1
|
Andorfer R, Alper JD. From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1553. [PMID: 30740918 PMCID: PMC6881777 DOI: 10.1002/wnan.1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Rachel Andorfer
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Joshua D. Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
- Eukaryotic Pathogen Innovations Center, Clemson University, Clemson, South Carolina
| |
Collapse
|
2
|
Tian S, Wu J, Li F, Zou J, Liu Y, Zhou B, Bai Y, Sun MX. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition. Sci Rep 2016; 6:35641. [PMID: 27779252 PMCID: PMC5078848 DOI: 10.1038/srep35641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.
Collapse
Affiliation(s)
- Shujuan Tian
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Jingjing Wu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Fen Li
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianwei Zou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yuwen Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Bing Zhou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Isayenkov SV, Sekan AS, Sorochinsky BV, Blume YB. Molecular aspects of endosomal cellular transport. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271503007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Abstract
Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.
Collapse
|
5
|
Ikeda K, Zhapparova O, Brodsky I, Semenova I, Tirnauer JS, Zaliapin I, Rodionov V. CK1 activates minus-end-directed transport of membrane organelles along microtubules. Mol Biol Cell 2011; 22:1321-9. [PMID: 21307338 PMCID: PMC3078062 DOI: 10.1091/mbc.e10-09-0741] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study shows that the signal transduction pathway responsible for the initiation of minus-end–directed movement of membrane-bounded pigment granules in melanophores involves sequential activation of protein phosphatase 2A and casein kinase 1 and that this activation correlates with increased phosphorylation of the dynein intermediate chain. Microtubule (MT)-based organelle transport is driven by MT motor proteins that move cargoes toward MT minus-ends clustered in the cell center (dyneins) or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of transport in response to external cues, but the signaling events that control switching remain poorly understood. Here, we examined the signaling mechanism responsible for the rapid activation of dynein-dependent MT minus-end–directed pigment granule movement in Xenopus melanophores (pigment aggregation). We found that, along with the previously identified protein phosphatase 2A (PP2A), pigment aggregation signaling also involved casein kinase 1ε (CK1ε), that both enzymes were bound to pigment granules, and that their activities were increased during pigment aggregation. Furthermore we found that CK1ε functioned downstream of PP2A in the pigment aggregation signaling pathway. Finally, we discovered that stimulation of pigment aggregation increased phosphorylation of dynein intermediate chain (DIC) and that this increase was partially suppressed by CK1ε inhibition. We propose that signal transduction during pigment aggregation involves successive activation of PP2A and CK1ε and CK1ε-dependent phosphorylation of DIC, which stimulates dynein motor activity and increases minus-end–directed runs of pigment granules.
Collapse
Affiliation(s)
- Kazuho Ikeda
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Semenova I, Ikeda K, Ivanov P, Rodionov V. The protein kinase A-anchoring protein moesin is bound to pigment granules in melanophores. Traffic 2009; 10:153-60. [PMID: 18980611 PMCID: PMC2629506 DOI: 10.1111/j.1600-0854.2008.00852.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Major signaling cascades have been shown to play a role in the regulation of intracellular transport of organelles. In Xenopus melanophores, aggregation and dispersion of pigment granules are regulated by the second messenger cyclic AMP through the protein kinase A (PKA) signaling pathway. PKA is bound to pigment granules where it forms complexes with molecular motors involved in pigment transport. Association of PKA with pigment granules occurs through binding to A-kinase-anchoring proteins (AKAPs), whose identity remains largely unknown. In this study, we used mass spectrometry to examine an 80 kDa AKAP detected in preparations of purified pigment granules. We found that tryptic digests of granule protein fractions enriched in the 80 kDa AKAP contained peptides that corresponded to the actin-binding protein moesin, which has been shown to function as an AKAP in mammalian cells. We also found that recombinant Xenopus moesin interacted with PKA in vitro, copurified with pigment granules and bound to pigment granules in cells. Overexpression in melanophores of a mutant moesin lacking conserved PKA-binding domain did not affect aggregation of pigment granules but partially inhibited their dispersion. We conclude that Xenopus moesin is an AKAP whose PKA-scaffolding activity plays a role in the regulation of pigment dispersion in Xenopus melanophores.
Collapse
Affiliation(s)
- Irina Semenova
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Kazuho Ikeda
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Pavel Ivanov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Vladimir Rodionov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| |
Collapse
|
7
|
Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A 2008; 105:4609-14. [PMID: 18347340 DOI: 10.1073/pnas.0706825105] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracellular transport is based on molecular motors that pull cargos along cytoskeletal filaments. One motor species always moves in one direction, e.g., conventional kinesin moves to the microtubule plus end, whereas cytoplasmic dynein moves to the microtubule minus end. However, many cellular cargoes are observed to move bidirectionally, involving both plus- and minus-end-directed motors. The presumably simplest mechanism for such bidirectional transport is provided by a tug-of-war between the two motor species. This mechanism is studied theoretically using the load-dependent transport properties of individual motors as measured in single-molecule experiments. In contrast to previous expectations, such a tug-of-war is found to be highly cooperative and to exhibit seven different motility regimes depending on the precise values of the single motor parameters. The sensitivity of the transport process to small parameter changes can be used by the cell to regulate its cargo traffic.
Collapse
|
8
|
Dinh AT, Theofanous T, Mitragotri S. Modeling of pattern regulation in melanophores. J Theor Biol 2007; 244:141-53. [PMID: 16959269 DOI: 10.1016/j.jtbi.2006.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 01/04/2023]
Abstract
Melanosomes, pigment granules in melanophores, play a principal role in physiological color adaptation of fish and frog. Melanophores regulate melanosome trafficking on cytoskeletal filaments to generate a range of spatiotemporal patterns. Here, we present the first comprehensive model of spatiotemporal evolution of melanosome patterns. The model encompasses both physical and biochemical aspects of melanosome dynamics. It consists of (i) a kinetic description of biochemical reactions involved in intracellular signaling, (ii) a system of macroscopic reaction-diffusion-convection equations for melanosome concentration, and (iii) a set of constitutive relationships for coupling transport with the biochemical network. The model relates molecular-level regulatory actions to cell-level melanosome distribution, allowing unification of existing experimental observations and qualitative hypotheses into an integrated, consistent framework. The model reproduces salient features of melanosome patterns, both during transient and steady state. It gives useful insights into how cells coordinate motor-assisted transport to maintain and adapt spatial organization of intracellular organelles. In particular, we calculate the optimal transition paths from aggregation to dispersion in fish melanophores. The calculations suggest that fish melanophores optimally control intracellular signaling to maximize the efficiency of motor-assisted transport during dispersion.
Collapse
Affiliation(s)
- Anh-Tuan Dinh
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
9
|
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80:241-68. [PMID: 17188795 DOI: 10.1016/j.pneurobio.2006.09.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/21/2022]
Abstract
Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Diane T W Chang
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
10
|
Vanstraelen M, Inzé D, Geelen D. Mitosis-specific kinesins in Arabidopsis. TRENDS IN PLANT SCIENCE 2006; 11:167-75. [PMID: 16530461 DOI: 10.1016/j.tplants.2006.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
Kinesins are a class of microtubule-associated proteins that possess a motor domain for binding to microtubules and, in general, allows movement along microtubules. In animal mitosis, they function in spindle formation, chromosome movement and in cytokinesis. In addition to the spindle, plants develop a preprophase band and a phragmoplast that might require multiple kinesins for construction and functioning. Indeed, several kinesins play a role in phragmoplast and cell plate dynamics. Surprisingly few kinesins have been associated with the spindle and the preprophase band. Analysis of expression datasets from synchronized cell cultures indicate that at least 23 kinesins are in some way implicated in mitosis-related processes. In this review, the function of kinesins in animal and plant mitoses are compared, and the divergence that originates from plant-specific aspects is highlighted.
Collapse
Affiliation(s)
- Marleen Vanstraelen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
11
|
Rondaij MG, Bierings R, Kragt A, Gijzen KA, Sellink E, van Mourik JA, Fernandez-Borja M, Voorberg J. Dynein-dynactin complex mediates protein kinase A-dependent clustering of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2005; 26:49-55. [PMID: 16239597 DOI: 10.1161/01.atv.0000191639.08082.04] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Perinuclear clustering is observed for several different organelles and illustrates dynamic regulation of the secretory pathway and organelle distribution. Previously, we observed that a subset of Weibel-Palade bodies (WPBs), endothelial cell-specific storage organelles, undergo centralization when endothelial cells are stimulated with cAMP-raising agonists of von Willebrand factor (vWF) secretion. In this study, we investigated this phenomenon of WPB clustering in more detail. METHODS AND RESULTS Our results demonstrate that the clustered WPBs are localized at the microtubule organizing center and that cluster formation depends on an intact microtubule network. Disruption of the microtubules by nocodazole completely abolished clustering, whereas treatment with the actin depolymerizing compound cytochalasin B had no effect on WPB clustering. Interfering with the dynein-dynactin interaction by overexpression of the p50 dynamitin subunit or the CC1 domain of the p150glued subunit of the dynactin complex completely inhibited perinuclear clustering of WPBs, suggesting that dynein activity mediates this process. Furthermore, we found that inhibition of dephosphorylation resulted in an increase in clustering, whereas inhibition of protein kinase A (PKA) markedly reduced WPB clustering. CONCLUSIONS These results suggest that perinuclear clustering of WPBs involves PKA-dependent regulation of the dynein-dynactin complex. Endothelial cell stimulation with epinephrine results in retrograde movement of a subset of WPBs to the microtubule organizing center. This minus-end directed transport requires an intact microtubular network and is mediated by the motor protein dynein. Together, our results suggest that epinephrine-induced clustering of WPBs involves PKA-dependent regulation of the dynein-dynactin complex.
Collapse
Affiliation(s)
- Mariska G Rondaij
- Department of Plasma Proteins, Sanquin Research, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M. Modulation of Receptor Recycling and Degradation by the Endosomal Kinesin KIF16B. Cell 2005; 121:437-50. [PMID: 15882625 DOI: 10.1016/j.cell.2005.02.017] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 09/27/2004] [Accepted: 02/16/2005] [Indexed: 12/31/2022]
Abstract
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. We found a kinesin-3, KIF16B, that transports early endosomes to the plus end of microtubules in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the perinuclear region, delayed receptor recycling to the plasma membrane, and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. We propose that this mechanism could have important implications for signaling.
Collapse
Affiliation(s)
- Sebastian Hoepfner
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zaliapin I, Semenova I, Kashina A, Rodionov V. Multiscale trend analysis of microtubule transport in melanophores. Biophys J 2005; 88:4008-16. [PMID: 15764663 PMCID: PMC1305632 DOI: 10.1529/biophysj.104.057083] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubule-based transport is critical for trafficking of organelles, organization of endomembranes, and mitosis. The driving force for microtubule-based transport is provided by microtubule motors, which move organelles specifically to the plus or minus ends of the microtubules. Motor proteins of opposite polarities are bound to the surface of the same cargo organelle. Transport of organelles along microtubules is discontinuous and involves transitions between movements to plus or minus ends or pauses. Parameters of the movement, such as velocity and length of runs, provide important information about the activity of microtubule motors, but measurement of these parameters is difficult and requires a sophisticated decomposition of the organelle movement trajectories into directional runs and pauses. The existing algorithms are based on establishing threshold values for the length and duration of runs and thus do not allow to distinguish between slow runs and pauses, making the analysis of the organelle transport incomplete. Here we describe a novel algorithm based on multiscale trend analysis for the decomposition of organelle trajectories into plus- or minus-end runs, and pauses. This algorithm is self-adapted to the characteristic durations and velocities of runs, and allows reliable separation of pauses from runs. We apply the proposed algorithm to compare regulation of microtubule transport in fish and Xenopus melanophores and show that the general mechanisms of regulation are similar in the two pigment cell types.
Collapse
Affiliation(s)
- Ilya Zaliapin
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
14
|
Kashina AS, Semenova IV, Ivanov PA, Potekhina ES, Zaliapin I, Rodionov VI. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr Biol 2005; 14:1877-81. [PMID: 15498498 DOI: 10.1016/j.cub.2004.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/16/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
Major signaling cascades have been shown to play a role in the regulation of intracellular organelle transport . Aggregation and dispersion of pigment granules in melanophores are regulated by the second messenger cAMP through the protein kinase A (PKA) signaling pathway ; however, the exact mechanisms of this regulation are poorly understood. To study the role of signaling molecules in the regulation of pigment transport in melanophores, we have asked the question whether the components of the cAMP-signaling pathway are bound to pigment granules and whether they interact with molecular motors to regulate the granule movement throughout the cytoplasm. We found that purified pigment granules contain PKA and scaffolding proteins and that PKA associates with pigment granules in cells. Furthermore, we found that the PKA regulatory subunit forms two separate complexes, one with cytoplasmic dynein ("aggregation complex") and one with kinesin II and myosin V ("dispersion complex"), and that the removal of PKA from granules causes dissociation of dynein and disruption of dynein-dependent pigment aggregation. We conclude that cytoplasmic organelles contain protein complexes that include motor proteins and signaling molecules involved in different components of intracellular transport. We propose to call such complexes 'regulated motor units' (RMU).
Collapse
Affiliation(s)
- Anna S Kashina
- University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032-1507, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hou Y, Pazour GJ, Witman GB. A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 2004; 15:4382-94. [PMID: 15269286 PMCID: PMC519134 DOI: 10.1091/mbc.e04-05-0377] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 07/09/2004] [Accepted: 07/12/2004] [Indexed: 11/11/2022] Open
Abstract
Intraflagellar transport (IFT), the bidirectional movement of particles along flagella, is essential for flagellar assembly. The motor for retrograde IFT in Chlamydomonas is cytoplasmic dynein 1b, which contains the dynein heavy chain DHC1b and the light intermediate chain (LIC) D1bLIC. To investigate a possible role for the LIC in IFT, we identified a d1blic mutant. DHC1b is reduced in the mutant, indicating that D1bLIC is important for stabilizing dynein 1b. The mutant has variable length flagella that accumulate IFT-particle proteins, indicative of a defect in retrograde IFT. Interestingly, the remaining DHC1b is normally distributed in the mutant flagella, strongly suggesting that the defect is in binding of cargo to the retrograde motor rather than in motor activity per se. Cell growth and Golgi apparatus localization and morphology are normal in the mutant, indicating that D1bLIC is involved mainly in retrograde IFT. Like mammalian LICs, D1bLIC has a phosphate-binding domain (P-loop) at its N-terminus. To investigate the function of this conserved domain, d1blic mutant cells were transformed with constructs designed to express D1bLIC proteins with mutated P-loops. The constructs rescued the mutant cells to a wild-type phenotype, indicating that the function of D1bLIC in IFT is independent of its P-loop.
Collapse
Affiliation(s)
- Yuqing Hou
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655,USA
| | | | | |
Collapse
|
16
|
Vanstraelen M, Torres Acosta JA, De Veylder L, Inzé D, Geelen D. A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. PLANT PHYSIOLOGY 2004; 135:1417-29. [PMID: 15247388 PMCID: PMC519059 DOI: 10.1104/pp.104.044818] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 05/19/2004] [Accepted: 05/19/2004] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases (CDKs) control cell cycle progression through timely coordinated phosphorylation events. Two kinesin-like proteins that interact with CDKA;1 were identified and designated KCA1 and KCA2. They are 81% identical and have a similar three-partite domain organization. The N-terminal domain contains an ATP and microtubule-binding site typical for kinesin motors. A green fluorescent protein (GFP) fusion of the N-terminal domain of KCA1 decorated microtubules in Bright Yellow-2 cells, demonstrating microtubule-binding activity. During cytokinesis the full-length GFP-fusion protein accumulated at the midline of young and mature expanding phragmoplasts. Two-hybrid analysis and coimmunoprecipitation experiments showed that coiled-coil structures of the central stalk were responsible for homo- and heterodimerization of KCA1 and KCA2. By western-blot analysis, high molecular mass KCA molecules were detected in extracts from Bright Yellow-2 cells overproducing the full-length GFP fusion. Treatment of these cultures with the phosphatase inhibitor vanadate caused an accumulation of these KCA molecules. In addition to dimerization, interactions within the C-terminally located tail domain were revealed, indicating that the tail could fold onto itself. The tail domains of KCA1 and KCA2 contained two adjacent putative CDKA;1 phosphorylation sites, one of which is conserved in KCA homologs from other plant species. Site-directed mutagenesis of the conserved phosphorylation sites in KCA1 resulted in a reduced binding with CDKA;1 and abolished intramolecular tail interactions. The data show that phosphorylation of the CDKA;1 site provokes a conformational change in the structure of KCA with implications in folding and dimerization.
Collapse
Affiliation(s)
- Marleen Vanstraelen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
17
|
Matsui Y. Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 229:1-42. [PMID: 14669953 DOI: 10.1016/s0074-7696(03)29001-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has three classes of myosins corresponding to three actin structures: class I myosin for endocytic actin structure, actin patches; class II myosin for contraction of the actomyosin contractile ring around the bud neck; and class V myosin for transport along a cable-like actin structure (actin cables), extending toward the growing cortex. Myo2p and Myo4p constitute respective class V myosins as the heavy chain and, like class V myosins in other organisms, function as actin-based motors for polarized distribution of organelles and intracellular molecules. Proper distribution of organelles is essential for autonomously replicating organelles that cannot be reproduced de novo, and is also quite important for other organelles to ensure their efficient segregation and proper positioning, even though they can be newly synthesized, such as those derived from endoplasmic reticulum. In the budding yeast, microtubule-based motors play limited roles in the distribution. Instead, the actin-based motor myosins, especially Myo2p, play a major role. Studies on Myo2p have revealed a wide variety of Myo2p cargo and Myo2p-interacting proteins and have established that Myo2p interacts with cargo and transfers it along actin cables. Moreover, recent findings suggest that Myo2p has another way to distribute cargo in that Myo2p conveys the attaching cargo along the actin track. Thus, the myosin have "dual paths" for distribution of a cargo. This dual path mechanism is proposed in the last section of this review.
Collapse
Affiliation(s)
- Yasushi Matsui
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Ou Y, Rattner JB. The Centrosome in Higher Organisms: Structure, Composition, and Duplication. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:119-82. [PMID: 15364198 DOI: 10.1016/s0074-7696(04)38003-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The centrosome found in higher organisms is an organelle with a complex and dynamic architecture and composition. This organelle not only functions as a microtubule-organizing center, but also is integrated with or impacts a number of cellular processes. Defects associated with this organelle have been linked to a variety of human diseases including several forms of cancer. Here we review the emerging picture of how the structure, composition, duplication, and function of the centrosome found in higher organisms are interrelated.
Collapse
Affiliation(s)
- Young Ou
- Department of Cell Biology and Anatomy, University of Calgary 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | |
Collapse
|
19
|
Grünewald K, Medalia O, Gross A, Steven AC, Baumeister W. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys Chem 2003; 100:577-91. [PMID: 12646392 DOI: 10.1016/s0301-4622(02)00307-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electron cryotomography has unique potential for three-dimensional visualization of macromolecular complexes at work in their natural environment. This approach is based on reconstructing three-dimensional volumes from tilt series of electron micrographs of cells preserved in their native states by vitrification. Resolutions of 5-8 nm have already been achieved and the prospects for further improvement are good. Since many intracellular activities are conducted by complexes in the megadalton range with dimensions of 20-50 nm, current resolutions should suffice to identify many of them in tomograms. However, residual noise and the dense packing of cellular constituents hamper interpretation. Recently, tomographic data have been collected on vitrified eukaryotic cells (Medalia et al., Science (2002) in press). Their cytoplasm was found to be markedly less crowded than in the prokaryotes previously studied, in accord with differences in crowding between prokaryotic and eukaryotic cells documented by other (indirect) biophysical methods. The implications of this observation are twofold. First, complexes should be more easily identifiable in tomograms of eukaryotic cytoplasm. This applies both to recognizing known complexes and characterizing novel complexes. An example of the latter-a 5-fold symmetric particle is-given. Second, electron cryotomography offers an incisive probe to examine crowding in different cellular compartments.
Collapse
Affiliation(s)
- Kay Grünewald
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
20
|
De Vos KJ, Sable J, Miller KE, Sheetz MP. Expression of phosphatidylinositol (4,5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria. Mol Biol Cell 2003; 14:3636-49. [PMID: 12972553 PMCID: PMC196556 DOI: 10.1091/mbc.e02-10-0638] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Axonal transport of membranous organelles such as mitochondria is essential for neuron viability and function. How signaling mechanisms regulate or influence mitochondrial distribution and transport is still largely unknown. We observed an increase in the distal distribution of mitochondria in neurons upon the expression of pleckstrin homology (PH) domains of phospholipase Cdelta1 (PLCdelta-PH) and spectrin (spectrin-PH). Quantitative analysis of mitochondrial transport showed that specific binding of PH domains to phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) but not 3' phosphorylated phosphatidylinositol species enhanced plus-end-directed transport of mitochondria two- to threefold and at the same time decreased minus-end-directed transport of mitochondria along axonal microtubules (MTs) without altering the overall level of motility. Further, the velocity and duration of mitochondrial transport plus the association of molecular motors with mitochondria remained unchanged by the expression of PH domains. Thus, PtdIns(4,5)P2-specific PH domains caused an increase in distal mitochondria by disturbing the balance of plus- and minus-end-directed transport rather than directly affecting the molecular machinery involved. Taken together our data reveal that level and directionality of transport are separable and that PtdIns(4,5)P2 has a novel role in regulation of the directionality of axonal transport of mitochondria.
Collapse
Affiliation(s)
- Kurt J De Vos
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
21
|
Chada SR, Hollenbeck PJ. Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol 2003; 206:1985-92. [PMID: 12756280 DOI: 10.1242/jeb.00263] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The extreme length of axonal processes requires that aerobic ATP production and Ca(2+) homeostasis are non-uniformly organized in the cytoplasm. As a result, the transport and positioning of mitochondria along axons is essential for neuronal homeostasis. Mitochondria undergo rapid but intermittent transport in both the anterograde and retrograde directions in axons. We have shown that in chick embryonic sensory neurons, the transport of mitochondria responds to physiological changes in the cell and, particularly, to growth cone activity. When an axon is actively elongating, mitochondria move preferentially anterograde and then become stationary, accumulating in the region of the active growth cone. When axonal elongation ceases, mitochondria in the distal axon resume movement but undergo net retrograde transport and become uniformly distributed along the axon. This redistribution of mitochondria is achieved in two ways: there is a transition between motile and stationary mitochondria and a large up- and downregulation of their anterograde, but not retrograde, motor activity. Mitochondrial transport does not respond to the experimentally induced elongation of axons in the absence of an active growth cone, implying that signals from the active growth cone regulate transport. To determine the nature of these signals, we have focally stimulated the shafts of sensory axons in culture with nerve growth factor (NGF) covalently conjugated to polystyrene beads. We find that mitochondria accumulate at regions of focal NGF stimulation. This response is specific to mitochondria and does not result from general disruption of the cytoskeleton in the region of stimulation. Disruption of the phosphoinositide 3-kinase (PI 3-kinase) pathway, one of the signaling pathways downstream from NGF-receptor binding, completely eliminates NGF effects on mitochondrial behavior in axons. We propose that mitochondrial transport and/or docking are regulated in part via NGF/TrkA/PI 3-kinase signaling.
Collapse
Affiliation(s)
- Sonita R Chada
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
22
|
Romagnoli S, Cai G, Cresti M. In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. THE PLANT CELL 2003; 15:251-69. [PMID: 12509535 PMCID: PMC143495 DOI: 10.1105/tpc.005645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Accepted: 10/08/2002] [Indexed: 05/17/2023]
Abstract
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, 53100 Siena, Italy.
| | | | | |
Collapse
|
23
|
Kruse C, Jaedicke A, Beaudouin J, Bohl F, Ferring D, Guttler T, Ellenberg J, Jansen RP. Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. J Cell Biol 2002; 159:971-82. [PMID: 12499354 PMCID: PMC2173977 DOI: 10.1083/jcb.200207101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Class V myosins are motor proteins with functions in vesicle transport, organelle segregation, and RNA localization. Although they have been extensively studied, only little is known about the regulation of their spatial distribution. Here we demonstrate that a GFP fusion protein of the budding yeast class V myosin Myo4p accumulates at the bud cortex and is a component of highly dynamic cortical particles. Bud-specific enrichment depends on Myo4p's association with its cargo, a ribonucleoprotein complex containing the RNA-binding protein She2p. Cortical accumulation of Myo4p at the bud tip can be explained by a transient retention mechanism that requires SHE2 and, apparently, localized mRNAs bound to She2p. A mutant She2 protein that is unable to recognize its cognate target mRNA, ASH1, fails to localize Myo4p. Mutant She2p accumulates inside the nucleus, indicating that She2p shuttles between the nucleus and cytoplasm and is exported in an RNA-dependent manner. Consistently, inhibition of nuclear mRNA export results in nuclear accumulation of She2p and cytoplasmic Myo4p mislocalization. Loss of She2p can be complemented by direct targeting of a heterologous lacZ mRNA to a complex of Myo4p and its associated adaptor She3p, suggesting that She2p's function in Myo4p targeting is to link an mRNA to the motor complex.
Collapse
Affiliation(s)
- Claudia Kruse
- Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wong RWC, Setou M, Teng J, Takei Y, Hirokawa N. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci U S A 2002; 99:14500-5. [PMID: 12391294 PMCID: PMC137912 DOI: 10.1073/pnas.222371099] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The kinesin superfamily proteins (KIFs) play essential roles in receptor transportation along the microtubules. KIF17 transports the N-methyl-d-aspartate receptor NR2B subunit in vitro, but its role in vivo is unknown. To clarify this role, we generated transgenic mice overexpressing KIF17 tagged with GFP. The KIF17 transgenic mice exhibited enhanced learning and memory in a series of behavioral tasks, up-regulated NR2B expression with the potential involvement of a transcriptional factor, the cAMP-dependent response element-binding protein, and increased phosphorylation of the cAMP-dependent response element-binding protein. Our results suggest that the motor protein KIF17 contributes to neuronal events required for learning and memory by trafficking fundamental N-methyl-d-aspartate-type glutamate receptors.
Collapse
Affiliation(s)
- Richard Wing-Chuen Wong
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
A novel human myosin gene located at 17q25 was identified through evaluation of genomic DNA sequence and designated myosin XVBP since it resembled human myosin XVA. In humans, myosin XVBP along with an adjacent gene, Lethal Giant Larvae 2 (LLGL2) appears to have arisen from a genomic duplication of a chromosomal interval that included LLGL and an ancestral myosin XV. Inspection of human myosin XVBP predicted amino acid sequence from genomic DNA revealed that 36 of the 131 conserved amino acid residues of the motor domain are substituted or deleted, including sequence changes within the regions involved in the binding of ATP and actin. Twelve myosin XVBP overlapping cDNAs from kidney and stomach mRNA samples were cloned and sequenced. Analyses of these myosin XVBP cDNAs revealed numerous additional disablements including translational reading frame shifts resulting in stop codons. From these data we conclude that myosin XVBP is a transcribed, unprocessed pseudogene.
Collapse
Affiliation(s)
- E T Boger
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | |
Collapse
|
26
|
Klopfenstein DR, Tomishige M, Stuurman N, Vale RD. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002; 109:347-58. [PMID: 12015984 PMCID: PMC2851634 DOI: 10.1016/s0092-8674(02)00708-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unc104 (KIF1A) kinesin transports membrane vesicles along microtubules in lower and higher eukaryotes. Using an in vitro motility assay, we show that Unc104 uses a lipid binding pleckstrin homology (PH) domain to dock onto membrane cargo. Through its PH domain, Unc104 can transport phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2)-containing liposomes with similar properties to native vesicles. Interestingly, liposome movement by monomeric Unc104 motors shows a very steep dependence on PtdIns(4,5)P2 concentration (Hill coefficient of approximately 20), even though liposome binding is noncooperative. This switch-like transition for movement can be shifted to lower PtdIns(4,5)P2 concentrations by the addition of cholesterol/sphingomyelin or GM1 ganglioside/cholera toxin, conditions that produce raft-like behavior of Unc104 bound to lipid bilayers. These studies suggest that clustering of Unc104 in PtdIns(4,5)P2-containing rafts provides a trigger for membrane transport.
Collapse
Affiliation(s)
- Dieter R. Klopfenstein
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
| | - Michio Tomishige
- Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
| | - Nico Stuurman
- Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
| | - Ronald D. Vale
- Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143
- Correspondence:
| |
Collapse
|
27
|
Abstract
Conventional kinesin has long been known to be a molecular motor that transports vesicular cargo, but only recently have we begun to understand how it functions in cells. Regulation of kinesin involves self-inhibition in which a head-to-tail interaction prevents microtubule binding. Although the mechanism of motor activation remains to be clarified, recent progress with respect to cargo binding might provide a clue. Kinesin binds directly to the JIPs (JNK-interacting proteins), identified previously as scaffolding proteins in the JNK (c-Jun NH(2)-terminal kinase) signaling pathway. The JIPs can allow kinesin to transport many different cargoes and to concentrate and respond to signaling pathways at certain sites within the cell. The use of scaffolding proteins could be a general mechanism by which molecular motors link to their cargoes.
Collapse
Affiliation(s)
- K J Verhey
- Dept of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | | |
Collapse
|