3A, and AMPKα1 expression levels were dramatically upregulated in single treated groups and they were not obviously different in co-treated groups. Ultrastructural changes showed that Mo and Cd could markedly increase the number of autophagosomes. Taken together, it suggested that dietary Mo and Cd might induce autophagy via AMPK/mTOR signaling pathway in duck kidney, and it showed a possible synergistic relationship between the 2 elements.
Collapse
Affiliation(s)
- Jionghan Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, Economic and Technological Development District, Nanchang 330032, Jiangxi, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| |
Collapse
|
12
|
Sun Y, Zheng Q, Wang Y, Pang Z, Liu J, Yin Z, Lou Z. Activity-Based Protein Profiling Identifies ATG4B as a Key Host Factor for Enterovirus 71 Proliferation. J Virol 2019; 93:e01092-19. [PMID: 31554687 PMCID: PMC6880168 DOI: 10.1128/jvi.01092-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023] Open
Abstract
Virus-encoded proteases play diverse roles in the efficient replication of enterovirus 71 (EV71), which is the causative agent of human hand, foot, and mouth disease (HFMD). However, it is unclear how host proteases affect viral proliferation. Here, we designed activity-based probes (ABPs) based on an inhibitor of the main EV71 protease (3Cpro), which is responsible for the hydrolysis of the EV71 polyprotein, and successfully identified host candidates that bind to the ABPs. Among the candidates, the host cysteine protease autophagy-related protein 4 homolog B (ATG4B), a key component of the autophagy machinery, was demonstrated to hydrolytically process the substrate of EV71 3Cpro and had activity comparable to that of the viral protease. Genetic disruption of ATG4B confirmed that the enzyme is indispensable for viral proliferation in vivo Our results not only further the understanding of host-virus interactions in EV71 biology but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.IMPORTANCE Enterovirus 71 (EV71), one of the major pathogens of human HFMD, has caused outbreaks worldwide. How EV71 efficiently assesses its life cycle with elaborate interactions with multiple host factors remains to be elucidated. In this work, we deconvoluted that the host ATG4B protein processes the viral polyprotein with its cysteine protease activity and helps EV71 replicate through a chemical biology strategy. Our results not only further the understanding of the EV71 life cycle but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.
Collapse
Affiliation(s)
- Yang Sun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qizhen Zheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yaxin Wang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
- School of Life Science, Tianjin University, Tianjin, China
| | - Zhengyuan Pang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jingwei Liu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zheng Yin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiyong Lou
- Collaborative Innovation Center of Biotherapy, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Wu X, Jia R, Wang M, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Yin Z, Zhang S, Huang J, Zhang L, Liu Y, Yu Y, Pan L, Tian B, Rehman MU, Chen X, Cheng A. Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy. Virol J 2019; 16:144. [PMID: 31771604 PMCID: PMC6880601 DOI: 10.1186/s12985-019-1250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known. METHODS Quantitative reverse-transcription PCR (qRT-PCR) was used to measure the expression levels of miRNAs(miR-30a-5p) and Beclin-1 mRNA. The miR-30a-5p - Beclin-1 target interactions were determined by Dual luciferase reporter assay (DLRA). Western blotting was utilized to analyze Beclin-1-mediated duck embryo fibroblast (DEF) cells autophagy activity. DEV titers were estimated by the median tissue culture infective dose (TCID50). RESULTS The miR-30a-5p was significantly downregulated and the Beclin-1 mRNA was significantly upregulated in DEV-infected DEF cells. DLRA confirmed that miR-30a-5p directly targeted the 3'- UTR of the Beclin-1 gene. Overexpression of miR-30a-5p significantly reduced the expression level of Beclin-1protein (p < 0.05), leading to the decrease of Beclin-1-mediated autophagy activity, which ultimately suppressed DEV replication (P < 0.05). Whereas transfection of miR-30a-5p inhibitor increased Beclin-1-mediated autophagy and triggered DEV replication during the whole process of DEV infection (P < 0.01). CONCLUSIONS This study shows that miR-30a-5p can inhibit DEV replication through reducing autophagy by targeting Beclin-1. These findings suggest a new insight into virus-host interaction during DEV infection and provide a potential new antiviral therapeutic strategy against DEV infection.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
14
|
Xiao B, Hong L, Cai X, Mei S, Zhang P, Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncol Lett 2019; 18:2165-2172. [PMID: 31452719 PMCID: PMC6676529 DOI: 10.3892/ol.2019.10576] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with cancer receiving doxorubicin-based chemotherapy often have to stop taking the drug due to its cardiotoxicity and therefore lose out on the beneficial effects of its potent antitumor activity. Doxorubicin has been demonstrated to damage cardiomyocytes via various mechanisms, including accumulation of reactive oxygen species (ROS), DNA damage and autophagy dysfunction. The present review focuses on autophagy, describing the general process of autophagy and the controversy surrounding its role in doxorubicin-induced cardiotoxicity. In addition, the associations between autophagy and apoptosis, ROS, DNA damage and inflammatory processes are discussed. In the future, it will be useful to further elucidate the process of autophagy and reveal its association with various pathological processes to develop effective strategies of preventing doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| | - Songbo Mei
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Bowman CE. The gut epithelium from feeding to fasting in the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae): one tissue, two roles. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:253-357. [PMID: 30895556 DOI: 10.1007/s10493-019-00356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
A review of acarine gut physiology based on published narratives dispersed over the historical international literature is given. Then, in an experimental study of the free-living predatory soil mite Pergamasus longicornis (Berlese), quantitative micro-anatomical changes in the gut epithelium are critically assessed from a temporal series of histological sections during and after feeding on larval dipteran prey. An argued functional synthesis based upon comparative kinetics is offered for verification in other mesostigmatids. Mid- and hind-gut epithelia cell types interconvert in a rational way dependent upon the physical consequences of ingestion, absorption and egestion. The fasted transitional pseudo-stratified epithelium rapidly becomes first squamous on prey ingestion (by stretching), then columnar during digestion before confirmed partial disintegration (gut 'lumenation') during egestion back to a pseudo-stratified state. Exponential processes within the mid- and endodermic hind-gut exhibit 'stiff' dynamics. Cells expand rapidly ([Formula: see text] 22.9-49.5 min) and vacuolate quickly ([Formula: see text] 1.1 h). Cells shrink very slowly ([Formula: see text] 4.9 days) and devacuolate gently ([Formula: see text] 1.0-1.7 days). Egestive cellular degeneration has an initial [Formula: see text] 7.7 h. Digestion appears to be triggered by maximum gut expansion-estimated at 10 min post start of feeding. Synchrony with changes in gut lumen contents suggests common changes in physiological function over time for the cells as a whole tightly-coupled epithelium. Distinct in architecture as a tissue over time the various constituent cell types appear functionally the same. Functional phases are: early fluid transportation (0-1 h) and extracellular activity (10-90 min); through rising food absorption (10 min to [Formula: see text] day); to slow intracellular meal processing and degenerative egestive waste material production (1 to [Formula: see text] days) much as in ticks. The same epithelium is both absorptive and degenerative in role. The switch in predominant physiology begins 4 h after the start of feeding. Two separate pulses of clavate cells appear to be a mechanism to facilitate transport by increasing epithelial surface area in contact with the lumen. Free-floating cells may augment early extracellular lumenal digestion. Possible evidence for salivary enzyme alkaline-related extra-corporeal digestion was found. Giant mycetome-like cells were found embedded in the mid-gut wall. Anteriorly, the mid-gut behaves like a temporally expendable food processing tissue and minor long-term resistive store. Posteriorly the mid-gut behaves like a major assimilative/catabolic tissue and 'last-out' food depot (i.e., a 'hepatopancreas' function) allowing the mite to resist starvation for up to 3.5 weeks after a single meal. A 'conveyor-belt' wave of physiology (i.e., feeding and digestion, then egestion and excretion) sweeps posteriorly but not necessarily pygidially over time. Assimilation efficiency is estimated at 82%. The total feeding cycle time histologically from a single meal allowing for the bulk of intracellular digestion and egestive release is not 52.5 h but of the order of 6 days ([Formula: see text] total gut emptyings per day), plus typically a further 3 days for subsequent excretion to occur. Final complete gut system clearance in this cryptozooid may take much longer ([Formula: see text] days). A common physiology across the anactinotrichid acarines is proposed. A look to the future of this field is included.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
16
|
Kim JY, Ou JHJ. Regulation of Apolipoprotein E Trafficking by Hepatitis C Virus-Induced Autophagy. J Virol 2018; 92:e00211-18. [PMID: 29695434 PMCID: PMC6026764 DOI: 10.1128/jvi.00211-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023] Open
Abstract
Apolipoprotein E (ApoE) plays an important role in the maturation and infectivity of hepatitis C virus (HCV). By analyzing the subcellular localization of ApoE in Huh7 hepatoma cells that harbored an HCV subgenomic RNA replicon, we found that ApoE colocalized with autophagosomes. This colocalization was marginally detected in HCV-infected cells, apparently due to the depletion of ApoE by HCV, as treatment with bafilomycin A1 (BafA1), a vacuolar ATPase inhibitor that inhibits autophagic protein degradation, partially restored the ApoE level and enhanced its colocalization with autophagosomes in HCV-infected cells. The role of HCV-induced autophagy in the degradation of ApoE was further supported by the observations that nutrient starvation, which induces autophagic protein degradation, led to the loss of ApoE in HCV subgenomic RNA replicon cells and that the knockdown of ATG7, a protein essential for the formation of autophagic vacuoles, increased the ApoE level in cells with productive HCV replication. Interestingly, the inhibition of autophagy by ATG7 knockdown reduced the colocalization of ApoE with the HCV E2 envelope protein and the HCV titers released from cells. In contrast, the treatment of cells with BafA1 enhanced the colocalization of ApoE and HCV E2 and increased both intracellular and extracellular HCV titers. These results indicated that autophagy played an important role in the trafficking of ApoE in HCV-infected cells. While it led to autophagic degradation of ApoE, it also promoted the interaction between ApoE and HCV E2 to enhance the production of infectious progeny viral particles.IMPORTANCE Hepatitis C virus (HCV) is one of the most important human pathogens. Its virion is associated with apolipoprotein E (ApoE), which enhances its infectivity. HCV induces autophagy to enhance its replication. In this report, we demonstrate that autophagy plays an important role in the trafficking of ApoE in HCV-infected cells. This leads to the degradation of ApoE by autophagy. However, if the autophagic protein degradation is inhibited, ApoE is stabilized and colocalized with autophagosomes. This leads to its enhanced colocalization with the HCV E2 envelope protein and increased production of infectious progeny viral particles. If autophagy is inhibited by suppressing the expression of ATG7, a gene essential for the formation of autophagosomes, the colocalization of ApoE with E2 is reduced, resulting in the reduction of progeny viral titers. These results indicate an important role of autophagy in the transport of ApoE to promote the production of infectious HCV particles.
Collapse
Affiliation(s)
- Ja Yeon Kim
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
17
|
Qiao L, Fu J, Xue X, Shi Y, Yao L, Huang W, Li J, Zhang D, Liu N, Tong X, Du Y, Pan Y. Neuronalinjury and roles of apoptosis and autophagy in a neonatal rat model of hypoxia-ischemia-induced periventricular leukomalacia. Mol Med Rep 2018; 17:5940-5949. [PMID: 29436652 PMCID: PMC5866039 DOI: 10.3892/mmr.2018.8570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/20/2017] [Indexed: 11/06/2022] Open
Abstract
As research into periventricular leukomalacia (PVL) gradually increases, concerns are emerging about long‑term neuron injury. The present study aimed to investigate neuronal injury and the relevant alterations in apoptosis and autophagy in a PVL model established previously. A rat model of hypoxia‑ischemia‑induced PVL was established. In the model group, Sprague‑Dawley (SD) rats [postnatal day 3 (P3)] were subjected to right common carotid artery ligation followed by suturing and exposed to 6‑8% oxygen for 2 h; in the control group, SD rats (P3) were subjected to right common carotid artery dissection followed by suturing, without ligation and hypoxic exposure. At 1, 3, 7 and 14 days following modeling, brain tissue samples were collected and stained with hematoxylin and eosin. Cellular apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and the protein and mRNA expression alterations of neuronal nuclei (NeuN), caspase‑3 and Beclin 1 in the model group were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses. Compared with the control group, the protein and mRNA expression levels of NeuN (a marker of mature neurons) were markedly reduced, the number of positive cells was increased as detected by TUNEL, and the protein and mRNA expression levels of caspase‑3 and Beclin 1 were elevated in the model group. In the rat model of hypoxia‑ischemia‑induced PVL, oligodendrocyte injury and myelinization disorders were observed, in addition to neuron injury, a decrease in mature neurons and the co‑presence of apoptosis and autophagy. However, apoptosis and autophagy exist in different phases: Apoptosis is involved in neuron injury, while autophagy is likely to have a protective role.
Collapse
Affiliation(s)
- Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanna Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuqing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
18
|
Zhao JZ, Xu LM, Liu M, Zhang ZY, Yin JS, Liu HB, Lu TY. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:88-94. [PMID: 28760360 DOI: 10.1016/j.dci.2017.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Recent work demonstrated that autophagy plays an important role in pathogen invasion by activating innate and adaptive immunity. This study investigated the relationship between IHNV and autophagy in epithelioma papulosum cyprini cells. The electron microscopy results show that IHNV infection can induce typical autophagosomes which are representative structures of autophagy activation. The punctate accumulation of green fluorescence-tagged microtubule-associate protein 1 light chain 3 (LC3) and the protein conversion from LC3-I to LC3-II were respectively confirmed by confocal fluorescence microscopy and western blotting. Furthermore, the effects of autophagy on IHNV replication were also clarified by altering the autophagy pathway. The results showed that rapamycin induced autophagy can inhibit both intracellular viral replication and extracellular viral yields, while autophagy inhibitor produced the opposite results. These findings demonstrated that autophagy plays an antiviral role during IHNV infection.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Miao Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Zhen-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jia-Sheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Hong-Bai Liu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
19
|
Gou H, Zhao M, Fan S, Yuan J, Liao J, He W, Xu H, Chen J. Autophagy induces apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV. Sci Rep 2017; 7:13577. [PMID: 29051589 PMCID: PMC5648758 DOI: 10.1038/s41598-017-14082-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/02/2017] [Indexed: 01/04/2023] Open
Abstract
Lymphocyte depletion and immunosuppression are typical clinical characteristics of pigs infected with classical swine fever virus (CSFV). The apoptosis of virus-infected and bystander cells plays a role in the immunopathology of classical swine fever (CSF). Here, we offer the first evidence that autophagy is involved in apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV. Using immunohistochemical assays, we observed that more LC3II-positive cells appear in the T-cell zone of spleens. Spleen cell apoptosis was demonstrated using flow cytometry and TUNEL staining. Confocal immunofluorescence revealed that partial LC3II-positive cells were simultaneously TUNEL-positive. By cultivating spleen cells ex vivo, we demonstrated that the inhibition of autophagy by 3-MA treatment inhibited apoptosis and death of T lymphocytes caused by CSFV infection but did not have this effect on B lymphocytes. Further observations demonstrated that uninfected cells in the spleen were also undergoing autophagy in vivo. In summary, these results linked autophagy with the apoptosis and cell death of splenic T cells, providing a new outlook to understand the mechanism of T lymphocyte depletion and immunosuppression during CSF.
Collapse
Affiliation(s)
- Hongchao Gou
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Shuangqi Fan
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Jin Yuan
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiedan Liao
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Wencheng He
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Hailuan Xu
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China
| | - Jinding Chen
- College of Veterinary Medicine; South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Hou L, Wei L, Zhu S, Wang J, Quan R, Li Z, Liu J. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway. Autophagy 2017; 13:1709-1721. [PMID: 28949785 PMCID: PMC5640183 DOI: 10.1080/15548627.2017.1356950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.
Collapse
Affiliation(s)
- Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
21
|
Pei J, Deng J, Ye Z, Wang J, Gou H, Liu W, Zhao M, Liao M, Yi L, Chen J. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy 2016; 12:1738-1758. [PMID: 27463126 DOI: 10.1080/15548627.2016.1196318] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing number of studies have demonstrated that both macroautophagy/autophagy and apoptosis are important inner mechanisms of cell to maintain homeostasis and participate in the host response to pathogens. We have previously reported that a functional autophagy pathway is trigged by infection of classical swine fever virus (CSFV) and is required for viral replication and release in host cells. However, the interplay of autophagy and apoptosis in CSFV-infected cells has not been clarified. In the present study, we demonstrated that autophagy induction with rapamycin facilitates cellular proliferation after CSFV infection, and that autophagy inhibition by knockdown of essential autophagic proteins BECN1/Beclin 1 or MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) promotes apoptosis via fully activating both intrinsic and extrinsic mechanisms in CSFV-infected cells. We also found that RIG-I-like receptor (RLR) signaling was amplified in autophagy-deficient cells during CSFV infection, which was closely linked to the activation of the intrinsic apoptosis pathway. Moreover, we discovered that virus infection of autophagy-impaired cells results in an increase in copy number of mitochondrial DNA and in the production of reactive oxygen species (ROS), which plays a significant role in enhanced RLR signaling and the activated extrinsic apoptosis pathway in cultured cells. Collectively, these data indicate that CSFV-induced autophagy delays apoptosis by downregulating ROS-dependent RLR signaling and thus contributes to virus persistent infection in host cells.
Collapse
Affiliation(s)
- Jingjing Pei
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Jieru Deng
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Zuodong Ye
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Jiaying Wang
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Hongchao Gou
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Wenjun Liu
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Mingqiu Zhao
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Ming Liao
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Lin Yi
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Jinding Chen
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| |
Collapse
|
22
|
Li XG, Sui WG, Gao CQ, Yan HC, Yin YL, Li HC, Wang XQ. L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells1. J Anim Sci 2016; 94:1541-9. [DOI: 10.2527/jas.2015-9432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- X.-G. Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - W.-G. Sui
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - C.-Q. Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - H.-C. Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - Y.-L. Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, China
| | - H.-C. Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus
| | - X.-Q. Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| |
Collapse
|
23
|
Ribeiro ES, Monteiro APA, Bisinotto RS, Lima FS, Greco LF, Ealy AD, Thatcher WW, Santos JEP. Conceptus development and transcriptome at preimplantation stages in lactating dairy cows of distinct genetic groups and estrous cyclic statuses. J Dairy Sci 2016; 99:4761-4777. [PMID: 27016828 DOI: 10.3168/jds.2015-10315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
The objectives were to compare development and transcriptome of preimplantation conceptuses 15 d after synchronized ovulation and artificial insemination (AI) according to the genetic background of the cow and estrous cyclicity at the initiation of the synchronization program. On d 39±3 postpartum, Holstein cows that were anovular (HA; n=10), Holstein cows that were estrous cyclic (HC; n=25), and Jersey/Holstein crossbred cows that were estrous cyclic (CC; n=25) were randomly selected in a grazing herd and subjected to the Ovsynch protocol. All cows were inseminated on d 49±3 postpartum, which was considered study d 0. Blood was sampled and analyzed for concentrations of progesterone, estradiol, insulin, and insulin-like growth factor 1 (IGF-1) on study d -10, -3, -1, 7, and 15 relative to AI. On study d 15, uteri were flushed and recovered fluid had IFN-τ concentrations measured and subjected to metabolomic analysis. Morphology of the recovered conceptuses was evaluated, and mRNA was extracted and subjected to transcriptome microarray analysis. Compared with HC, CC presented greater concentrations of progesterone and estradiol in plasma, with corpora lutea and preovulatory follicles of similar size. Conceptuses from CC were larger, tended to secrete greater amounts of IFN-τ, and had greater transcript expression of peroxisome proliferator-activated receptor gamma (PPARγ), an important transcription factor that coordinates lipid metabolism and elongation at preimplantation development. In addition, pregnant CC had greater concentrations of anandamide in the uterine flush, which might be important for elongation of the conceptus and early implantation. Conceptuses from HA were also longer and secreted greater amounts of IFN-τ than conceptuses from HC, likely because of the distinct progesterone profiles before and after AI. Nonetheless, anovular cows had reduced concentrations of IGF-1 in plasma, and their conceptuses presented remarkable transcriptomic differences. Some of the altered transcripts suggest that conceptus cells from anovular cows might be under greater cellular stress and presented markers suggesting increased apoptosis and autophagy, which could lead to increased mortality after d 15 of development. Estrous cyclicity had more impact on transcriptome of bovine conceptus than genetic background, and the developmental changes observed during the preimplantation period might be linked to differences in fertility among groups.
Collapse
Affiliation(s)
- E S Ribeiro
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - A P A Monteiro
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - R S Bisinotto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - F S Lima
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - L F Greco
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - A D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24060
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|
24
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
25
|
Xia P, Wang S, Huang G, Du Y, Zhu P, Li M, Fan Z. RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 2014; 24:943-58. [PMID: 24980959 PMCID: PMC4123297 DOI: 10.1038/cr.2014.85] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/01/2014] [Accepted: 05/26/2014] [Indexed: 12/17/2022] Open
Abstract
WASH (Wiskott-Aldrich syndrome protein (WASP) and SCAR homolog) was identified to function in endosomal sorting via Arp2/3 activation. We previously demonstrated that WASH is a new interactor of BECN1 and present in the BECN1-PIK3C3 complex with AMBRA1. The AMBRA1-DDB1-CUL4A complex is an E3 ligase for K63-linked ubiquitination of BECN1, which is required for starvation-induced autophagy. WASH suppresses autophagy by inhibition of BECN1 ubiquitination. However, how AMBRA1 is regulated during autophagy remains elusive. Here, we found that RNF2 associates with AMBRA1 to act as an E3 ligase to ubiquitinate AMBRA1 via K48 linkage. RNF2 mediates ubiquitination of AMBRA1 at lysine 45. Notably, RNF2 deficiency enhances autophagy induction. Upon autophagy induction, RNF2 potentiates AMBRA1 degradation with the help of WASH. WASH deficiency impairs the association of RNF2 with AMBRA1 to impede AMBRA1 degradation. Our findings reveal another novel layer of regulation of autophagy through WASH recruitment of RNF2 for AMBRA1 degradation leading to downregulation of autophagy.
Collapse
Affiliation(s)
- Pengyan Xia
- 1] Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanling Huang
- 1] Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Li
- 1] Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Wang J, Kang R, Huang H, Xi X, Wang B, Wang J, Zhao Z. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 2014; 10:766-84. [PMID: 24589849 DOI: 10.4161/auto.27954] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the -253 to -99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression.
Collapse
Affiliation(s)
- Ji Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Rongyan Kang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Xueyan Xi
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| |
Collapse
|
27
|
Abstract
Autophagy refers to a group of processes that involve degradation of cytoplasmic components including cytosol, macromolecular complexes, and organelles, within the vacuole or the lysosome of higher eukaryotes. The various types of autophagy have attracted increasing attention for at least two reasons. First, autophagy provides a compelling example of dynamic rearrangements of subcellular membranes involving issues of protein trafficking and organelle identity, and thus it is fascinating for researchers interested in questions pertinent to basic cell biology. Second, autophagy plays a central role in normal development and cell homeostasis, and, as a result, autophagic dysfunctions are associated with a range of illnesses including cancer, diabetes, myopathies, some types of neurodegeneration, and liver and heart diseases. That said, this review focuses on autophagy in yeast. Many aspects of autophagy are conserved from yeast to human; in particular, this applies to the gene products mediating these pathways as well as some of the signaling cascades regulating it, so that the information we relate is relevant to higher eukaryotes. Indeed, as with many cellular pathways, the initial molecular insights were made possible due to genetic studies in Saccharomyces cerevisiae and other fungi.
Collapse
|
28
|
Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 2013; 10:93-110. [PMID: 24262968 PMCID: PMC4389882 DOI: 10.4161/auto.26843] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays an important role in cellular responses to pathogens. However, the impact of the autophagy machinery on classical swine fever virus (CSFV) infection is not yet confirmed. In this study, we showed that CSFV infection significantly increases the number of autophagy-like vesicles in the cytoplasm of host cells at the ultrastructural level. We also found the formation of 2 ubiquitin-like conjugation systems upon virus infection, including LC3-I/LC3-II conversion and ATG12–ATG5 conjugation, which are considered important indicators of autophagy. Meanwhile, high expression of ATG5 and BECN1 was detected in CSFV-infected cells; conversely, degradation of SQSTM1 was observed by immunoblotting, suggesting that CSFV infection triggered a complete autophagic response, most likely by the NS5A protein. Furthermore, by confocal immunofluorescence analysis, we discovered that both envelope protein E2 and nonstructural protein NS5A colocalized with LC3 and CD63 during CSFV infection. Examination by immunoelectron microscopy further confirmed the colocalization of both E2 and NS5A proteins with autophagosome-like vesicles, indicating that CSFV utilizes the membranes of these vesicles for replication. Finally, we demonstrated that alteration of cellular autophagy by autophagy regulators and shRNAs affects progeny virus production. Collectively, these findings provide strong evidence that CSFV infection needs an autophagy pathway to enhance viral replication and maturity in host cells.
Collapse
Affiliation(s)
- Jingjing Pei
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Zuodong Ye
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Hongchao Gou
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Jiaying Wang
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Xiaoying Dong
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Wenjun Liu
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine; South China Agricultural University; Guangzhou, China
| |
Collapse
|
29
|
Lin C, Tsai SC, Tseng MT, Peng SF, Kuo SC, Lin MW, Hsu YM, Lee MR, Amagaya S, Huang WW, Wu TS, Yang JS. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells. Int J Oncol 2013; 42:993-1000. [PMID: 23354080 DOI: 10.3892/ijo.2013.1791] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
Baicalin is one of the major compounds in the traditional Chinese medicinal herb from Scutellaria baicalensis Georgi. We investigated the molecular mechanisms of cell autophagy induced by baicalin in human bladder cancer T24 cells. Baicalin inhibited cell survival as shown by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. Baicalin did not induce apoptotic cell death in T24 cells by TUNEL and caspase-3 activity assay. Baicalin induced the acidic vesicular organelle cell autophagy marker, manifested by acridine orange (AO) and monodansylcadaverine (MDC) staining and cleavage of microtubule-associated protein 1 light chain 3 (LC3). The protein expression levels of the Atg 5, Atg 7, Atg 12, Beclin-1 and LC3-II were upregulated in T24 cells after baicalin treatment. Inhibition of autophagy by 3-methyl-adenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) reduced the cleavage of LC3 in T24 cells after baicalin treatment. Furthermore, protein expression levels of phospho-AKT (Ser473) and enzyme activity of AKT were downregulated in T24 cells after baicalin treatment. In conclusion, baicalin triggered cell autophagy through the AKT signaling pathway in T24 cells.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen infection, neurodegenerative disorders, and myopathies. In this review, we will focus on recent studies in yeast and mammalian systems that have provided insights into two critical areas of autophagosome biogenesis - the source of the autophagosomal membranes, and the mechanisms regulating the fusion of the edges of the double-membraned phagophores to form autophagosomes.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK.
| | | | | |
Collapse
|
31
|
Macroautophagy and cell responses related to mitochondrial dysfunction, lipid metabolism and unconventional secretion of proteins. Cells 2012; 1:168-203. [PMID: 24710422 PMCID: PMC3901093 DOI: 10.3390/cells1020168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/28/2022] Open
Abstract
Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion.
Collapse
|
32
|
Juenemann K, Reits EA. Alternative macroautophagic pathways. Int J Cell Biol 2012; 2012:189794. [PMID: 22536246 PMCID: PMC3320029 DOI: 10.1155/2012/189794] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 12/16/2022] Open
Abstract
Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways.
Collapse
Affiliation(s)
- Katrin Juenemann
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric A. Reits
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
33
|
Proikas-Cezanne T, Robenek H. Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med 2012; 15:2007-10. [PMID: 21564513 PMCID: PMC3918056 DOI: 10.1111/j.1582-4934.2011.01339.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy defines the lifespan of eukaryotic organisms by ensuring cellular survival through regulated bulk clearance of proteins, organelles and membranes. Pathophysiological consequences of improper autophagy give rise to a variety of age-related human diseases such as cancer and neurodegeneration. Rational therapeutic implementation of autophagy modulation remains problematic, as fundamental molecular details such as the generation of autophagosomes, unique double-membrane vesicles formed to permit the process of autophagy, are insufficiently understood. Here, freeze-fracture replica immunolabelling reveals WD-repeat protein interacting with phosphoinositides 1 and 2 (WIPI-1 and WIPI-2) as membrane components of autophagosomes and the plasma membrane (PM). In addition, WIPI-1 is also present in membranes of the endoplasmic reticulum (ER) and WIPI-2 was further detected in membranes close to the Golgi cisternae. Our results identify WIPI-1 and WIPI-2 as novel protein components of autophagosomes, and of membrane sites from which autophagosomes might originate (ER, PM, Golgi area). Hence therapeutic modulation of autophagy could involve approaches that functionally target human WIPI proteins.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Autophagy Laboratory, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany.
| | | |
Collapse
|
34
|
Aviv Y, Shaw J, Gang H, Kirshenbaum LA. Regulation of autophagy in the heart: "you only live twice". Antioxid Redox Signal 2011; 14:2245-50. [PMID: 20712404 DOI: 10.1089/ars.2010.3479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autophagy is a highly orchestrated cellular process by which proteins and organelles are degraded via an elaborate lysosomal pathway to generate free amino acids and sugars for ATP during metabolic stress. At present, the exact role of autophagy in the heart is highly debated but suggested to play a key role in regulating cell turnover in cardiomyopathies and heart failure. The signaling pathways and molecular effectors that govern autophagy are incomplete, as are the mechanisms that determine whether autophagy promotes or prevents cell death. The mitochondrion has been identified as a key organelle centrally involved in regulating autophagy. Certain members of the Bcl-2 gene family, including Beclin-1, Bcl-2 nineteen kilodaltons interacting protein (Bnip3), and Nix/Bnip3L, provoke mitochondrial perturbations leading to permeability transition pore opening, resulting in apoptosis, autophagy, or both. These and other aspects of autophagy processes have been discussed.
Collapse
Affiliation(s)
- Yaron Aviv
- Department of Pharmacology and Therapeutics, The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
Autophagy is an intracellular lysosomal (vacuolar) degradation process that is characterized by the formation of double-membrane vesicles, known as autophagosomes, which sequester cytoplasm. As autophagy is involved in cell growth, survival, development and death, the levels of autophagy must be properly regulated, as indicated by the fact that dysregulated autophagy has been linked to many human pathophysiologies, such as cancer, myopathies, neurodegeneration, heart and liver diseases, and gastrointestinal disorders. Substantial progress has recently been made in understanding the molecular mechanisms of the autophagy machinery, and in the regulation of autophagy. However, many unanswered questions remain, such as how the Atg1 complex is activated and the function of PtdIns3K is regulated, how the ubiquitin-like conjugation systems participate in autophagy and the mechanisms of phagophore expansion and autophagosome formation, how the network of TOR signaling pathways regulating autophagy are controlled, and what the underlying mechanisms are for the pro-cell survival and the pro-cell death effects of autophagy. As several recent reviews have comprehensively summarized the recent progress in the regulation of autophagy, we focus in this Commentary on the main unresolved questions in this field.
Collapse
Affiliation(s)
- Yongqiang Chen
- Life Sciences Institute and Department of Molecular, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
36
|
Abstract
Odontoblasts are long-lived post-mitotic cells in the dental pulp, whose function is to form and maintain dentin. The survival mechanisms that preserve the viability of terminally differentiated odontoblasts during the life of a healthy tooth have not been described. In the present study, we characterized the autophagic-lysosomal system of human odontoblasts with transmission electron microscopy and immunocytochemistry, to analyze the mechanisms that maintain the functional viability of these dentinogenic cells. Odontoblasts were found to develop an autophagic-lysosomal system organized mainly by large autophagic vacuoles that are acid-phosphatase-positive to various degrees. These vacuoles expressed the autophagosomal and lysosomal markers LC3 and LAMP2, respectively, in an age-related pattern indicating the organization of a dynamic autophagic machinery. Progressive accumulation of lipofuscin within lysosomes indicates reduced lysosomal activity as a function of odontoblast aging. Our results suggest that autophagic activity in odontoblasts is a fundamental mechanism to ensure turnover and degradation of subcellular components. A reduction in the efficacy of this system might compromise cell viability and dentinogenic secretory capacity. In adult teeth, this condition is described as an 'old odontoblast' stage.
Collapse
Affiliation(s)
- E Couve
- Departamento de Biología, Laboratorio de Microscopía Electrónica, Universidad de Valparaíso, Avda Gran Bretaña 1111, Casilla 5030, Correo 4, 2360102 Valparaíso, Chile.
| | | |
Collapse
|
37
|
Abstract
Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
38
|
Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. THE PLANT CELL 2010; 22:4009-30. [PMID: 21193573 PMCID: PMC3027174 DOI: 10.1105/tpc.110.080697] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 05/17/2023]
Abstract
The exocyst protein complex mediates vesicle fusion with the plasma membrane. By expressing an (X)FP-tagged Arabidopsis thaliana homolog of the exocyst protein Exo70 in suspension-cultured Arabidopsis and tobacco (Nicotiana tabacum) BY-2 cells, and using antibodies specific for Exo70, we detected a compartment, which we term EXPO (for exocyst positive organelles). Standard markers for the Golgi apparatus, the trans-Golgi network/early endosome, and the multivesicular body/late endosome in plants do not colocalize with EXPO. Inhibitors of the secretory and endocytic pathways also do not affect EXPO. Exo70E2-(X)FP also locates to the plasma membrane (PM) as discrete punctae and is secreted outside of the cells. Immunogold labeling of sections cut from high-pressure frozen samples reveal EXPO to be spherical double membrane structures resembling autophagosomes. However, unlike autophagosomes, EXPOs are not induced by starvation and do not fuse with the lytic compartment or with endosomes. Instead, they fuse with the PM, releasing a single membrane vesicle into the cell wall. EXPOs are also found in other cell types, including root tips, root hair cells, and pollen grains. EXPOs therefore represent a form of unconventional secretion unique to plants.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stefan Hillmer
- Department of Cell Biology, Heidelberg Institute for Plant Science, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Yansong Miao
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sze Wan Lo
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David G. Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Science, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
39
|
Chen X, Yin XM. Coordination of autophagy and the proteasome in resolving endoplasmic reticulum stress. Vet Pathol 2010; 48:245-53. [PMID: 21062910 DOI: 10.1177/0300985810385154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroautophagy is a cellular degradation mechanism that involves the delivery of cytosolic components (macromolecules or organelles) by the autophagosome to the lysosome for degradation. In mammalian cells, macroautophagy and the ubiquitin proteasome system are 2 major mechanisms to eliminate abnormal proteins accumulated in pathological conditions. Here, the coordination of the 2 pathways to alleviate endoplasmic reticulum stress is reviewed. Also discussed is the regulatory role of macroautophagy and proteasome activity in cell survival and death, as well as the recent discoveries leading to novel strategies of simultaneous control of the proteasome and autophagy activity in anticancer treatment.
Collapse
Affiliation(s)
- X Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
40
|
Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S401-12. [PMID: 20463393 DOI: 10.3233/jad-2010-100666] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles. Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Certain secreted proteins bypass the canonical exit pathway from cells. Two studies now shed light on the unconventional secretion route taken by the yeast acyl-coenzyme A-binding protein: this protein is sequestered into autophagic vesicles that are re-routed to the plasma membrane where their content is released to the extracellular space.
Collapse
|
42
|
Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 2010; 190:511-21. [PMID: 20713597 PMCID: PMC2928018 DOI: 10.1083/jcb.200911141] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Eiji Morita
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
| | - Tatsuya Saitoh
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Takeshi Noda
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2010; 43:17-28. [PMID: 20732422 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
44
|
van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010; 6:800-1. [PMID: 20444982 PMCID: PMC2893990 DOI: 10.1091/mbc.e09-04-0345] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of autophagosomes. We have investigated the role of the Golgi in autophagy and found that, in yeast, this organelle plays a crucial role in supplying lipid bilayers necessary for autophagosome biogenesis. The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of large vesicles called autophagosomes. The mechanism underlying autophagosome biogenesis and the origin of the membranes composing these vesicles remains largely unclear. We have investigated the role of the Golgi complex in autophagy and have determined that in yeast, activation of ADP-ribosylation factor (Arf)1 and Arf2 GTPases by Sec7, Gea1, and Gea2 is essential for this catabolic process. The two main events catalyzed by these components, the biogenesis of COPI- and clathrin-coated vesicles, do not play a critical role in autophagy. Analysis of the sec7 strain under starvation conditions revealed that the autophagy machinery is correctly assembled and the precursor membrane cisterna of autophagosomes, the phagophore, is normally formed. However, the expansion of the phagophore into an autophagosome is severely impaired. Our data show that the Golgi complex plays a crucial role in supplying the lipid bilayers necessary for the biogenesis of double-membrane vesicles possibly through a new class of transport carriers or a new mechanism.
Collapse
Affiliation(s)
- Aniek van der Vaart
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | | |
Collapse
|
45
|
Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci U S A 2010; 107:7811-6. [PMID: 20375281 DOI: 10.1073/pnas.1000063107] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.
Collapse
|
46
|
Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 2009; 84:431-48. [PMID: 19659885 DOI: 10.1111/j.1469-185x.2009.00082.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is involved in a wide range of physiological processes including cellular remodeling during development, immuno-protection against heterologous invaders and elimination of aberrant or obsolete cellular structures. This conserved degradation pathway also plays a key role in maintaining intracellular nutritional homeostasis and during starvation, for example, it is involved in the recycling of unnecessary cellular components to compensate for the limitation of nutrients. Autophagy is characterized by specific membrane rearrangements that culminate with the formation of large cytosolic double-membrane vesicles called autophagosomes. Autophagosomes sequester cytoplasmic material that is destined for degradation. Once completed, these vesicles dock and fuse with endosomes and/or lysosomes to deliver their contents into the hydrolytically active lumen of the latter organelle where, together with their cargoes, they are broken down into their basic components. Specific structures destined for degradation via autophagy are in many cases selectively targeted and sequestered into autophagosomes. A number of factors required for autophagy have been identified, but numerous questions about the molecular mechanism of this pathway remain unanswered. For instance, it is unclear how membranes are recruited and assembled into autophagosomes. In addition, once completed, these vesicles are transported to cellular locations where endosomes and lysosomes are concentrated. The mechanism employed for this directed movement is not well understood. The cellular cytoskeleton is a large, highly dynamic cellular scaffold that has a crucial role in multiple processes, several of which involve membrane rearrangements and vesicle-mediated events. Relatively little is known about the roles of the cytoskeleton network in autophagy. Nevertheless, some recent studies have revealed the importance of cytoskeletal elements such as actin microfilaments and microtubules in specific aspects of autophagy. In this review, we will highlight the results of this work and discuss their implications, providing possible working models. In particular, we will first describe the findings obtained with the yeast Saccharomyces cerevisiae, for long the leading organism for the study of autophagy, and, successively, those attained in mammalian cells, to emphasize possible differences between eukaryotic organisms.
Collapse
Affiliation(s)
- Iryna Monastyrska
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Chaturvedi A, Pierce SK. Autophagy in immune cell regulation and dysregulation. Curr Allergy Asthma Rep 2009; 9:341-6. [PMID: 19671376 DOI: 10.1007/s11882-009-0050-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is an ancient pathway required for cell and tissue homeostasis and differentiation. Initially thought to be a process leading to cell death, autophagy is currently viewed as a beneficial catabolic process that promotes cell survival under starvation conditions by sequestering components of the cytoplasm, including misfolded proteins, protein aggregates, and damaged organelles, and targeting them for lysosome-mediated degradation. In this way, autophagy plays a role in maintaining a balance between degradation and recycling of cellular material. The importance of autophagy is underscored by the fact that malfunctioning of this pathway results in neurodegeneration, cancer, susceptibility to microbial infection, and premature aging. Autophagy occurs in almost all cell types, including immune cells. Recent advances in the field suggest that autophagy plays a central role in regulating the immune system at multiple levels. In this review, we focus on recent developments in the area of autophagy-mediated modulation of immune responses.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 213, Rockville, MD 20852, USA.
| | | |
Collapse
|
48
|
Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. ACTA ACUST UNITED AC 2009; 186:773-82. [PMID: 19797076 PMCID: PMC2753151 DOI: 10.1083/jcb.200907014] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy or “self-eating” is a highly conserved pathway that enables cells to degrade pieces of themselves in autolysosomes to enable their survival in times of stress, including nutrient deprivation. The formation of these degradative compartments requires cytosolic proteins, some of which are autophagy specific, as well as intracellular organelles, such as the ER and Golgi, and the endosome–lysosome system. Here we discuss the cross talk between autophagy and intracellular compartments, highlighting recent exciting data about the role and regulation of the Vps34 class III phosphatidylinositol (PI) 3-kinase in autophagy.
Collapse
Affiliation(s)
- Anne Simonsen
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | | |
Collapse
|
49
|
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009; 10:623-35. [PMID: 19672277 DOI: 10.1038/nrm2745] [Citation(s) in RCA: 1233] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.
Collapse
Affiliation(s)
- Paul Saftig
- Department of Biochemistry, Christian-Albrechts University, Kiel, Germany.
| | | |
Collapse
|
50
|
The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 2009; 106:14046-51. [PMID: 19666601 DOI: 10.1073/pnas.0907344106] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In addition to its cellular homeostasis function, autophagy is emerging as a central component of antimicrobial host defense against diverse infections. To counteract this mechanism, many pathogens have evolved to evade, subvert, or exploit autophagy. Here, we report that autophagy proteins (i.e., Beclin-1, Atg4B, Atg5, and Atg12) are proviral factors required for translation of incoming hepatitis C virus (HCV) RNA and, thereby, for initiation of HCV replication, but they are not required once infection is established. These results illustrate a previously unappreciated role for autophagy in the establishment of a viral infection and they suggest that different host factors regulate the translation of incoming viral genome and translation of progeny HCV RNA once replication is established.
Collapse
|