1
|
Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Commun Signal 2023; 21:221. [PMID: 37620957 PMCID: PMC10463839 DOI: 10.1186/s12964-022-00900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/17/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The function of exosomes, small extracellular vesicles (sEV) secreted from human adipose-derived stem cells (ADSC), is becoming increasingly recognized as a means of transferring the regenerative power of stem cells to injured cells in wound healing. Exosomes are rich in ceramides and long noncoding RNA (lncRNA) like metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). We identified putative ceramide responsive cis-elements (CRCE) in MALAT1. We hypothesized that CRCE respond to cellular ceramide levels to regulate sEV MALAT1 packaging. MALAT1 levels by many cells exceed those of protein coding genes and it's expression is equally high in exosomes. Ceramide also regulates exosome synthesis, however, the contents of exosome cargo via sphingomyelinase and ceramide synthase pathways has not been demonstrated. METHODS ADSC were treated with an inhibitor of sphingomyelinase, GW4869, and stimulators of ceramide synthesis, C2- and C6-short chain ceramides, prior to collection of conditioned media (CM). sEV were isolated from CM, and then used to treat human dermal fibroblast (HDF) cultures in cell migration scratch assays, and mitochondrial stress tests to evaluate oxygen consumption rates (OCR). RESULTS Inhibition of sphingomyelinase by treatment of ADSC with GW4869 lowered levels of MALAT1 in small EVs. Stimulation of ceramide synthesis using C2- and C6- ceramides increased cellular, EVs levels of MALAT1. The functional role of sEV MALAT1 was evaluated in HDF by applying EVs to HDF. Control sEV increased migration of HDF, and significantly increased ATP production, basal and maximal respiration OCR. sEV from GW4869-treated ADSC inhibited cell migration and maximal respiration. However, sEV from C2- and C6-treated cells, respectively, increased both functions but not significantly above control EV except for maximal respiration. sEV were exosomes except when ADSC were treated with GW4869 and C6-ceramide, then they were larger and considered microvesicles. CONCLUSIONS Ceramide synthesis regulates MALAT1 EV content. Sphingomyelinase inhibition blocked MALAT1 from being secreted from ADSC EVs. Our report is consistent with those of MALAT1 increasing cell migration and mitochondrial MALAT1 altering maximal respiration in cells. Since MALAT1 is important for exosome function, it stands that increased exosomal MALAT1 should be beneficial for wound healing as shown with these assays. Video Abstract.
Collapse
Affiliation(s)
- Xaioyuan Kong
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
| | - Niketa A. Patel
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| | - Charles E. Chalfant
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Cellular Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33612 USA
| | - Denise R. Cooper
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| |
Collapse
|
2
|
Böll S, Ziemann S, Ohl K, Klemm P, Rieg AD, Gulbins E, Becker KA, Kamler M, Wagner N, Uhlig S, Martin C, Tenbrock K, Verjans E. Acid sphingomyelinase regulates T H 2 cytokine release and bronchial asthma. Allergy 2020; 75:603-615. [PMID: 31494944 DOI: 10.1111/all.14039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Allergic diseases and especially allergic asthma are widespread diseases with high prevalence in childhood, but also in adults. Acid sphingomyelinase (ASM) is a key regulator of the sphingolipid pathway. Previous studies defined the association of ASM with the pathogenesis of TH 1-directed lung diseases like cystic fibrosis and acute lung injury. Here, we define the role of ASM in TH 2-regulated allergic bronchial asthma. METHODS To determine the role of Asm under baseline conditions, wild-type (WT) and Asm-/- mice were ventilated with a flexiVent setup and bronchial hyperresponsiveness was determined using acetylcholine. Flow cytometry and cytokine measurements in bronchoalveolar lavage fluid and lung tissue were followed by in vitro TH 2 differentiations with cells from WT and Asm-/- mice and blockade of Asm with amitriptyline. As proof of principle, we conducted an ovalbumin-induced model of asthma in WT- and Asm-/- mice. RESULTS At baseline, Asm-/- mice showed better lung mechanics, but unaltered bronchial hyperresponsiveness. Higher numbers of Asm-/- T cells in bronchoalveolar lavage fluid released lower levels of IL-4 and IL-5, and these results were paralleled by decreased production of typical TH 2 cytokines in Asm-/- T lymphocytes in vitro. This phenotype could be imitated by incubation of T cells with amitriptyline. In the ovalbumin asthma model, Asm-/- animals were protected from high disease activity and showed better lung functions and lower levels of eosinophils and TH 2 cytokines. CONCLUSION Asm deficiency could induce higher numbers of TH 2 cells in the lung, but those cells release decreased TH 2 cytokine levels. Hereby, Asm-/- animals are protected from bronchial asthma, which possibly offers novel therapeutic strategies, for example, with ASM blockade.
Collapse
Affiliation(s)
- Svenja Böll
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Sebastian Ziemann
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
- Department of Anaesthesiology Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Kim Ohl
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Patricia Klemm
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Annette D. Rieg
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
- Department of Anaesthesiology Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Erich Gulbins
- Department of Molecular Biology University Hospital Essen University of Duisburg‐Essen Essen Germany
- Department of Surgery University of Cincinnati Cincinnati OH USA
| | - Katrin Anne Becker
- Department of Molecular Biology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Markus Kamler
- Thoracic Transplantation Thoracic and Cardiovascular Surgery University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Norbert Wagner
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Klaus Tenbrock
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
| | - Eva Verjans
- Department of Pediatrics Medical Faculty RWTH Aachen University University Hospital Aachen Aachen Germany
- Institute of Pharmacology and Toxicology RWTH Aachen University University Hospital Aachen Aachen Germany
| |
Collapse
|
3
|
Rhein C, Löber S, Gmeiner P, Gulbins E, Tripal P, Kornhuber J. Derivatization of common antidepressant drugs increases inhibition of acid sphingomyelinase and reduces induction of phospholipidosis. J Neural Transm (Vienna) 2018; 125:1837-1845. [PMID: 30191367 DOI: 10.1007/s00702-018-1923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/28/2018] [Indexed: 11/26/2022]
Abstract
In recent studies, major depressive disorder (MDD) was linked to an increase in acid sphingomyelinase (ASM) activity. Several drugs that are commonly used to treat MDD functionally inhibit the lysosomal enzyme ASM and are called functional inhibitors of ASM (FIASMAs). These drugs are classified as cationic amphiphilic drugs (CADs) that influence the catalytic activities of different lysosomal enzymes. This action results in the side effect of phospholipidosis (PLD), which describes a detrimental increase in the phospholipid content in lysosomes. FIASMAs differ only slightly in their physico-chemical properties, but their effects on ASM activity and induction of the lysosomal phospholipid content vary significantly. In this study, we systematically induced minor chemical modifications to the FIASMAs imipramine, desipramine and fluoxetine. We generated a library of 45 new CADs with slightly different log P (logarithmic partition coefficient) and pKa (logarithmic acid dissociation constant) values. The effects of the compounds on the ASM activity and lysosomal phospholipid content were assessed in cell culture assays. We identified four compounds with beneficial effects, i.e., increased ASM activity inhibition and reduced PLD induction compared with the original drugs. The compounds HT04, RH272B and RH272D outperformed the original imipramine, whereas RH281A performed better than desipramine. Thus, minor chemical variations of CADs impact lysosomal metabolism in a specific manner and can lead to antidepressant drugs with less deleterious side effects.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Stefan Löber
- Pharmaceutical Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Gmeiner
- Pharmaceutical Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
5
|
Mühle C, Kornhuber J. Assay to measure sphingomyelinase and ceramidase activities efficiently and safely. J Chromatogr A 2016; 1481:137-144. [PMID: 28012590 DOI: 10.1016/j.chroma.2016.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
As part of the sphingomyelin pathway, sphingomyelinases and ceramidases have attracted much attention in basic as well as clinical research. However, current assays still often rely on a radioactive substrate, extensive manual purification steps, and hazardous solvents for chromatographic analysis. We here show the equivalence of a fluorescent sphingomyelin substrate and present a new versatile solvent replacing the chloroform/methanol mixture. By further modifications including the omission of the manual extraction steps, chloroform and methanol are eliminated from the entire procedure and render the assay flexible to repeated analyses at multiple time intervals. These improvements allow for the rapid detection of both enzymes in a high throughput microtiter format. Moreover, we demonstrate the relevance of the plastic assay material and the interchangeability between serum and different plasma sources.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Schwabachanlage 6, D-91054, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Schwabachanlage 6, D-91054, Germany.
| |
Collapse
|
6
|
Abstract
The enzyme acid sphingomyelinase catalyzes the hydrolysis of sphingomyelin to ceramide. The importance of the enzyme for cell functions was first recognized in Niemann-Pick disease type A and B, the genetic disorders with a massive accumulation of sphingomyelin in many organs. Studies in the last years demonstrated that the enzyme also has an important role in cell signalling. Thus, the acid sphingomyelinase has a central function for the re-organization of molecules within the cell upon stimulation and thereby for the response of cells to stress and the induction of cell death but also proliferation and differentiation. Here, we discuss the current state of the art of the structure, regulation, and function of the acid sphingomyelinase.
Collapse
Affiliation(s)
- Brian Henry
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
7
|
Rhein C, Tripal P, Seebahn A, Konrad A, Kramer M, Nagel C, Kemper J, Bode J, Mühle C, Gulbins E, Reichel M, Becker CM, Kornhuber J. Functional implications of novel human acid sphingomyelinase splice variants. PLoS One 2012; 7:e35467. [PMID: 22558155 PMCID: PMC3338701 DOI: 10.1371/journal.pone.0035467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. METHODOLOGY/PRINCIPAL FINDINGS We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. CONCLUSIONS/SIGNIFICANCE These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Seebahn
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alice Konrad
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Marcel Kramer
- Leibniz Institute for Age Research – Fritz Lipmann Institute and Center for Sepsis Control and Care at Jena University Hospital, Jena, Germany
| | - Christine Nagel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonas Kemper
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Bode
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Cord-Michael Becker
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 2011; 6:e23852. [PMID: 21909365 PMCID: PMC3166082 DOI: 10.1371/journal.pone.0023852] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 07/26/2011] [Indexed: 12/19/2022] Open
Abstract
We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ganapathi SB, Fox TE, Kester M, Elmslie KS. Ceramide modulates HERG potassium channel gating by translocation into lipid rafts. Am J Physiol Cell Physiol 2010; 299:C74-86. [PMID: 20375276 DOI: 10.1152/ajpcell.00462.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sphingolipid family, which due to its proapoptotic properties has shown promising results in animal models as an anticancer agent. Yet the acute effects of ceramide on HERG potassium channels are not known. In the present study we examined the effects of cell-permeable C(6)-ceramide on HERG potassium channels stably expressed in HEK-293 cells. C(6)-ceramide (10 microM) reversibly inhibited HERG channel current (I(HERG)) by 36 +/- 5%. Kinetically, ceramide induced a significant hyperpolarizing shift in the current-voltage relationship (DeltaV(1/2) = -8 +/- 0.5 mV) and increased the deactivation rate (43 +/- 3% for tau(fast) and 51 +/- 3% for tau(slow)). Mechanistically, ceramide recruited HERG channels within caveolin-enriched lipid rafts. Cholesterol depletion and repletion experiments and mathematical modeling studies confirmed that inhibition and gating effects are mediated by separate mechanisms. The ceramide-induced hyperpolarizing gating shift (raft mediated) could offset the impact of inhibition (raft independent) during cardiac action potential repolarization, so together they may nullify any negative impact on cardiac rhythm. Our results provide new insights into the effects of C(6)-ceramide on HERG channels and suggest that C(6)-ceramide can be a promising therapeutic for cancers that overexpress HERG.
Collapse
Affiliation(s)
- Sindura B Ganapathi
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
10
|
Reichel M, Greiner E, Richter-Schmidinger T, Yedibela O, Tripal P, Jacobi A, Bleich S, Gulbins E, Kornhuber J. Increased acid sphingomyelinase activity in peripheral blood cells of acutely intoxicated patients with alcohol dependence. Alcohol Clin Exp Res 2009; 34:46-50. [PMID: 19860808 DOI: 10.1111/j.1530-0277.2009.01064.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acid sphingomyelinase (ASM; EC 3.1.4.12) hydrolyses membrane sphingomyelin into the bioactive lipid ceramide and is thus involved in different cellular processes such as differentiation, immunity, or cell death. Activation of ASM has been reported in particular in conjunction with the cellular stress response to several external stimuli, and increased ASM activity was observed in a variety of human diseases. Ethanol-induced activation of ASM has been observed in different cell culture systems, thus raising the question about the effect of alcohol intoxication in human subjects on ASM activity in vivo. METHODS We determined ASM activity in peripheral blood mononucleated cells of 27 patients suffering from alcohol dependence. Patients were classified according to their blood alcohol concentration at admission, and ASM activity was determined repeatedly from all patients during alcohol withdrawal. RESULTS Acutely intoxicated patients displayed significantly higher ASM activity than patients in early abstinence (Mann-Whitney U test: Z = - 2.6, p = 0.009). ASM activity declined in acutely intoxicated patients to normal values with the transition from the intoxicated state to early abstinence (Wilcoxon test: Z = -2.7, p = 0.007). At the end of withdrawal, ASM activity was significantly increased again compared to the early phase of abstinence in both patient groups (Wilcoxon test: Z = -2.691, p = 0.007 and Z = -2.275, p = 0.023, respectively). CONCLUSIONS Alcohol-induced activation of ASM occurs in human subjects and might be responsible for deleterious effects of ethanol intoxication. Chronic alcohol abuse may induce deregulation of sphingomyelin metabolism in general, and this impairment may cause side effects during withdrawal from alcohol.
Collapse
Affiliation(s)
- Martin Reichel
- Department of Psychiatry and Psychotherapy, University of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dumitru CA, Sandalcioglu IE, Wagner M, Weller M, Gulbins E. Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med (Berl) 2009; 87:1123-32. [DOI: 10.1007/s00109-009-0514-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/03/2009] [Accepted: 07/23/2009] [Indexed: 01/30/2023]
|
12
|
Dumitru CA, Weller M, Gulbins E. Ceramide metabolism determines glioma cell resistance to chemotherapy. J Cell Physiol 2009; 221:688-95. [DOI: 10.1002/jcp.21907] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Becker KA, Gellhaus A, Winterhager E, Gulbins E. Ceramide-enriched membrane domains in infectious biology and development. Subcell Biochem 2008; 49:523-538. [PMID: 18751925 DOI: 10.1007/978-1-4020-8831-5_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ceramide has been shown to be critically involved in multiple biological processes, for instance induction of apoptosis after ligation of death receptors or application of gamma-irradiation or UV-A light, respectively, regulation of cell differentiation, control of tumor cell growth, infection of mammalian cells with pathogenic bacteria and viruses or the control of embryo and organ development to name a few examples. Ceramide molecules form distinct large domains in the cell membrane, which may serve to re-organize cellular receptors and signalling molecules. Thus, in many conditions, ceramide may be involved in the spatial and temporal organisation of specific signalling pathways explaining the pleiotrophic effects of this lipid. Here, we focus on the role of ceramide and ceramide-enriched membrane domains, respectively, in bacterial infections, in particular of the lung, and sepsis. We describe the role of ceramide for infections with Neisseriae gonorhoeae, Staphylococcus aureus and Pseudomonas aeruginosa. Finally, we discuss newly emerging aspects of the cellular function of ceramide, i.e. its role in germ line and embryo development.
Collapse
Affiliation(s)
- Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
14
|
Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structure−Property−Activity Relation Model. J Med Chem 2007; 51:219-37. [DOI: 10.1021/jm070524a] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Lothar Terfloth
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Stefan Bleich
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Erich Gulbins
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| |
Collapse
|
15
|
Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E. Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 2007; 12:1533-41. [PMID: 17520194 DOI: 10.1007/s10495-007-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies indicated that signalling via CD95 and DR5 is greatly enhanced by the formation of ceramide-enriched membrane platforms. Here, we employed this concept to convert doses of subtherapeutic TRAIL that were unable to release ceramide and kill leukemic B-cells or ex vivo T lymphocytes, into a very effective apoptotic stimulus. Ceramide production was induced by application of sub-toxic doses of doxorubicin that resulted in an activation of the acid sphingomyelinase (ASM), release of ceramide and formation of ceramide-enriched membrane platforms. The latter served DR5 to cluster after application of very low doses of TRAIL in combination with doxorubicin. Genetic deficiency of the ASM abrogated doxorubicin-induced ceramide release, as well as clustering of DR5 and apoptosis induced by the combined treatment of doxorubicin and TRAIL. These data show that local release of ceramide potentiates very low, otherwise inactive doses of TRAIL that may represent a novel therapeutic concept to treat tumors.
Collapse
Affiliation(s)
- Claudia Alexandra Dumitru
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | | | | |
Collapse
|
16
|
Dumitru CA, Gulbins E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 2006; 25:5612-25. [PMID: 16636669 DOI: 10.1038/sj.onc.1209568] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that activation of the acid sphingomyelinase (ASM), the release of ceramide and the formation of ceramide-enriched membrane domains are central for the induction of apoptosis by CD95. Here, we demonstrate that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and CD95 activate the ASM via a redox mechanism resulting in release of ceramide and formation of ceramide-enriched membrane platforms. Ceramide-enriched membrane platforms serve to cluster DR5 upon stimulation. Antioxidants prevent TRAIL-mediated stimulation of ASM, the release of ceramide, the formation of ceramide-enriched membrane platforms and the induction of apoptosis by TRAIL. Further, ASM-deficient splenocytes fail to cluster DR5 in ceramide-enriched membrane domains upon TRAIL stimulation and resist TRAIL-induced apoptosis, events that were restored by addition of natural C(16)-ceramide. A dose-response analysis indicates that ceramide-enriched membrane platforms greatly sensitized tumor cells to TRAIL-induced apoptosis. Our data indicate that ceramide-enriched membrane platforms are required for the signaling of TRAIL-DR5 complexes under physiological conditions.
Collapse
Affiliation(s)
- C A Dumitru
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
17
|
Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:284-94. [PMID: 16226325 DOI: 10.1016/j.bbamcr.2005.09.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 09/05/2005] [Accepted: 09/06/2005] [Indexed: 01/05/2023]
Abstract
Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.
Collapse
Affiliation(s)
- Claudia R Bollinger
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
18
|
Das SK, Mukherjee S, Smith MG, Chatterjee D. Prophylactic protection by N-acetylcysteine against the pulmonary injury induced by 2-chloroethyl ethyl sulfide, a mustard analogue. J Biochem Mol Toxicol 2004; 17:177-84. [PMID: 12815614 DOI: 10.1002/jbt.10076] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mustard gas exposure causes adult respiratory distress syndrome associated with lung injury. The purpose of this study was to investigate whether an antioxidant, such as N-acetylcysteine (NAC), has any protective effect. Guinea pigs were given single exposure (0.5-6 mg/kg body weight) of 2-chloroethyl ethyl sulfide (CEES) as a mustard analogue intratracheally and maintained for various lengths of time (1 h to 21 days). Within 1 h of CEES infusion at 4 mg/kg, high levels of tumor necrosis factor alpha (TNF-alpha), ceramides, and nuclear factor kappaB accumulated in lung and alveolar macrophages. Both acid and neutral sphingomyelinases were activated within 4 h. These signal transduction events were associated with alteration in the oxygen defense system. Within 1 h of exposure to CEES (6 mg/kg body weight), there was 10-fold increase in the (125)I-BSA leakage into lung tissue, indicating severe lung injury. Although low level of CEES exposure (0.5 mg/kg body weight) produced symptoms of chemical burn in lung as early as 1 h after exposure, the severity of edema, congestion, hemorrhage, and inflammation increased progressively with time (1 h to 21 days). Feeding of single dose of NAC (0.5 g) by gavage just before the CEES infusion was ineffective to counteract these effects. However, consumption of the antioxidant in drinking water for 3 or 30 days prior to CEES exposure significantly inhibited the induction of TNF-alpha, activation of neutral and acid sphingomyelinases, production of ceramides, activation of caspases, leakage of (125)I-bovine serum albumin ((125)I-BSA) into lung tissue, and histological alterations in lung. Pretreatment with NAC for 3 and 30 days protected against 69-76% of the acute lung injury. Therefore, NAC may be an antidote for CEES-induced lung injury.
Collapse
Affiliation(s)
- Salil K Das
- Department of Biochemistry, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | |
Collapse
|
19
|
Chatterjee D, Mukherjee S, Smith MG, Das SK. Signal transduction events in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol 2004; 17:114-21. [PMID: 12717745 DOI: 10.1002/jbt.10068] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sulfur mustard has been used as a vesicant chemical warfare agent. To understand the mechanism by which mustard gas exposure causes respiratory damage, we have used 2-chloroethyl ethyl sulfide (CEES) as a mustard analog. Our initial studies have shown that guinea pigs exposed to CEES intratracheally accumulate high levels of TNF-alpha. Accumulation of TNF-alpha leads to activation of both acid and neutral sphingomyelinases, resulting in high accumulation of ceramides, a second messenger involved in cell apoptosis. In addition, NF-kappa B was activated for a short period (1-2 h after exposure) as determined by mobility shift assay. Supershift assays indicated that both p50 and p65 of NF-kappa B were activated due to CEES exposure. However, NF-kappa B rapidly disappeared after 2 h. It is possible that the initial activation of NF-kappa B was an adaptive response to protect the cells from damage since NF-kappa B is known to inhibit TNF-alpha/ceramide-induced cell apoptosis. Since NF-kappa B disappeared after 2 h, the cells continued being damaged owing to accumulation of ceramides and activation of several caspases, leading to apoptosis.
Collapse
Affiliation(s)
- Diptendu Chatterjee
- Department of Biochemistry, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
20
|
Grassmé H, Bock J, Kun J, Gulbins E. Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem 2002; 277:30289-99. [PMID: 12011072 DOI: 10.1074/jbc.m200494200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor clustering is a key event in the initiation of signaling by many types of receptor molecules. Here, we provide evidence for the novel concept that clustering of a ligand is a prerequisite for clustering of the cognate receptor. We show that clustering of the CD40 receptor depends on reciprocal clustering of the CD40 ligand (gp39, CD154). Clustering of the CD40 ligand is mediated by an association of the ligand with p53, a translocation of acid sphingomyelinase (ASM) to the cell membrane, an activation of the ASM, and a formation of ceramide. Ceramide appears to modify preexisting sphingolipid-rich membrane microdomains to fuse and form ceramide-enriched signaling platforms that serve to cluster CD40 ligand. Genetic deficiency of p53 or ASM or disruption of ceramide-enriched membrane domains prevents clustering of CD40 ligand. The functional significance of CD40 ligand clustering is indicated by the finding that clustering of CD40 on B lymphocytes upon co-incubation with CD40 ligand-expressing T cells depends on clustering of the CD40 ligand and is abrogated by inhibition of CD40 ligand clustering.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
21
|
Loidl A, Claus R, Deigner H, Hermetter A. High-precision fluorescence assay for sphingomyelinase activity of isolated enzymes and cell lysates. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Ueda N, Camargo SMR, Hong X, Basnakian AG, Walker PD, Shah SV. Role of ceramide synthase in oxidant injury to renal tubular epithelial cells. J Am Soc Nephrol 2001; 12:2384-2391. [PMID: 11675414 DOI: 10.1681/asn.v12112384] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ceramide has been implicated to play an important role in the cell signaling pathway involved in apoptosis. Most studies that have used the apoptotic model of cellular injury have suggested that enhanced ceramide generation is the result of the breakdown of sphingomyelin by sphingomyelinases. However, the role of ceramide synthase in enhanced ceramide generation in response to oxidant stress has not been previously examined in any tissue. Hydrogen peroxide (H(2)O(2)) (1 mM) resulted in a rapid increase in ceramide generation (as measured by in vitro diacylglycerol kinase assay) in LLC-PK1 cells. The intracellular ceramide level was significantly increased at 5 min after exposure of cells to H(2)O(2) and thereafter continuously increased up to 60 min. H(2)O(2) also resulted in a rapid increase (within 5 min) in ceramide synthase activity (as measured by incorporation of [(14)C] from the labeled palmytoyl-CoA into dihydroceramide) in microsomes. In contrast, the exposure of cells to H(2)O(2) did not result in any significant change in sphingomyelin content or acid or neutral sphingomyelinase activity. An increase in ceramide production induced by H(2)O(2) preceded any evidence of DNA damage and cell death. The specific inhibitor of ceramide synthase, fumonisin B1 (50 microM), was able to suppress H(2)O(2)-induced ceramide generation and provided a marked protection against H(2)O(2)-induced DNA strand breaks, DNA fragmentation, and cell death. Taken together, these data provide the first evidence that H(2)O(2) is a regulator of ceramide synthase rather than sphingomyelinases and that ceramide synthase-dependent ceramide generation plays a key role in DNA damage and cell death in oxidant stress to renal tubular epithelial cells.
Collapse
Affiliation(s)
- Norishi Ueda
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Simone M R Camargo
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Xiaoman Hong
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Alexei G Basnakian
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Patrick D Walker
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Sudhir V Shah
- University of Arkansas for Medical Sciences, Division of Nephrology, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|