1
|
Peng W, Jiang Q, Wu Y, He L, Li B, Bei W, Yang X. The role of glutathione for oxidative stress and pathogenicity of Streptococcus suis. Virulence 2025; 16:2474866. [PMID: 40048653 PMCID: PMC11901377 DOI: 10.1080/21505594.2025.2474866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in S. suis. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in S. suis. GshAB and GshT were found in S. suis glutathione synthesis and import by bioinformatics. In vitro, inactivation of gshAB and gshT led to increased sensitivity to oxidative stress. Inactivation of gshT led to growth defects in the medium. The intracellular glutathione content of gshAB or gshT deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of gshAB and gshT mutants was lower than that of the WT strain. Moreover, the virulence of gshAB and gshT deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of S. suis. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuting Wu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li He
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Xue X, Wang M, Cui J, Yang M, Ma L, Kang R, Tang D, Wang J. Glutathione metabolism in ferroptosis and cancer therapy. Cancer Lett 2025; 621:217697. [PMID: 40189013 DOI: 10.1016/j.canlet.2025.217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Glutathione (GSH), a non-enzymatic antioxidant in mammalian cells, plays an essential role in maintaining redox balance, mitigating oxidative stress, and preserving cellular homeostasis. Beyond its well-established function in detoxifying reactive oxygen species (ROS), GSH serves as a critical regulator of ferroptosis-an iron-dependent form of cell death marked by excessive lipid peroxidation. Serving as a cofactor for glutathione peroxidase 4 (GPX4), GSH catalyzes the conversion of lipid peroxides into non-toxic lipid alcohols, thereby preventing the accumulation of deleterious lipid oxidation products and halting the spread of oxidative damage. In cancer cells, upregulated GSH synthesis and GPX4 activity contribute to an enhanced antioxidant defense, countering oxidative stress provoked by increased metabolic demands and exposure to therapeutic agents such as chemotherapy, radiotherapy, and immunotherapy. This ability of cancer cells to modulate their ferroptosis susceptibility through GSH metabolism underscores its potential as a therapeutic target. Additionally, GSH influences several key oncogenic and tumor-suppressive signaling pathways, including NFE2L2/NRF2, TP53/p53, NF-κB, Hippo, and mTOR, which collectively regulate responses to oxidative stress, affect metabolic processes, and modulate sensitivity to ferroptosis in cancer cells. This review explores recent advancements in understanding GSH's multifaceted role in ferroptosis, emphasizing its implications for cancer biology and therapeutic interventions.
Collapse
Affiliation(s)
- Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Manyuan Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Minying Yang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Zhang Z, Zhu L, Zhang H, Yu D, Yin Z, Zhan X. Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites. Int J Mol Sci 2025; 26:3315. [PMID: 40244176 PMCID: PMC11989349 DOI: 10.3390/ijms26073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer's yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer's yeast was selected as the experimental subject, and the digestion of this yeast (Brewer's yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| |
Collapse
|
4
|
Lara-Hernández F, Melero R, Quiroz-Rodríguez ME, Moya-Valera C, de Jesús Gallardo-Espinoza M, Álvarez L, Valarezo-Torres IL, Briongos-Figuero L, Abadía-Otero J, Mena-Martin FJ, Saez G, Redon J, Martín-Escudero JC, García-García AB, Ayala G, Chaves FJ. Genetic interaction between oxidative stress and body mass index in a Spanish population. Redox Biol 2025; 80:103531. [PMID: 39923398 PMCID: PMC11849672 DOI: 10.1016/j.redox.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Oxidative stress may act as a contributing factor in the development of an elevated body mass index (BMI). Oxidative stress has the potential to modulate genetic activity at various levels, including gene transcription and protein function regulation. Nevertheless, the interplay between genetic variants and oxidative stress in relation to BMI remains to be elucidated. Based on this premise, we studied the potential association between 723 single-nucleotide polymorphisms (SNPs) located within a set of 212 genes and both BMI and oxidative stress parameters in 1502 adults from the general Spanish population (Hortega Study). Oxidative stress parameters measured included malondialdehyde (MDA) levels, 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels and oxidised/reduced glutathione ratio (GSSG/GSH). We also examined the potential impact of the interaction between these SNPs and oxidative stress levels on BMI. The genes selected regulate several key biological processes, including obesity, blood pressure, inflammation, lipid metabolism and redox homeostasis. Our findings indicate a robust association between specific genes and both BMI and oxidative stress parameters. Significant BMI-related interactions between genes and oxidative stress parameters were identified, which have a multifactorial impact on oxidative stress modulation and on BMI. SNPs identified in genes such as NPPA, CPT1A, DDIT3, NOX and IL6ST were significantly associated with all oxidative stress parameters analysed, indicating a substantial influence on BMI modulation. The results provide compelling evidence of a significant relationship between oxidative stress levels and genetic background. Our data provide new insights into BMI modulation by oxidative stress levels, highlighting a role for TNF as a key player in the interrelation of oxidative stress and BMI.
Collapse
Affiliation(s)
| | - Rebeca Melero
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Celeste Moya-Valera
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Luis Álvarez
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | | | - Jessica Abadía-Otero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain
| | | | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology. University of Valencia, 46010, Valencia, Spain; Service of Clinical Analysis. University Hospital Dr. Peset-FISABIO, Spain
| | - Josep Redon
- Cardiometabolic Renal Risk Research Group, INCLIVA Biomedical Research Institute, University of Valencia, 46010, Valencia, Spain; CIBEROBN, ISCIII, 28029, Madrid, Spain
| | - Juan-Carlos Martín-Escudero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain; Department of Medicine, Faculty of Medicine, University of Valladolid, 47002, Valladolid, Spain
| | - Ana-Bárbara García-García
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain.
| | - Guillermo Ayala
- Department of Statistics and Operation Research, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Felipe Javier Chaves
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain
| |
Collapse
|
5
|
Seisenbacher G, Nakic ZR, Borràs E, Sabidó E, Sauer U, de Nadal E, Posas F. Redox proteomics reveal a role for peroxiredoxinylation in stress protection. Cell Rep 2025; 44:115224. [PMID: 39847483 DOI: 10.1016/j.celrep.2024.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/13/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce. Using global proteomic analyses, we show here that the yeast peroxiredoxin Tsa1 interacts with many proteins of essential biological processes, including protein turnover and carbohydrate metabolism. Several of these interactions are of a covalent nature, and we show that failure of peroxiredoxinylation of Gnd1 affects its phosphogluconate dehydrogenase activity and impairs recovery upon stress. Thioredoxins directly remove TSA1-formed mixed disulfide intermediates, thus expanding the role of the thioredoxin-peroxiredoxin redox cycle pair to buffer the redox state of proteins.
Collapse
Affiliation(s)
- Gerhard Seisenbacher
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland; ZHAW School of Life Sciences and Facility Management, Biosystems Technology, 8820 Wädenswil, Switzerland
| | - Eva Borràs
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Eulalia de Nadal
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Francesc Posas
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
He L, Wei X, Zhang W, Xu N, Wu J, Yu F, Liu H. Fabrication of a Redox-Reversible Near-Infrared Fluorogenic Probe for Ferroptosis Process Monitoring and the Early Diagnosis of Diabetes. Anal Chem 2025; 97:2411-2417. [PMID: 39838582 DOI: 10.1021/acs.analchem.4c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a type of cell death triggered by the iron-dependent accumulation of lipid peroxides in cells. Diabetes, a chronic metabolic disorder characterized by hyperglycemia, can lead to various health complications. The process of ferroptosis and the progression of diabetes are closely linked to redox homeostasis, which is regulated by the levels of reactive oxygen and sulfur species. Currently, there are no fluorescent probes available to monitor changes in redox homeostasis during ferroptosis and diabetes. Here, we report the first endeavor to create a reversible near-infrared fluorogenic (NIRF) probe for monitoring the process of ferroptosis reversal and precise diabetes diagnosis. In vitro data demonstrated that NIR-CSTe could cyclically and reversibly detect ONOO- and GSH up to four times with minimal loss in fluorescence intensity. With the help of NIR-CSTe, we observed that HT-1080 cells, induced to undergo ferroptosis by erastin after being washed with PBS for 24 h and then treated with ferrostatin-1, showed a recovery in intracellular GSH levels. In contrast, treatment with deferoxamine did not yield similar results. Lastly, NIR-CSTe was also utilized for the early diagnosis and efficacy assessment of diabetes in relation to ONOO-/GSH redox balance, with results illustrating that the combined administration of metformin and empagliflozin was more effective than using either drug alone. Thus, this smart probe holds significant potential as an essential tool for clinical diagnosis and treatment of diseases associated with redox homeostasis.
Collapse
Affiliation(s)
- Lingchao He
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xiao Wei
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Wei Zhang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ningge Xu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jinsheng Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
8
|
Romig M, Eberwein M, Deobald D, Schmid A. Reactivation and long-term stabilization of the [NiFe] Hox hydrogenase of Synechocystis sp. PCC6803 by glutathione after oxygen exposure. J Biol Chem 2025; 301:108086. [PMID: 39675701 PMCID: PMC11780932 DOI: 10.1016/j.jbc.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen. Several hydrogenases, such as the oxygen-sensitive bidirectional [NiFe] Hox hydrogenase (Hox) of the unicellular cyanobacterium Synechocystis sp. PCC6803, are reactivated after oxygen-induced deactivation by redox mechanisms. In cyanobacteria, the glutathione (GSH) redox buffer majorly controls intracellular redox potentials. The relationship between Hox turnover rates and the redox potential in its natural reaction environment is not fully understood. We thus determined hydrogen oxidation rates as activities of Hox in cell-free extracts of Synechocystis using benzyl viologen as artificial electron acceptor. We found that GSH modulates Hox hydrogen oxidation rates under oxygen-free conditions. After oxygen exposure, it influences the maximal turnover rate and aids in the reactivation of Hox. Moreover, GSH stabilizes the long-term Hox activity under anoxic conditions and attenuates oxygen-induced deactivation of Hox in a concentration-dependent manner, probably by fostering reactivation. Conversely, oxidized GSH (GSSG) negatively affects Hox activity and oxygen insensitivity. Using Blue Native PAGE followed by mass spectrometry, we showed that oxygen affects Hox complex integrity. The in silico predicted structure of the Hox complex and complexome analyses reveal the formation of various Hox subcomplexes under different conditions. Our findings refine our current classification of oxygen-hydrogenase interactions beyond sensitive and insensitive, which is particularly important for understanding hydrogenase function under physiological conditions in future.
Collapse
Affiliation(s)
- Merle Romig
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Marie Eberwein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Darja Deobald
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| | - Andreas Schmid
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| |
Collapse
|
9
|
Yang C, Zhao Y, Jiao Y, Yang L, He B, Dai W, Zhang H, Zhang Q, Wang X. Organelle-Level Trafficking and Metabolism Kinetics for Redox-Responsive Paclitaxel Prodrug Nanoparticles Characterized by Experimental and Modeling Analysis. ACS NANO 2024. [PMID: 39688493 DOI: 10.1021/acsnano.4c09704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Redox-responsive self-assembled prodrug nanoparticles have received extensive attention for their high loading efficiency and environmentally responsive properties. However, the intracellular metabolism and transportation kinetics were poorly understood, which limited the rational design and development of this delivery system. Herein, tetraphenylporphyrin-paclitaxel (TxP) prodrugs with thioether, disulfide, and dicarbon linkers (TsP, TssP, and TccP) were synthesized and self-assembled as nanoparticles. The redox responsiveness was investigated both in the simulated medium and in tumor cells via mass spectrometry. TxP NP and PTX concentrations in 4T1 whole cells, endosomal systems, and cytoplasm over time were quantified by UPLC-MS/MS and modeled using the nonlinear mixed effect (NLME) approach. Cytotoxicity was studied in 4T1 and MCF-7 cell lines, and antitumor efficacy was analyzed in 4T1 tumor-bearing mice. Mass spectrometry identified both oxidative and reductive metabolites in redox simulants for TssP NPs and TsP NPs. In 4T1 cells, only reductive metabolites for TssP NPs were detected, while both oxidative and reductive metabolites for TsP NPs were detected. The developed subcellular pharmacokinetic model suggested that the estimated metabolism rates of TxP NPs in endosomal systems were 10 to 27 times of the rates in cytoplasm, indicating that endosomal systems were the dominant place for intracellular metabolism. These rates were numerically higher for TsP NPs than TssP NPs in endosomal systems (1.7-fold) and the cytoplasm (2.5-fold). The internalization of nanoparticles was identified to be slow (kmax,int, 0.015 h-1) and saturable. The transportation rate constant across the endosomal membranes was fast for PTX (27.1 h-1) and slow for TxP NPs (0.098 h-1). TsP and TssP NPs had comparable in vivo antitumor efficacy, which was higher than that of TccP NPs. This study quantified the organelle-level transportation and metabolism kinetics for three prodrug nanoparticles with redox-responsive or inert linkers using a combined experimental and modeling approach. These findings and the modeling framework might inform future studies for redox-responsive prodrug design and drug delivery systems.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Jiao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pharmacy, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Long Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Alparslan B, Şentürk M, Erkan C. Bee venom and melittin: Potent key enzyme inhibitors with promising therapeutic potential. Toxicon 2024; 252:108164. [PMID: 39510259 DOI: 10.1016/j.toxicon.2024.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Bee venom (BV) is a versatile product with extensive applications, boasting antibacterial and anticancer properties. Within this study, we focused on isolating melittin (Mel) from Apis mellifera L. venom and exploring the influence of both BV and Mel on specific enzymes, namely carbonic anhydrase (CA) I, CA II, CA IX, glutathione reductase (GR), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and neuraminidase (NA). The rationale for selecting these enzymes is that their inhibitors have a particular interest in medicinal chemistry in the treatment of several diseases. BV was obtained using a poison collection apparatus, and Mel was isolated by means of High-Performance Liquid Chromatography (HPLC). All enzymes, except for CA I and CA II, were commercially sourced and of high purity, and the enzyme assays were carried out spectrophotometrically. Our findings showed that BV inhibited the enzymes with IC50 values of 0.583-3.32 ng/mL, and Mel showed an inhibition range of 0.528-3.2 ng/mL. These results underscore the potential therapeutic promise of BV and Mel as robust enzyme inhibitors, offering prospects for addressing diverse health conditions.
Collapse
Affiliation(s)
- Bayram Alparslan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Murat Şentürk
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Cengiz Erkan
- Department of Animal Science, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
11
|
Cossu V, Bertola N, Fresia C, Sabatini F, Ravera S. Redox Imbalance and Antioxidant Defenses Dysfunction: Key Contributors to Early Aging in Childhood Cancer Survivors. Antioxidants (Basel) 2024; 13:1397. [PMID: 39594539 PMCID: PMC11590913 DOI: 10.3390/antiox13111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Survival rates for childhood cancer survivors (CCS) have improved, although they display a risk for early frailty due to the long-term effects of chemo/radiotherapy, including early aging. This study investigates antioxidant defenses and oxidative damage in mononuclear cells (MNCs) from CCS, comparing them with those from age-matched and elderly healthy individuals. Results show impaired antioxidant responses and increased oxidative stress in CCS MNCs, which exhibited uncoupled oxidative phosphorylation, leading to higher production of reactive oxygen species, similar to metabolic issues seen in elderly individuals. Key antioxidant enzymes, namely glucose-6-phosphate dehydrogenase, hexose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, showed reduced activity, likely due to lower expression of nuclear factor erythroid 2-related factor 2 (Nrf2). This imbalance caused significant damage to lipids, proteins, and DNA, potentially contributing to cellular dysfunction and a higher risk of cancer recurrence. These oxidative and metabolic dysfunctions persist over time, regardless of cancer type or treatment. However, treatment with N-acetylcysteine improved Nrf2 expression, boosted antioxidant defenses, reduced oxidative damage, and restored oxidative phosphorylation efficiency, suggesting that targeting the redox imbalance could enhance long-term CCS health.
Collapse
Affiliation(s)
- Vanessa Cossu
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Chiara Fresia
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Federica Sabatini
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| |
Collapse
|
12
|
Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig 2024; 62:923-928. [PMID: 39182396 DOI: 10.1016/j.resinv.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by bronchial hyperresponsiveness and reversibility. Despite considerable advances in asthma treatment based on our understanding of its pathophysiology, asthma exacerbations remain challenging. To reduce asthma exacerbations, it is essential to identify triggers, patients' risk factors, and underlying mechanisms. While exposure to viruses and environmental stimuli are known common triggers for asthma exacerbations, the key factors involved in asthma exacerbations have been identified as type 2 inflammation. Type 2 inflammatory biomarkers have been demonstrated to be useful in predicting individuals at risk of exacerbations. Furthermore, recent clinical trials of targeted biological therapy, which blocks the type 2 pathway, have supported the critical role of type 2 inflammation in asthma exacerbations. Although the specific mechanisms linking type 2 inflammation to asthma exacerbations have not yet been fully elucidated, increasing evidence shows that reduction/oxidation (redox) imbalance likely plays an important role in this association. Under type 2 inflammatory conditions, human airway epithelial cells activate 15-lipoxygenase-1 in complex with phosphatidylethanolamine binding protein-1, leading to the generation of electrophilic hydroperoxyl-phospholipids. When the accumulation of reactive lipid peroxidation surpasses a specific glutathione-dependent activity, these electrophilic compounds are not neutralized, leading to programmed cell death, ferroptosis. Reduced glutathione levels, caused by type 2 inflammation, may impair its ability to neutralize reactive lipid peroxidation. The accumulation of lipid peroxidation with intracellular redox imbalance may contribute to asthma exacerbations in individuals with type 2 inflammation. Inhibiting the ferroptotic pathway holds promise as a therapeutic strategy to alleviate asthma exacerbations.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Nara, 630-0293, Japan.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, Pittsburgh, PA, 15261, USA
| |
Collapse
|
13
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
14
|
Gok G, Neselioglu S, Ko HL, Erel O, López-Martínez MJ, Manteca X, Rubio CP. Evaluation of Glutathione (GSH) System in Porcine Saliva: Validation and Application of Colorimetric Method. Antioxidants (Basel) 2024; 13:1231. [PMID: 39456484 PMCID: PMC11504221 DOI: 10.3390/antiox13101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Reduced glutathione (GSH) is considered the first line of antioxidant defense. During oxidative stress, it is oxidized to glutathione disulphide (GSSG). (2) A simple and quick spectrophotometric method based on sodium borohydride (NaBH4) as a reductant to measure the total and reduced GSH in porcine saliva was analytically validated and evaluated in two situations in this species: (a) in a physiological situation, involving sows during the late lactation and post-weaning periods, and (b) in a situation of sepsis in pigs experimentally induced by LPS administration. (3) The results of the analytical validation showed that the assay was precise and accurate in the porcine saliva samples. Higher total GSH and GSSG and lower reduced GSH were observed in the saliva of sows during the post-weaning period, as well as in pigs with experimentally induced sepsis. (4) In conclusion, the validated assay showed adequate analytical results and could be used to evaluate the GSH system of porcine saliva, as demonstrated during the clinical performance.
Collapse
Affiliation(s)
- Gamze Gok
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (S.N.); (O.E.)
| | - Salim Neselioglu
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (S.N.); (O.E.)
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Heng-Lun Ko
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autonoma de Barcelona, Cerdanyola del Valles, 08193 Barcelona, Spain; (H.-L.K.); (X.M.)
- Department of Animal Surgery and Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Ozcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (S.N.); (O.E.)
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | | | - Xavier Manteca
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autonoma de Barcelona, Cerdanyola del Valles, 08193 Barcelona, Spain; (H.-L.K.); (X.M.)
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autonoma de Barcelona, Cerdanyola del Valles, 08193 Barcelona, Spain; (H.-L.K.); (X.M.)
- Department of Animal Surgery and Medicine, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
15
|
Zhong Y, Gu J, Shang C, Deng J, Liu Y, Cui Z, Lu X, Qi Q. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH. BIORESOURCE TECHNOLOGY 2024; 408:131166. [PMID: 39067709 DOI: 10.1016/j.biortech.2024.131166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Succinic acid (SA) is a valuable C4 platform chemical with diverse applications. Lignocellulosic biomass represents an abundant and renewable carbon resource for microbial production of SA. However, the presence of toxic compounds in pretreated lignocellulosic hydrolysates poses challenges to cell metabolism, leading to inefficient SA production. Here, engineered Yarrowia lipolytica Hi-SA2 was shown to utilize glucose and xylose from corncob hydrolysate to produce 32.6 g/L SA in shaking flasks. The high concentration of undetoxified hydrolysates significantly inhibited yeast growth and SA biosynthesis, with furfural identified as the key inhibitor. Through overexpressing glutathione synthetase encoding gene YlGsh2, the tolerance of engineered strain to furfural and toxic hydrolysate was significantly improved. In a 5-L bioreactor, Hi-SA2-YlGsh2 strain produced 45.34 g/L SA within 32 h, with a final pH of 3.28. This study provides a sustainable process for bio-based SA production, highlighting the efficient SA synthesis from lignocellulosic biomass through low pH fermentation.
Collapse
Affiliation(s)
- Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jinhong Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Changyu Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jingyu Deng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuhang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
16
|
Martins PHR, Romo AIB, Gouveia FS, Paz IA, Nascimento NRF, Andrade AL, Rodríguez-López J, de Vasconcelos MA, Teixeira EH, Moraes CAF, Lopes LGF, Sousa EHSD. Anti-bacterial, anti-biofilm and synergistic effects of phenazine-based ruthenium(II) complexes. Dalton Trans 2024; 53:12627-12640. [PMID: 39011568 DOI: 10.1039/d4dt01033g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Antimicrobial resistance has become a global threat to human health, which is coupled with the lack of novel drugs. Metallocompounds have emerged as promising diverse scaffolds for the development of new antibiotics. Herein, we prepared some metal compounds mainly focusing on cis-[Ru(bpy)(dppz)(SO3)(NO)](PF6) (PR02, bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine), in which phenazinic and nitric oxide ligands along with sulfite conferred some key properties. This compound exhibited a redox potential for bound NO+/0 of -0.252 V (vs. Ag|AgCl) and a high pH for nitrosyl-nitro conversion of 9.16, making the nitrosyl ligand the major species. These compounds were still able to bind to DNA structures. Interestingly, reduced glutathione (GSH) was unable to promote significant NO/HNO release, an uncommon feature of many similar systems. However, this reducing agent was essential to generate superoxide radicals. Antimicrobial studies were carried out using six bacterial strains, where none or very low activity was observed for Gram-negative bacteria. However, PR02 and PR (cis-[Ru(bpy)(dppz)Cl2]) showed high antibacterial activity in some Gram-positive strains (MBC for S. aureus up to 4.9 μmol L-1), where the activity of PR02 was similar to or at least 4-fold better than that of PR. Besides, PR02 showed capacity to inhibit bacterial biofilm formation, a major health issue leading to bacterial tolerance to antibiotics. Interestingly, we also showed that PR02 can function in synergism with the known antibiotic ampicillin, improving their action up to 4-fold even against resistant strains. Altogether, these results showed that PR02 is a promising antimicrobial nitrosyl ruthenium compound combining features beyond its killing action, which deserves further biological studies.
Collapse
Affiliation(s)
- Patrícia H R Martins
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Adolfo I B Romo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Florêncio S Gouveia
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Iury A Paz
- Laboratory of Cardiovascular and Renal Physiology and Pharmacology (LAFCAR), State University of Ceará (UECE), Fortaleza, 60714-903, Brazil
| | - Nilberto R F Nascimento
- Laboratory of Cardiovascular and Renal Physiology and Pharmacology (LAFCAR), State University of Ceará (UECE), Fortaleza, 60714-903, Brazil
| | - Alexandre L Andrade
- Biomolecule Integrated Laboratory (LIBS), Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mayron A de Vasconcelos
- Faculty of Education of Itapipoca (FACEDI), State University of Ceará, Itapipoca (UECE), Ceará, 62500-000, Brazil
| | - Edson Holanda Teixeira
- Biomolecule Integrated Laboratory (LIBS), Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | | | - Luiz G F Lopes
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Eduardo Henrique Silva de Sousa
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| |
Collapse
|
17
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
18
|
Epel B, Kao JPY, Eaton SS, Eaton GR, Halpern HJ. Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance. Antioxid Redox Signal 2024; 40:850-862. [PMID: 36680741 PMCID: PMC11386996 DOI: 10.1089/ars.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status in vivo has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans. Recent Advances: Recent studies have demonstrated the feasibility of using low-frequency electron paramagnetic resonance (EPR) techniques for quantitative imaging of redox status in mammalian tissues in vivo. Rapid-scan (RS) EPR spectroscopy and imaging, new disulfide-dinitroxide spin probes, and novel analytic techniques have led to significant advances in direct, quantitative imaging of thiol redox status. Critical Issues: While novel RS EPR imaging coupled with first-generation molecular probes has demonstrated the feasibility of imaging thiol redox status in vivo, further technical advancements are desirable and ongoing. These include developing spin probes that are tailored for specific tissues with response kinetics tuned to the physiological environment. Equally critical are RS instrumentation with higher signal-to-noise ratio and minimal signal distortion, as well as optimized imaging protocols for image acquisition with sparsity adapted to image information content. Future Directions: Quantitative images of tissue glutathione promise to enable acquisition of a general image of mammalian and potentially human tissue health.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Ibrahim N, Tariq M, Anjum A, Varshney H, Gaur K, Subhan I, Jyoti S, Siddique YH. Evaluation of the toxic potential of Bisphenol-A glycidylmethacrylate (BisGMA) on the third instar larvae of transgenic Drosophila. Toxicol Res (Camb) 2024; 13:tfae026. [PMID: 38450176 PMCID: PMC10913391 DOI: 10.1093/toxres/tfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction In the present study the cytotoxic and genotoxic effects of Bisphenol-A glycidyl methacrylate (BisGMA) was studied on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Materials and methods The concentration of BisGMA i.e. 0.005, 0.010, 0.015 and 0.020 M were established in diet and the larvae were allowed to feed on it for 24 h. Results A dose dependent significant increase in the activity of β-galactosidase was observed compared to control. A significant dose dependent tissue damage was observed in the larvae exposed to 0.010, 0.015 and 0.020 M of BisGMA compared to control. A dose dependent significant increase in the Oxidative stress markers was observed compared to control. BisGMA also exhibit significant DNA damaged in the third instar larvae of transgenic D. melanogaster (hsp70-lacZ)Bg9 at the doses of 0.010, 0.015 and 0.020 M compared to control. Conclusion BisGMA at 0.010, 0.015 and 0.020 M was found to be cytotoxic for the third instar larvae of transgenic D. melanogaster (hsp70-lacZ) Bg9.
Collapse
Affiliation(s)
- Nabeela Ibrahim
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohammad Tariq
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Arbab Anjum
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Ziauddin Ahmed Dental College Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Himanshi Varshney
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Kajal Gaur
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Smita Jyoti
- Department of Zoology, School of Sciences, IFTM University, Moradabad, UP, 244102, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
22
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
23
|
Mazepa E, Furlanetto ALDDM, Brum H, Nakao LS, Martinez PA, Cadena SMSC, Rocha MEM, Cunha ES, Martinez GR. Effects of redox modulation on quiescin/sulfhydryl oxidase activity of melanoma cells. Mol Cell Biochem 2024; 479:511-524. [PMID: 37103678 DOI: 10.1007/s11010-023-04745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Secreted quiescin/sulfhydryl oxidase (QSOX) is overexpressed in many tumor cell lines, including melanoma, and is usually associated with a pro-invasive phenotype. Our previous work described that B16-F10 cells enter in a quiescent state as a protective mechanism against damage generated by reactive oxygen species (ROS) during melanogenesis stimulation. Our present results show that QSOX activity was two-fold higher in cells with stimulated melanogenesis when compared to control cells. Considering that glutathione (GSH) is one of the main factor responsible for controlling redox homeostasis in cells, this work also aimed to investigate the relationship between QSOX activity, GSH levels and melanogenesis stimulation in B16-F10 murine melanoma cell line. The redox homeostasis was impaired by treating cells with GSH in excess or depleting its intracellular levels through BSO treatment. Interestingly, GSH-depleted cells without stimulation of melanogenesis kept high levels of viability, suggesting a possible adaptive mechanism of survival even under low GSH levels. They also showed lower extracellular activity of QSOX, and higher QSOX intracellular immunostaining, suggesting that this enzyme was less excreted from cells and corroborating with a diminished extracellular QSOX activity. On the other hand, cells under melanogenesis stimulation showed a lower GSH/GSSG ratio (8:1) in comparison with control (non-stimulated) cells (20:1), indicating a pro-oxidative state after stimulation. This was accompanied by decreased cell viability after GSH-depletion, no alterations in QSOX extracellular activity, but higher QSOX nucleic immunostaining. We suggest that melanogenesis stimulation and redox impairment caused by GSH-depletion enhanced the oxidative stress in these cells, contributing to additional alterations of its metabolic adaptive response.
Collapse
Affiliation(s)
- Ester Mazepa
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | | | - Hulyana Brum
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | | | | | | | - Maria Eliane Merlin Rocha
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | - Elizabeth Sousa Cunha
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | - Glaucia Regina Martinez
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil.
| |
Collapse
|
24
|
Zhang G, Chu M, Wang S, Feng P, Shi J, Li H, Li X, Pan Z. Integration of multi-omics reveals the important role of the BBS10 gene in reproduction. J Anim Sci 2024; 102:skae273. [PMID: 39315571 PMCID: PMC11495222 DOI: 10.1093/jas/skae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Blood samples are easily obtained from sheep. Therefore, blood analysis can be a convenient method for evaluating reproductive traits in sheep by detecting genetic and metabolic changes in the ovary. By combining 167 RNA sequencing data and 60 untargeted metabolomics data, this study analyzed the relationship between genes and metabolites in the ovary and blood. The conjoint KEGG enrichment analysis enriched glutathione (GSH) metabolic pathways both in the ovary and blood. This finding provides an explanation for possible GSH metabolic processes in the ovary with metabolite exchange in the blood. The metabolite-gene-disease interaction network revealed a correlation between the expression of certain Bardet-Biedl syndrome (BBS) family genes in the ovary and blood. This indicates that BBS family genes, such as BBS10 in sheep blood, could be a potential biomarker for BBS. We investigated the relationship between BBS10 gene expression in the ovary and lambing numbers using whole-genome sequencing data from 450 ewes. Our findings suggest that g.112314188C>G may lead to decreased litter size in ewes carrying the FecB gene. These single nucleotide polymorphisms could be potential molecular markers for breeding sheep.
Collapse
Affiliation(s)
- Guoqing Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pingjie Feng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianxin Shi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Hao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xinyue Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zhangyuan Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
25
|
Szyller J, Antoniak R, Wadowska K, Bil-Lula I, Hrymniak B, Banasiak W, Jagielski D. Redox imbalance in patients with heart failure and ICD/CRT-D intervention. Can it be an underappreciated and overlooked arrhythmogenic factor? A first preliminary clinical study. Front Physiol 2023; 14:1289587. [PMID: 38028798 PMCID: PMC10663344 DOI: 10.3389/fphys.2023.1289587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Redox imbalance and oxidative stress are involved in the pathogenesis of arrhythmias. They also play a significant role in pathogenesis of heart failure (HF). In patients with HFand implanted cardioverter-defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D), the direct current shocks may be responsible for additional redox disturbances and additionally increase arrhythmia risk. However, the precise role of oxidative stress in potentially fatal arrhythmias and shock induction remains unclear. Methods: 36 patients with diagnosed HF and implanted ICD/CRT-D were included in this study. Patients were qualified to the study group in case of registered ventricular arrhythmia and adequate ICD/CRT-D intervention. The control group consisted of patients without arrhythmia with elective replacement indicator (ERI) status. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) in erythrocyte (RBC), SOD, GPx activity and reactive oxygen/nitrogen species (ROS/RNS) concentration in plasma were determined. The values were correlated with glucose, TSH, uric acid, Mg and ion concentrations. Results: In the perishock period, we found a significant decrease in RBC and extracellular (EC) SOD and RBC CAT activity (p = 0.0110, p = 0.0055 and p = 0.0002, respectively). EC GPx activity was also lower (p = 0.0313). In all patients, a decrease in the concentration of all forms of glutathione was observed compared to the ERI group. Important association between ROS/RNS and GSH, Mg, TSH and uric acid was shown. A relationship between the activity of GSH and antioxidant enzymes was found. Furthermore, an association between oxidative stress and ionic imbalance has also been demonstrated. The patients had an unchanged de Haan antioxidant ratio and glutathione redox potential. Conclusion: Here we show significant redox disturbances in patients with HF and ICD/CRT-D interventions. Oxidative stress may be an additional risk factor for the development of arrhythmia in patients with HF. The detailed role of oxidative stress in ventricular arrhythmias requires further research already undertaken by our team.
Collapse
Affiliation(s)
- Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Radosław Antoniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Katarzyna Wadowska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bruno Hrymniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Dariusz Jagielski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
26
|
Wang J, Abbas M, Huang Y, Wang J, Li Y. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs. Commun Chem 2023; 6:243. [PMID: 37935871 PMCID: PMC10630460 DOI: 10.1038/s42004-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Proteinous drugs are highly promising therapeutics to treat various diseases. However, they suffer from limited circulation times and severe off-target side effects. Inspired by active membraneless organelles capable of dynamic recruitment and releasing of specific proteins, here, we present the design of coacervates as therapeutic protocells, made from small metabolites (anionic molecules) and simple arginine-rich peptides (cationic motif) through liquid-liquid phase separation. These complex coacervates demonstrate that their assembly and disassembly can be regulated by redox chemistry, which helps to control the release of the therapeutic protein. A model proteinous drugs, tissue plasminogen activator (tPA), can rapidly compartmentalize inside the complex coacervates, and the coacervates formed from peptides conjugated with arginine-glycine-aspartic acid (RGD) motif (a fibrinogen-derived peptide sequence), show selective binding to the thrombus site and thus enhance on-target efficacy of tPA. Furthermore, the burst release of tPA can be controlled by the redox-induced dissolution of the coacervates. Our proof-of-principle complex coacervate system provides insights into the sequestration and release of proteinous drugs from advanced drug delivery systems and represents a step toward the construction of synthetic therapeutic protocells for biomedical applications.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
27
|
Khan S, Rehman MU, Khan MZI, Kousar R, Muhammad K, Haq IU, Ijaz Khan M, Almasoud N, Alomar TS, Rauf A. In vitro and in vivo antioxidant therapeutic evaluation of phytochemicals from different parts of Dodonaea viscosa Jacq. Front Chem 2023; 11:1268949. [PMID: 38025066 PMCID: PMC10662045 DOI: 10.3389/fchem.2023.1268949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Natural antioxidants are vital to promote health and treat critical disease conditions in the modern healthcare system. This work adds to the index of natural medicines by exploring the antioxidant potential of Dodonaea viscosa Jacq. (Plant-DV). Material and Methods: The aqueous extract of leaves and flower-containing seeds from plant-DV in freshly prepared phosphate buffer is evaluated for antioxidant potential. In vitro antioxidant potential of the nascent and oxidatively stressed extracts was analyzed through glutathione (GSH) assay, hydrogen peroxide (H2O2) scavenging effect, glutathione-S-transferase (GST) assay, and catalase (CAT) activity. In vivo therapeutic assessment is performed in Wistar Albino rats using vitamin C as a positive control. The livers and kidneys of individual animals are probed for glutathione, glutathione-S-transferase, and catalase activities. Results: flower-containing seeds have GSH contents (59.61 µM) and leaves (32.87 µM) in the fresh aqueous extracts. The hydrogen peroxide scavenging effect of leaves is superior to flower-containing seeds with 17.25% and 14.18% respectively after 30 min incubation. However, oxidatively stressed extracts with Ag(I) and Hg(II) show declining GSH and GST levels. The plant extracts are non-toxic in rats at 5000 mg/Kg body weight. Liver and kidneys homogenate reveal an increase in GSH, GST, and CAT levels after treatment with 150 ± 2 mg/kg and 300 ± 2 mg/kg body weight plant extract compared with normal saline-treated negative and vitamin C treated positive control. Discussion: The crude aqueous extracts of leaves and flower-containing seeds of plant-DV show promising antioxidant potential both in in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, Pakistan
| | | | - Rehana Kousar
- Physiology Lab, Crop Sciences Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Khan Muhammad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Najla Almasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
29
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Blanchard R, Adjei I. Engineering the glioblastoma microenvironment with bioactive nanoparticles for effective immunotherapy. RSC Adv 2023; 13:31411-31425. [PMID: 37901257 PMCID: PMC10603567 DOI: 10.1039/d3ra01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
While immunotherapies have revolutionized treatment for other cancers, glioblastoma multiforme (GBM) patients have not shown similar positive responses. The limited response to immunotherapies is partly due to the unique challenges associated with the GBM tumor microenvironment (TME), which promotes resistance to immunotherapies, causing many promising therapies to fail. There is, therefore, an urgent need to develop strategies that make the TME immune permissive to promote treatment efficacy. Bioactive nano-delivery systems, in which the nanoparticle, due to its chemical composition, provides the pharmacological function, have recently emerged as an encouraging option for enhancing the efficacy of immunotherapeutics. These systems are designed to overcome immunosuppressive mechanisms in the TME to improve the efficacy of a therapy. This review will discuss different aspects of the TME and how they impede therapy success. Then, we will summarize recent developments in TME-modifying nanotherapeutics and the in vitro models utilized to facilitate these advances.
Collapse
Affiliation(s)
- Ryan Blanchard
- Department of Biomedical Engineering, Texas A&M University TX USA
| | - Isaac Adjei
- Department of Biomedical Engineering, Texas A&M University TX USA
| |
Collapse
|
31
|
Walton CM, Saito ER, Warren CE, Larsen JG, Remund NP, Reynolds PR, Hansen JM, Bikman BT. Yerba Maté ( Ilex paraguariensis) Supplement Exerts Beneficial, Tissue-Specific Effects on Mitochondrial Efficiency and Redox Status in Healthy Adult Mice. Nutrients 2023; 15:4454. [PMID: 37892529 PMCID: PMC10609848 DOI: 10.3390/nu15204454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Yerba maté, a herbal tea derived from Ilex paraguariensis, has previously been reported to be protective against obesity-related and other cardiometabolic disorders. Using high-resolution respirometry and reverse-phase high-performance liquid chromatography, the effects of four weeks of yerba maté consumption on mitochondrial efficiency and cellular redox status in skeletal muscle, adipose, and liver, tissues highly relevant to whole-body metabolism, were explored in healthy adult mice. Yerba maté treatment increased the mitochondrial oxygen consumption in adipose but not in the other examined tissues. Yerba maté increased the ATP concentration in skeletal muscle and decreased the ATP concentration in adipose. Combined with the observed changes in oxygen consumption, these data yielded a significantly higher ATP:O2, a measure of mitochondrial efficiency, in muscle and a significantly lower ATP:O2 in adipose, which was consistent with yerba maté-induced weight loss. Yerba maté treatment also altered the hepatic glutathione (GSH)/glutathione disulfide (GSSG) redox potential to a more reduced redox state, suggesting the treatment's potential protective effects against oxidative stress and for the preservation of cellular function. Together, these data indicate the beneficial, tissue-specific effects of yerba maté supplementation on mitochondrial bioenergetics and redox states in healthy mice that are protective against obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
32
|
Ni X, Zhou H, Liu Y, Zhan J, Meng Q, Song H, Yi X. Toxic effects of tire wear particles and the leachate on the Chinese mitten crab (Eriocheir sinensis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122354. [PMID: 37567401 DOI: 10.1016/j.envpol.2023.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Tire wear particles (TWPs) were considered as an important component of microplastic pollution in the aquatic environment. To understand the ecotoxicity of TWPs to crustacean, this study investigated toxic effects of TWPs and the leachate on the mitten crab Eriocheir sinensis and the accumulation of TWPs in the crabs. Although TWPs could be accumulated in various tissues (i.e., liver, gills and gut) of the crabs, exposure to TWPs or the leachate had no lethal effect on the crabs in this study. Lower concentrations of TWPs and the leachate exposure could stimulate the antioxidant defense system of the crabs, while higher concentrations could disrupt the stress defense system. In addition, the energy supply and metabolism of the crabs could also be affected by TWPs or the leachate. The transcriptomic profiles showed that the toxic mechanisms of TWPs and the leachate were not exactly the same. Similar to the results of biochemical analysis, several Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to oxidative stress and energy metabolism were significantly regulated by both TWPs and the leachate. However, TWPs could affect the expression of genes enriched in immune-related pathways, while the leachate regulated the enrichment of some other signaling pathways including FoxO signaling pathway, insulin signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, PPAR signaling pathway and neuroactive ligand-receptor interaction. Overall, our study could provide basic biological information for assessing the ecological risk of the TWP pollution in the aquatic environment and was useful to understand the potential toxic mechanisms of the TWPs and the leachate to crustaceans.
Collapse
Affiliation(s)
- Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Qian Meng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hongyu Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China.
| |
Collapse
|
33
|
Lopez-Blazquez C, Lacalle-Gonzalez C, Sanz-Criado L, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Iron-Dependent Cell Death: A New Treatment Approach against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:14979. [PMID: 37834426 PMCID: PMC10573128 DOI: 10.3390/ijms241914979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating tumor type where a very high proportion of people diagnosed end up dying from cancer. Surgical resection is an option for only about 20% of patients, where the 5-year survival increase ranges from 10 to 25%. In addition to surgical resection, there are adjuvant chemotherapy schemes, such as FOLFIRINOX (a mix of Irinotecan, oxaliplatin, 5-Fluorouraci and leucovorin) or gemcitabine-based treatment. These last two drugs have been compared in the NAPOLI-3 clinical trial, and the NALIRIFOX arm was found to have a higher overall survival (OS) (11.1 months vs. 9.2 months). Despite these exciting improvements, PDAC still has no effective treatment. An interesting approach would be to drive ferroptosis in PDAC cells. A non-apoptotic reactive oxygen species (ROS)-dependent cell death, ferroptosis was first described by Dixon et al. in 2012. ROS are constantly produced in the tumor cell due to high cell metabolism, which is even higher when exposed to chemotherapy. Tumor cells have detoxifying mechanisms, such as Mn-SOD or the GSH-GPX system. However, when a threshold of ROS is exceeded in the tumor cell, the cell's antioxidant systems are overwhelmed, resulting in lipid peroxidation and, ultimately, ferroptosis. In this review, we point out ferroptosis as an approach to consider in PDAC and propose that altering the cellular ROS balance by combining oxidizing agents or with inhibitors of the main cellular detoxifiers triggers ferroptosis in PDAC.
Collapse
Affiliation(s)
- Carlos Lopez-Blazquez
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Carlos Lacalle-Gonzalez
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Lara Sanz-Criado
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
| | - Jesus Garcia-Foncillas
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundación Jimenéz Diaz, Fundación Jimenéz Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), 28040 Madrid, Spain; (C.L.-B.); (L.S.-C.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
34
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 651] [Impact Index Per Article: 325.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
35
|
Jarrell ZR, Liu KH, Dennis KK, Hu X, Martin GS, Jones DP, Go Y. Discovery of phytochelatins in human urine: Evidence for function in selenium disposition and protection against cadmium. FASEB Bioadv 2023; 5:367-375. [PMID: 37674541 PMCID: PMC10478506 DOI: 10.1096/fba.2023-00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
This report identifies, for the first time, a phytochelatin compound, phytochelatin 2 [γ-E-C-γ-E-C-G], and related metabolites in human urine. Phytochelatins are metal-binding peptides produced by plants. They are present in nearly all human diets, due to their ubiquity in plants. The urinary concentration of phytochelatin 2 among 143 adults was in the low micromolar range, and phytochelatin 2 and its metabolites had differential correlations with urinary selenium and toxic metals. Activities of ingested phytochelatins are largely undescribed. Observed urinary metal interactions were investigated further in cell and animal models. Selenite reacted with phytochelatin to form a phytochelatin selenotrisulfide, and the preformed selenotrisulfide showed increased selenium uptake by renal proximal tubule cells. In vivo studies further showed that oral phytochelatin increased renal selenium content and decreased lung cadmium in mice. Presence of phytochelatin in human urine combined with its function in selenium and heavy metal distribution present a new route by which diet may influence metal disposition and bioavailability.
Collapse
Affiliation(s)
- Zachery R. Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ken H. Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Kristine K. Dennis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Greg S. Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Young‐Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
36
|
Wallis TJM, Minnion M, Freeman A, Bates A, Otto JM, Wootton SA, Fletcher SV, Grocott MPW, Feelisch M, Jones MG, Jack S. Individualised Exercise Training Enhances Antioxidant Buffering Capacity in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1645. [PMID: 37627640 PMCID: PMC10451244 DOI: 10.3390/antiox12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Exercise training is recommended for patients with idiopathic pulmonary fibrosis (IPF); however, the mechanism(s) underlying its physiological benefits remain unclear. We investigated the effects of an individualised aerobic interval training programme on exercise capacity and redox status in IPF patients. IPF patients were recruited prospectively to an 8-week, twice-weekly cardiopulmonary exercise test (CPET)-derived structured responsive exercise training programme (SRETP). Systemic redox status was assessed pre- and post-CPET at baseline and following SRETP completion. An age- and sex-matched non-IPF control cohort was recruited for baseline comparison only. At baseline, IPF patients (n = 15) had evidence of increased oxidative stress compared with the controls as judged by; the plasma reduced/oxidised glutathione ratio (median, control 1856 vs. IPF 736 p = 0.046). Eleven IPF patients completed the SRETP (median adherence 88%). Following SRETP completion, there was a significant improvement in exercise capacity assessed via the constant work-rate endurance time (+82%, p = 0.003). This was accompanied by an improvement in post-exercise redox status (in favour of antioxidants) assessed via serum total free thiols (median increase, +0.26 μmol/g protein p = 0.005) and total glutathione concentration (+0.73 μM p = 0.03), as well as a decrease in post-exercise lipid peroxidation products (-1.20 μM p = 0.02). Following SRETP completion, post-exercise circulating nitrite concentrations were significantly lower compared with baseline (-0.39 μM p = 0.04), suggestive of exercise-induced nitrite utilisation. The SRETP increased both endurance time and systemic antioxidant capacity in IPF patients. The observed reduction in nitrite concentrations provides a mechanistic rationale to investigate nitrite/nitrate supplementation in IPF patients.
Collapse
Affiliation(s)
- Tim J. M. Wallis
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Magdalena Minnion
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Anna Freeman
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Andrew Bates
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - James M. Otto
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Stephen A. Wootton
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- NIHR Southampton Biomedical Research Centre, Nutrition and Metabolism, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Sophie V. Fletcher
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Michael P. W. Grocott
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Mark G. Jones
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sandy Jack
- NIHR Southampton Biomedical Research Centre, Respiratory and Critical Care, University Hospital Southampton, Southampton SO16 6YD, UK; (M.M.); (A.F.); (A.B.); (J.M.O.); (S.V.F.); (M.P.W.G.); (M.F.); (M.G.J.); (S.J.)
- Academic School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- Department of Critical Care and Anaesthesia, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
37
|
Carey ME, Rando J, Melnyk S, James SJ, Snyder N, Salafia C, Croen LA, Fallin MD, Hertz-Picciotto I, Volk H, Newschaffer C, Lyall K. Examining associations between prenatal biomarkers of oxidative stress and ASD-related outcomes using quantile regression. J Autism Dev Disord 2023; 53:2975-2985. [PMID: 35678944 PMCID: PMC9732143 DOI: 10.1007/s10803-022-05625-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
We examined associations between prenatal oxidative stress (OS) and child autism-related outcomes. Women with an autistic child were followed through a subsequent pregnancy and that younger sibling's childhood. Associations between glutathione (GSH), glutathione disulfide (GSSG), 8-oxo-deoxyguanine (8-OHdG), and nitrotyrosine and younger sibling Social Responsiveness Scale (SRS) scores were examined using quantile regression. Increasing GSH:GSSG (suggesting decreasing OS) was associated with minor increases in SRS scores (50th percentile β: 1.78, 95% CI: 0.67, 3.06); no other associations were observed. Results from this cohort with increased risk for autism do not support a strong relationship between OS in late pregnancy and autism-related outcomes. Results may be specific to those with enriched autism risk; future work should consider other timepoints and biomarkers.
Collapse
Affiliation(s)
- Meghan E Carey
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States.
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| | - Stepan Melnyk
- Arkansas Children's Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - S Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Nathaniel Snyder
- Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA, 19140, United States
| | - Carolyn Salafia
- Department of Pathology, New York Methodist Hospital, 506 6th St, Brooklyn, NY, 11215, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, United States
| | - M Daniele Fallin
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, 1 Shields Ave, Davis, CA, 95616, United States
| | - Heather Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, United States
| | - Craig Newschaffer
- College of Health and Human Development, The Pennsylvania State University, 325 Health and Human Development Building, University Park, State College, PA, 16802, United States
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| |
Collapse
|
38
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
39
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
40
|
Kenari F, Molnár S, Borges ID, Napolitano HB, Perjési P. ( E)-2-Benzylidenecyclanones: Part XVIII Study the Possible Link between Glutathione Reactivity and Cancer Cell Cytotoxic Effects of Some Cyclic Chalcone Analogs A Comparison of the Reactivity of the Open-Chain and the Seven-Membered Homologs. Int J Mol Sci 2023; 24:ijms24108557. [PMID: 37239911 DOI: 10.3390/ijms24108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4'-methyl- and 4'-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds.
Collapse
Affiliation(s)
- Fatemeh Kenari
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Szilárd Molnár
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
- Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary
| | - Igor D Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75070-290, GO, Brazil
| | - Hamilton B Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75070-290, GO, Brazil
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75070-290, GO, Brazil
| |
Collapse
|
41
|
Manna I, Bandyopadhyay M. The impact of engineered nickel oxide nanoparticles on ascorbate glutathione cycle in Allium cepa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:663-678. [PMID: 37363417 PMCID: PMC10284763 DOI: 10.1007/s12298-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01314-8.
Collapse
Affiliation(s)
- Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
42
|
Hu YY, Xiao S, Wang B, Xie RH, Cai YX, Wang JH. Transepithelial transport and cytoprotection of novel antioxidant peptides isolated from simulated gastrointestinal digestion of Xuanwei ham. Food Funct 2023; 14:3552-3563. [PMID: 36945861 DOI: 10.1039/d2fo03614b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
As a traditional fermented meat product, dry-cured Xuanwei ham could be a rich source of bioactive peptides. This study intended to investigate the transepithelial transport and cytoprotection of antioxidant peptides isolated from simulated gastrointestinal digestion of Xuanwei ham. Through ultrafiltration and gel filtration chromatography after simulated digestion, five new antioxidative cell-penetrating peptides (CPPs) with 16-27 amino acid residues were identified, and protective effects of the pretreatment with GHYTEGAELVDSVLDVVRK (GK-19) and TDEFQLHTNVNDGTEFGGSIYQK (TK-23) on H2O2-induced damaged HepG2 cells were investigated. The results showed that the peptide TK-23 at 0.5 mg mL-1 showed a good antioxidant activity through upregulating the activity of antioxidant enzymes (CAT, SOD and GR) and decreasing the MDA level in H2O2-induced damaged HepG2 cells with a better protective effect compared to GSH. Our observations of novel antioxidant CPPs with 16-27 amino acid residues could enrich the antioxidative CPP database, and these findings could provide data support for further study of CPPs.
Collapse
Affiliation(s)
- Yao-Yao Hu
- College of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Shan Xiao
- College of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Rui-Hong Xie
- College of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Yan-Xue Cai
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Ji-Hui Wang
- College of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
43
|
Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev 2023; 211:111797. [PMID: 36868323 DOI: 10.1016/j.mad.2023.111797] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Sexual dimorphism is a key factor to consider in the ageing process given the impact that it has on life expectancy. The oxidative-inflammatory theory of ageing states that the ageing process is the result of the establishment of oxidative stress which, due to the interplay of the immune system, translates into inflammatory stress, and that both processes are responsible for the damage and loss of function of an organism. We show that there are relevant gender differences in a number of oxidative and inflammatory markers and propose that they may account for the differential lifespan between sexes, given that males display, in general, higher oxidation and basal inflammation. In addition, we explain the significant role of circulating cell-free DNA as a marker of oxidative damage and an inductor of inflammation, connecting both processes and having the potential to become a useful ageing marker. Finally, we discuss how oxidative and inflammatory changes take place differentially with ageing in each sex, which could also have an impact on the sex-differential lifespan. Further research including sex as an essential variable is needed to understand the grounds of sex differences in ageing and to better comprehend ageing itself.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Gemma Valera
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
44
|
Fan Z, Bian Z, Huang H, Liu T, Ren R, Chen X, Zhang X, Wang Y, Deng B, Zhang L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants (Basel) 2023; 12:545. [PMID: 36978793 PMCID: PMC10045725 DOI: 10.3390/antiox12030545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
A variety of physical, emotional, and mental factors can induce a stress response in pet dogs and cats. During this process, hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics) on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future studies in the field of pet food and nutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baichuan Deng
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingna Zhang
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
46
|
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023; 28:molecules28031447. [PMID: 36771108 PMCID: PMC9919958 DOI: 10.3390/molecules28031447] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, 040 11 Košice, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, 7600 Pécs, Hungary
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| |
Collapse
|
47
|
Liang Q, Zhang Y, Zhang H, Wu S, Gong W, Perrett S. Reversible Redox-Dependent Conformational Switch of the C-Terminal α-Helical Lid of Human Hsp70 Observed by In-Cell NMR. ACS Chem Biol 2023; 18:176-183. [PMID: 36524733 DOI: 10.1021/acschembio.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathionylation of human stress-inducible Hsp70 (hHsp70) under oxidative stress conditions has been suggested to act as an on/off switch of hHsp70 chaperone activity and thus transfer redox signals to hHsp70 clients through a change in conformation. The mechanism of this switch involves unfolding of the C-terminal α-helical lid, SBDα, upon glutathionylation, which then binds to and blocks the hHsp70 substrate-binding site. This process is reversible and redox-regulated and has been demonstrated for purified protein in solution. Here, we found that this redox-regulated reversible process also occurs in the cellular environment. Using Escherichia coli as a model system, in-cell NMR data clearly indicate that hHsp70 SBDα undergoes a conformational transition from ordered to disordered after diamide stimulation. The disordered SBDα could spontaneously recover back to the helix bundle conformation over time. This oxidative-stress induced process also occurred in cell lysate, with a similar unfolding rate as in cells, but the refolding rate was significantly slower in cell lysate. Increased temperature accelerates this process. Under heat stress alone, unfolding of the SBDα could not be detected in cells. Our in-cell NMR results provide direct support for the molecular switch model of hHsp70 redox regulation and also demonstrate the power of in-cell NMR for real-time study of protein structures during biological processes in living cells.
Collapse
Affiliation(s)
- Qihui Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
48
|
Yuan J, Huang X, Gu J, Yuan Y, Liu Z, Zou H, Bian J. Honokiol reduces cadmium-induced oxidative injury and endosomal/lysosomal vacuolation via protecting mitochondrial function in quail (Coturnix japonica) liver tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159626. [PMID: 36280083 DOI: 10.1016/j.scitotenv.2022.159626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) pollution in environment is toxic to birds. This study aimed to assess antagonistic effect of honokiol (HNK) on Cd-induced quail (Coturnix japonica) liver tissue damage and Cd-induced vacuolation in hepatocytes. We found that HNK alleviated Cd-induced liver pathological damage marked by elevated serum liver biochemical indicators, disordered antioxidant levels and trace elements in quails. HNK reduced Cd-induced liver cell apoptosis as assessed by western blotting and TUNEL staining. The ultrastructure of hepatocytes under transmission electron microscope revealed that Cd induced mitochondrial damage in addition to abnormal enlargement and increased vacuolar structure of cells. Mitochondrial damage and vacuolization were reduced in the HNK + Cd group. Cd induced an increase in the levels of endosomal/lysosomal-related genes, while HNK treatment reversed this effect. Finally, we demonstrated that vacuolation in buffalo rat liver 3A (BRL 3A) cells occurred primarily due to Cd-induced oxidative stress damage that reduces mitochondrial ATP content and indirectly led to dysfunction of ATP-dependent lipid kinase PIKfyve complex. In summary, we are the first to report that Cd induces abnormal enlargement of endosome/lysosomes in quail liver cells and HNK alleviated this phenomenon by reducing mitochondrial damage and increasing intracellular ATP level. This study demonstrated the toxic effect of Cd pollution on birds and how HNK mitigated these effect at the cellular level. Overall, more research on Cd pollution and HNK use in animal husbandry is warranted.
Collapse
Affiliation(s)
- Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaoqian Huang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
49
|
Porato M, Noël S, Pincemail J, Albert A, Cheramy-Bien JP, Le Goff C, Hamaide A. Selected biomarkers of oxidative stress in healthy Beagle dogs: A preliminary study. Front Vet Sci 2023; 10:1063216. [PMID: 37035819 PMCID: PMC10080027 DOI: 10.3389/fvets.2023.1063216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction While oxidative stress has been studied in pathologic conditions in dogs, data in presumably healthy dogs and standardized protocols are lacking. This work purposed to bridge the gap by presenting provisional physiological ranges for oxidative stress biomarkers in a group of Beagle dogs. Methods Based on our long-standing clinical expertise in the field of oxidative stress, nine plasma biomarkers of oxidative stress were evaluated for their concentrations (mean ± SD) in 14 healthy adult Beagle dogs. Results Selected biomarkers were: vitamins C (7.90 ± 1.36 μg/mL) and E (34.1 ± 6.63 μg/mL), zinc (0.80 ± 0.17 mg/L), copper (0.54 ± 0.048 mg/L), selenium (256 ± 25.7 μg/L), total and oxidized glutathione (822 ± 108 μM and 3.56 ± 1.76 μM), myeloperoxidase (67.4 ± 56.2 ng/mL), and isoprostanes (340 ± 95.3 ng/mL). Glutathione peroxidase activity and superoxide anion production in whole blood were also measured. Glutathione peroxidase activity was 473 ± 34.0 IU/g of hemoglobin and superoxide anion production in whole blood was 18,930 ± 12,742 counts per 30 min. Reduced glutathione/oxidized glutathione and copper/zinc ratios were, respectively, 280 ± 139 and 0.70 ± 0.15. Sex-related differences were recorded for zinc (p = 0.0081), copper/zinc ratio (p = 0.0036) and plasma isoprostanes (p = 0.0045). Conclusion Provisional physiological norms covering 95% of our group were proposed for each biomarker and should be of interest for future studies of canine oxidative stress.
Collapse
Affiliation(s)
- Mathilde Porato
- Clinical Department of Companion Animals, School of Veterinary Medicine, University of Liège, Liège, Belgium
- *Correspondence: Mathilde Porato
| | - Stéphanie Noël
- Clinical Department of Companion Animals, School of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joël Pincemail
- Departments of Cardiovascular Surgery and Clinical Chemistry, University Hospital, Boulevard de l'Hôpital, Liège, Belgium
| | - Adelin Albert
- Biostatistics, University Hospital, Boulevard de l'Hôpital, Liège, Belgium
| | - Jean-Paul Cheramy-Bien
- Departments of Cardiovascular Surgery and Clinical Chemistry, University Hospital, Boulevard de l'Hôpital, Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University Hospital, Boulevard de l'Hôpital, Liège, Belgium
| | - Annick Hamaide
- Clinical Department of Companion Animals, School of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
50
|
Kumar RA, Hahn D, Kelley RC, Muscato DR, Shamoun A, Curbelo-Bermudez N, Butler WG, Yegorova S, Ryan TE, Ferreira LF. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction. Free Radic Biol Med 2023; 194:23-32. [PMID: 36436728 PMCID: PMC10191720 DOI: 10.1016/j.freeradbiomed.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.
Collapse
Affiliation(s)
- Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Endocrine Society, Washington, D.C, USA
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Alex Shamoun
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - W Greyson Butler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|