1
|
Alosco ML, Mejía Pérez J, Culhane JE, Shankar R, Nowinski CJ, Bureau S, Mundada N, Smith K, Amuiri A, Asken B, Groh JR, Miner A, Pettway E, Mosaheb S, Tripodis Y, Windon C, Mercier G, Stern RA, Grinberg LT, Soleimani-Meigooni DN, Christian BT, Betthauser TJ, Stein TD, McKee AC, Mathis CA, Abrahamson EE, Ikonomovic MD, Johnson SC, Mez J, La Joie R, Schonhaut D, Rabinovici GD. 18F-MK-6240 tau PET in patients at-risk for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:23. [PMID: 39994806 PMCID: PMC11852567 DOI: 10.1186/s13024-025-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Molecular biomarkers of chronic traumatic encephalopathy (CTE) are lacking. We evaluated 18F-MK-6240 tau PET as a biomarker for CTE. Two studies were done: (1) 3H-MK-6240 autoradiography and an in-vitro brain homogenate binding studies on postmortem CTE tissue, (2) an in-vivo 18F-MK-6240 tau PET study in former American football players. METHODS Autoradiography and in-vitro binding studies were done using 3H-MK-6240 on frozen temporal and frontal cortex tissue from six autopsy cases with stage III CTE compared to Alzheimer's disease. Thirty male former National Football League (NFL) players with cognitive concerns (mean age = 58.9, SD = 7.8) completed tau (18F-MK-6240) and Aβ (18F-Florbetapir) PET. Controls included 39 Aβ-PET negative, cognitively normal males (mean age = 65.7, SD = 6.3). 18F-MK-6240 SUVr images were created using 70-90 min post-injection data with inferior cerebellar gray matter as the reference. We compared SUVr between players and controls using voxelwise and region-of-interest approaches. Correlations between 18F-MK-6240 SUVr and cognitive scores were tested. RESULTS All six CTE stage III cases had Braak NFT stage III but no neuritic plaques. Two had Thal Phase 1 for Aβ; one showed a laminar pattern of 3H-MK-6240 autoradiography binding in the superior temporal cortex and less so in the dorsolateral frontal cortex, corresponding to tau-immunoreactive lesions detected using the AT8 antibody (pSer202/pThr205 tau) in adjacent tissue sections. The other CTE cases had low frequencies of cortical tau-immunoreactive deposits and no well-defined autoradiography binding. In-vitro 3H-MK-6240 binding studies to CTE brain homogenates in the case with autoradiography signal indicated high binding affinity (KD = 2.0 ± 0.9 nM, Bmax = 97 ± 24 nM, n = 3). All NFL players had negative Aβ-PET. There was variable, low-to-intermediate intensity 18F-MK-6240 uptake across participants: 16 had no cortical signal, 7 had medial temporal lobe (MTL) uptake, 2 had frontal uptake, and 4 had MTL and frontal uptake. NFL players had higher SUVr in the entorhinal cortex (d = 0.86, p = 0.001), and the parahippocampal gyrus (d = 0.39, p = 0.08). Voxelwise regressions showed increased uptake in NFL players in two bilateral anterior MTL clusters (p < 0.05 FWE). Higher parahippocampal and frontal-temporal SUVrs correlated with worse memory (r = -0.38, r = -0.40) and semantic fluency (r = -0.38, r = -0.48), respectively. CONCLUSION We present evidence of 3H-MK-6240 in-vitro binding to post-mortem CTE tissue homogenates and in vivo 18F-MK-6240 PET binding in the MTL among a subset of participants. Additional studies in larger samples and PET-to-autopsy correlations are required to further elucidate the potential of 18F-MK-6240 to detect tau pathology in CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston Medical Center, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jhony Mejía Pérez
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Julia E Culhane
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ranjani Shankar
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Nidhi Mundada
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Karen Smith
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Alinda Amuiri
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Breton Asken
- Department of Clinical & Health Psychology, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jenna R Groh
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Annalise Miner
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Erika Pettway
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sydney Mosaheb
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles Windon
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Mercier
- Molecular Imaging and Nuclear Medicine, Boston Medical Center, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lea T Grinberg
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David N Soleimani-Meigooni
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S.Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychiatry and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S.Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychiatry and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
- School of Medicine and Public Health, Wisconsin Alzheimer's Institute, University of Wisconsin-Madison, Madison, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Renaud La Joie
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Schonhaut
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
- University of California, San Francisco (UCSF), Memory and Aging Center MC: 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Islam T, Hill E, Abrahamson EE, Servaes S, Smirnov DS, Zeng X, Sehrawat A, Chen Y, Kac PR, Kvartsberg H, Olsson M, Sjons E, Gonzalez-Ortiz F, Therriault J, Tissot C, Del Popolo I, Rahmouni N, Richardson A, Mitchell V, Zetterberg H, Pascoal TA, Lashley T, Wall MJ, Galasko D, Rosa-Neto P, Ikonomovic MD, Blennow K, Karikari TK. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer's disease. Nat Med 2025; 31:574-588. [PMID: 39930142 PMCID: PMC11835754 DOI: 10.1038/s41591-024-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/02/2024] [Indexed: 02/20/2025]
Abstract
Patients with Alzheimer's disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. We show that Tris-buffered saline-soluble tau aggregates from autopsy-verified AD brain tissues include the core sequence ~tau258-368. In neuropathological assessments, antibodies against the phosphorylation sites serine-262 and serine-356 within the STA core almost exclusively stained granular (that is, prefibrillar) tau aggregates in pre-NFTs while antibodies against phosphorylation at serine-202 and threonine-205 and threonine-231, outside the STA core, stained the entire spectrum of tau aggregates in pre-NFTs and mature NFTs, dystrophic neurites and neuropil threads in the hippocampus. Functionally, a recombinantly produced STA core peptide robustly altered neuronal excitability and synaptic transmission in mouse hippocampal brain slices. Furthermore, we developed a cerebrospinal fluid assay that differentiated STAs in AD from non-AD tauopathies, correlated with the severity of NFT burden and cognitive decline independently of amyloid beta deposition, and with tau positron emission tomography uptake across Braak NFT stages. Together, our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- AARF-21-850325 Alzheimer's Association
- P01AG14449 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P01 AG014449 NIA NIH HHS
- P50 AG005133 NIA NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- R01AG083874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R37 AG023651 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- 2021-03244 Vetenskapsrådet (Swedish Research Council)
- P01AG025204 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30AG066468 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ELH is supported by a Race Against Dementia Fellowship (funded by the Barbara Naylor Foundation)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eric E Abrahamson
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Denis S Smirnov
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Pathology Residency Program, Mass General and Brigham and Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijun Chen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Douglas Galasko
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Milos D Ikonomovic
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Ferguson CM, Hildebrand S, Godinho BMDC, Buchwald J, Echeverria D, Coles A, Grigorenko A, Vangjeli L, Sousa J, McHugh N, Hassler M, Santarelli F, Heneka MT, Rogaev E, Khvorova A. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024; 20:2632-2652. [PMID: 38375983 PMCID: PMC11032532 DOI: 10.1002/alz.13703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.
Collapse
Affiliation(s)
- Chantal M. Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Grigorenko
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB)Esch‐sur‐AlzetteLuxembourg
| | - Evgeny Rogaev
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
4
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
5
|
Abrahamson EE, Padera RF, Davies J, Farrar G, Villemagne VL, Dorbala S, Ikonomovic MD. The flutemetamol analogue cyano-flutemetamol detects myocardial AL and ATTR amyloid deposits: a post-mortem histofluorescence analysis. Amyloid 2023; 30:169-187. [PMID: 36411500 PMCID: PMC10199962 DOI: 10.1080/13506129.2022.2141623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND [18F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium. METHODS Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls. Most subjects had antemortem electrocardiography, echocardiography, SPECT and cardiac MRI. Cyano-flutemetamol labeling patterns and integrated density values were evaluated relative to fluorescent derivatives of Congo red (X-34) and Pittsburgh compound-B (cyano-PiB). RESULTS Cyano-flutemetamol labeling was not detectable in control subjects. In subjects with cardiac amyloidosis, cyano-flutemetamol labeling matched X-34- and cyano-PiB-labeled, and transthyretin- or lambda light chain-immunoreactive, amyloid deposits and was prevented by formic acid pre-treatment of myocardial sections. Cyano-flutemetamol mean fluorescence intensity, when adjusted for X-34 signal, was higher in the ATTRwt than the AL group. Cyano-flutemetamol integrated density correlated strongly with echocardiography measures of ventricular septal thickness and posterior wall thickness, and with heart mass. CONCLUSION The high selectivity of cyano-flutemetamol binding to myocardial amyloid supports the diagnostic utility of [18F]flutemetamol PET imaging in patients with ATTR and AL types of cardiac amyloidosis.
Collapse
Affiliation(s)
- Eric E. Abrahamson
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | | | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Sharmila Dorbala
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Brigham and Women’s Hospital, Boston, MA 02115
| | - Milos D. Ikonomovic
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
6
|
Mi Z, Abrahamson EE, Ryu AY, Malek-Ahmadi M, Kofler JK, Fish KN, Sweet RA, Villemagne VL, Schneider JA, Mufson EJ, Ikonomovic MD. Vesicular Glutamate Transporter Changes in the Cortical Default Mode Network During the Clinical and Pathological Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 94:227-246. [PMID: 37212097 PMCID: PMC10994206 DOI: 10.3233/jad-221063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.
Collapse
Affiliation(s)
- Zhiping Mi
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Eric E. Abrahamson
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Angela Y. Ryu
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Michael Malek-Ahmadi
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Department of Biomedical Informatics, University of Arizona
College of Medicine, Phoenix, AZ, USA
| | - Julia K. Kofler
- Department of Pathology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Robert A. Sweet
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University
Medical Center, Chicago, IL, USA
| | - Elliott J. Mufson
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Departments of Translational Neurosciences and Neurology,
Barrow Neurological Institute, Phoenix, AZ, USA
| | - Milos D. Ikonomovic
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Abrahamson EE, Kofler JK, Becker CR, Price JC, Newell KL, Ghetti B, Murrell JR, McLean CA, Lopez OL, Mathis CA, Klunk WE, Villemagne VL, Ikonomovic MD. 11C-PiB PET can underestimate brain amyloid-β burden when cotton wool plaques are numerous. Brain 2022; 145:2161-2176. [PMID: 34918018 PMCID: PMC9630719 DOI: 10.1093/brain/awab434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 09/01/2023] Open
Abstract
Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-β-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-β1-40 and amyloid-β1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-β42 antibodies but weakly with amyloid-β40 and amyloid-βN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-β plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-β1-42 and amyloid-β1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-β1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-β plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-β plaque loads. PiB has limited ability to detect amyloid-β aggregates in cotton wool plaques and may underestimate total amyloid-β plaque burden in brain regions with abundant cotton wool plaques.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carl R Becker
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Cambridge, MA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriona A McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 152:105292. [PMID: 33556539 DOI: 10.1016/j.nbd.2021.105292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related β-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.
Collapse
|
9
|
In vitro amplification of pathogenic tau conserves disease-specific bioactive characteristics. Acta Neuropathol 2021; 141:193-215. [PMID: 33385254 PMCID: PMC7847465 DOI: 10.1007/s00401-020-02253-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/04/2023]
Abstract
The microtubule-associated protein tau (tau) forms hyperphosphorylated aggregates in the brains of tauopathy patients that can be pathologically and biochemically defined as distinct tau strains. Recent studies show that these tau strains exhibit strain-specific biological activities, also referred to as pathogenicities, in the tau spreading models. Currently, the specific pathogenicity of human-derived tau strains cannot be fully recapitulated by synthetic tau preformed fibrils (pffs), which are generated from recombinant tau protein. Reproducing disease-relevant tau pathology in cell and animal models necessitates the use of human brain-derived tau seeds. However, the availability of human-derived tau is extremely limited. Generation of tau variants that can mimic the pathogenicity of human-derived tau seeds would significantly extend the scale of experimental design within the field of tauopathy research. Previous studies have demonstrated that in vitro seeding reactions can amplify the beta-sheet structure of tau protein from a minute quantity of human-derived tau. However, whether the strain-specific pathogenicities of the original, human-derived tau seeds are conserved in the amplified tau strains has yet to be experimentally validated. Here, we used biochemically enriched brain-derived tau seeds from Alzheimer's disease (AD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) patient brains with a modified seeding protocol to template the recruitment of recombinant 2N4R (T40) tau in vitro. We quantitatively interrogated efficacy of the amplification reactions and the pathogenic fidelity of the amplified material to the original tau seeds using recently developed sporadic tau spreading models. Our data suggest that different tau strains can be faithfully amplified in vitro from tau isolated from different tauopathy brains and that the amplified tau variants retain their strain-dependent pathogenic characteristics.
Collapse
|
10
|
Abrahamson EE, Stehouwer JS, Vazquez AL, Huang GF, Mason NS, Lopresti BJ, Klunk WE, Mathis CA, Ikonomovic MD. Development of a PET radioligand selective for cerebral amyloid angiopathy. Nucl Med Biol 2021; 92:85-96. [PMID: 32471773 PMCID: PMC8788879 DOI: 10.1016/j.nucmedbio.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) using radiolabeled amyloid-binding compounds has advanced the field of Alzheimer's disease (AD) by enabling detection and longitudinal tracking of fibrillar amyloid-β (Aβ) deposits in living people. However, this technique cannot distinguish between Aβ deposits in brain parenchyma (amyloid plaques) from those in blood vessels (cerebral amyloid angiopathy, CAA). Development of a PET radioligand capable of selectively detecting CAA would help clarify its contribution to global brain amyloidosis and clinical symptoms in AD and would help to characterize side-effects of anti-Aβ immunotherapies in AD patients, such as CAA. METHODS A candidate CAA-selective compound (1) from a panel of analogues of the amyloid-binding dye Congo red was synthesized. The binding affinity to Aβ fibrils and lipophilicity of compound 1 were determined and selectivity for CAA versus parenchymal plaque deposits was assessed ex-vivo and in-vivo in transgenic APP/PS1 mice and in postmortem human brain affected with AD pathology. RESULTS Compound 1 displays characteristics of Aβ binding dyes, such as thioflavin-S, in that it labels both parenchymal Aβ plaques and CAA when applied to histological sections from both a transgenic APP/PS1 mouse model of Aβ amyloidosis and AD brain. Thus, compound 1 lacks molecular selectivity to distinguish Aβ deposits in CAA from those in plaques. However, when administered to living APP/PS1 mice intravenously, compound 1 preferentially labels CAA when assessed using in-vivo two-photon microscopy and ex-vivo histology and autoradiography. CONCLUSION We hypothesize that selectivity of compound 1 for CAA is attributable to its limited penetration of the blood-brain barrier due to the highly polar nature of the carboxylate moiety, thereby limiting access to parenchymal plaques and promoting selective in-vivo labeling of Aβ deposits in the vascular wall (i.e., "delivery selectivity").
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | | | - Alberto L Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guo-Feng Huang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Ikonomovic MD, Buckley CJ, Abrahamson EE, Kofler JK, Mathis CA, Klunk WE, Farrar G. Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid-β plaques in Alzheimer's disease. Acta Neuropathol 2020; 140:463-476. [PMID: 32772265 PMCID: PMC7498488 DOI: 10.1007/s00401-020-02175-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023]
Abstract
Specificity and sensitivity of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-β (Aβ) deposits is high for detection of neuritic Aβ plaques, a mature form of Aβ deposits which often have dense Aβ core (i.e., cored plaques). However, imaging-to-autopsy validation studies of amyloid PET radioligands have identified several false positive cases all of which had mainly diffuse Aβ plaques (i.e., plaques without neuritic pathology or dense amyloid core), and high amyloid PET signal was reported in the striatum where diffuse plaques predominate in Alzheimer's disease (AD). Relative contributions of different plaque types to amyloid PET signal is unclear, particularly in neocortical areas where they are intermixed in AD. In vitro binding assay and autoradiography were performed using [3H]flutemetamol and [3H]Pittsburgh Compound-B (PiB) in frozen brain homogenates from 30 autopsy cases including sporadic AD and non-AD controls with a range of brain Aβ burden and plaque density. Fixed tissue sections of frontal cortex and caudate from 10 of the AD cases were processed for microscopy using fluorescent derivatives of flutemetamol (cyano-flutemetamol) and PiB (cyano-PiB) and compared to Aβ immunohistochemistry and pan-amyloid (X-34) histology. Using epifluorescence microscopy, percent area coverage and fluorescence output values of cyano-PiB- and cyano-flutemetamol-labeled plaques in two-dimensional microscopic fields were then calculated and combined to obtain integrated density measurements. Using confocal microscopy, we analysed total fluorescence output of the entire three-dimensional volume of individual cored plaques and diffuse plaques labeled with cyano-flutemetamol or cyano-PiB. [3H]Flutemetamol and [3H]PiB binding values in tissue homogenates correlated strongly and their binding pattern in tissue sections, as seen on autoradiograms, overlapped the pattern of Aβ-immunoreactive plaques on directly adjacent sections. Cyano-flutemetamol and cyano-PiB fluorescence was prominent in cored plaques and less so in diffuse plaques. Across brain regions and cases, percent area coverage of cyano-flutemetamol-labeled plaques correlated strongly with cyano-PiB-labeled and Aβ-immunoreactive plaques. For both ligands, plaque burden, calculated as percent area coverage of all Aβ plaque types, was similar in frontal cortex and caudate regions, while integrated density values were significantly greater in frontal cortex, which contained both cored plaques and diffuse plaques, compared to the caudate, which contained only diffuse plaques. Three-dimensional analysis of individual plaques labeled with either ligand showed that total fluorescence output of a single cored plaque was equivalent to total fluorescence output of approximately three diffuse plaques of similar volume. Our results indicate that [18F]flutemetamol and [11C]PiB PET signal is influenced by both diffuse plaques and cored plaques, and therefore is likely a function of plaque size and density of Aβ fibrils in plaques. Brain areas with large volumes/frequencies of diffuse plaques could yield [18F]flutemetamol and [11C]PiB PET retention levels comparable to brain regions with a lower volume/frequency of cored plaques.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, Thomas Detre Hall of the WPIC, Room 1421, 3811 O'Hara Street, Pittsburgh, 15213-2593, PA, USA.
| | | | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
12
|
Skuodas S, Clemons A, Hayes M, Goll A, Zora B, Weeks DL, Phillips BT, Fassler JS. The ABCF gene family facilitates disaggregation during animal development. Mol Biol Cell 2020; 31:1324-1345. [PMID: 32320318 PMCID: PMC7353142 DOI: 10.1091/mbc.e19-08-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.
Collapse
Affiliation(s)
- Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Michael Hayes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Ashley Goll
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Betul Zora
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
13
|
Harper MM, Hedberg-Buenz A, Herlein J, Abrahamson EE, Anderson MG, Kuehn MH, Kardon RH, Poolman P, Ikonomovic MD. Blast-Mediated Traumatic Brain Injury Exacerbates Retinal Damage and Amyloidosis in the APPswePSENd19e Mouse Model of Alzheimer's Disease. Invest Ophthalmol Vis Sci 2019; 60:2716-2725. [PMID: 31247112 PMCID: PMC6735799 DOI: 10.1167/iovs.18-26353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis. Methods Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months. RGC cell structure and function was evaluated 2 months later (average age at endpoint = 4.5 months) using pattern electroretinogram (PERG), optical coherence tomography (OCT), and the chromatic pupil light reflex (cPLR), followed by histologic analysis of retina, optic nerve, and brain amyloid pathology. Results APP/PS1 mice exposed to blast TBI (TG-Blast) had significantly lower PERG and cPLR responses 2 months after injury compared to preblast values and compared to sham groups of APP/PS1 (TG-Sham) and nontransgenic (Non-TG-Sham) mice as well as nontransgenic blast-exposed mice (Non-TG-Blast). The TG-Blast group also had significantly thinner RGC complex and more optic nerve damage compared to all groups. No amyloid-β (Aβ) deposits were detected in retinas of APP/PS1 mice; however, increased amyloid precursor protein (APP)/Aβ-immunoreactivity was seen in TG-Blast compared to TG-Sham mice, particularly near blood vessels. TG-Blast and TG-Sham groups exhibited high variability in pathology severity, with a strong, but not statistically significant, trend for greater cerebral cortical Aβ plaque load in the TG-Blast compared to TG-Sham group. Conclusions When combined with a genetic susceptibility for developing amyloidosis of AD, blast TBI exposure leads to earlier RGC and optic nerve damage associated with modest but detectable increase in cerebral cortical Aβ pathology. These findings suggest that genetic risk factors for AD may increase the sensitivity of the retina to blast-mediated damage.
Collapse
Affiliation(s)
- Matthew M Harper
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Adam Hedberg-Buenz
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Judith Herlein
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Pieter Poolman
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Abrahamson EE, Head E, Lott IT, Handen BL, Mufson EJ, Christian BT, Klunk WE, Ikonomovic MD. Neuropathological correlates of amyloid PET imaging in Down syndrome. Dev Neurobiol 2019; 79:750-766. [PMID: 31379087 DOI: 10.1002/dneu.22713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) results in an overproduction of amyloid-β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12-30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre-clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid-based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, California
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, California
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Bradley T Christian
- Departments of Medical Physics and Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Perez SE, Miguel JC, He B, Malek-Ahmadi M, Abrahamson EE, Ikonomovic MD, Lott I, Doran E, Alldred MJ, Ginsberg SD, Mufson EJ. Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathol 2019; 137:413-436. [PMID: 30734106 PMCID: PMC6541490 DOI: 10.1007/s00401-019-01965-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Although, by age 40, individuals with Down syndrome (DS) develop amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aβ plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aβ and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases. Expression profiling of single pS422 labeled FC layer V and VI neurons was also determined using laser capture microdissection and custom-designed microarray analysis. Analysis revealed that cortical and striatal Aβ plaque burdens were similar in DSD + and DSD - cases. In both groups, most FC plaques were neuritic, while striatal plaques were diffuse. By contrast, FC AT8-positive NFTs and neuropil thread densities were significantly greater in DSD + compared to DSD -, while striatal NFT densities were similar between groups. FC pS422-positive and TauC3 NFT densities were significantly greater than Alz50-labeled NFTs in DSD + , but not DSD - cases. Putaminal, but not caudate pS422-positive NFT density, was significantly greater than TauC3-positive NFTs. In the FC, AT8 + pS422 + Alz50, TauC3 + pS422 + Alz50, pS422 + Alz50, and TauC3 + pS422 positive NFTs were more frequent in DSD + compared to DSD- cases. Single gene-array profiling of FC pS422 positive neurons revealed downregulation of 63 of a total of 864 transcripts related to Aβ/tau biology, glutamatergic, cholinergic, and monoaminergic metabolism, intracellular signaling, cell homeostasis, and cell death in DSD + compared DSD - cases. These observations suggest that abnormal tau aggregation plays a critical role in the development of dementia in DS.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jennifer C Miguel
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | - Bin He
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | | | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ira Lott
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Eric Doran
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
- Departments of Neuroscience and Physiology, The NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA.
| |
Collapse
|
16
|
Groot C, Tolboom N, Ikonomovic MD, Lammertsma AA, Boon BDC, Barkhof F, Scheltens P, Klunk WE, Rozemuller AJM, Ossenkoppele R, van Berckel BNM. Quantitative PET and Histology of Brain Biopsy Reveal Lack of Selective Pittsburgh Compound-B Binding to Intracerebral Amyloidoma. J Alzheimers Dis 2018; 65:71-77. [PMID: 30040724 DOI: 10.3233/jad-180316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This single case study examines selective Pittsburgh compound-B (PiB) binding to an intracerebral light-chain amyloidoma using a 90-minute dynamic [11C]PiB-PET scan and brain biopsy tissue. Parametric non-displaceable binding potential (BPND) images showed low specific binding in the amyloidoma (BPND = 0.23), while relative tracer delivery was adequate (R1 = 0.44). Histology of the tissue revealed strong coloring with Congo-red, thioflavin-S, and X-34, indicating presence of amyloid. However, immunological staining with 6F/3D revealed absence of amyloid-β and histofluorescence of 6-CN-PiB, a highly fluorescent derivative of PiB, was at background levels. Our results suggest that PiB does not detect the atypical amyloid pathology associated with an intracerebral light-chain amyloidoma. These findings are of interest to clinicians and researchers applying [11C]PiB-PET to detect atypical forms of amyloid pathology.
Collapse
Affiliation(s)
- Colin Groot
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Geriatric Research Education and Clinical Center, Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Baayla D C Boon
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - William E Klunk
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rik Ossenkoppele
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Matsuda T, Hisatsune T. Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet. J Alzheimers Dis 2018; 56:1-23. [PMID: 27911310 DOI: 10.3233/jad-160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that neuroinflammation contributes to the amnesia of AβPPswe/PSEN1dE9 Alzheimer's disease model mice fed a high-fat diet to induce type-2 diabetes (T2DM-AD mice), but the underlying mechanism for the memory decline remained unclear. Recent studies have suggested that cholinergic modulation is involved in neuroinflammatory cellular reactions including neurogenesis and gliosis, and in memory improvement. In this study, we administered a broad-spectrum cholinesterase inhibitor, rivastigmine (2 mg/kg/day, s.c.), into T2DM-AD mice for 6 weeks, and evaluated their memory performance, neurogenesis, and neuroinflammatory reactions. By two hippocampal-dependent memory tests, the Morris water maze and contextual fear conditioning, rivastigmine improved the memory deterioration of the T2DM-AD mice (n = 8, p < 0.01). The number of newborn neurons in the hippocampal dentate gyrus was 1138±324 (Ave±SEM) in wild-type littermates, 2573±442 in T2DM-AD-Vehicle, and 2165±300 in T2DM-AD-Rivastigmine mice, indicating that neurogenesis was accelerated in the two T2DM-AD groups (n = 5, p < 0.05). The dendritic maturation of new neurons in T2DM-AD-Vehicle mice was severely abrogated, and rivastigmine treatment reversed this retarded maturation. In addition, the hippocampus of T2DM-AD-Vehicle mice showed increased proinflammatory cytokines IL-1β and TNF-α and gliosis, and rivastigmine treatment blocked these inflammatory reactions. Rivastigmine did not change the insulin abnormality or amyloid pathology in these mice. Thus, cholinergic modulation by rivastigmine treatment led to enhanced neurogenesis and the suppression of gliosis, which together ameliorated the memory decline in T2DM-AD model mice.
Collapse
|
18
|
Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer's-model mice. Sci Rep 2017; 7:12571. [PMID: 28974740 PMCID: PMC5626714 DOI: 10.1038/s41598-017-12785-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Anserine/carnosine supplementation improves cerebral blood flow and verbal episodic memory in elderly people, as we previously reported. Anserine’s buffering activity is superior to that of carnosine at neutral pH. In human sera, carnosine but not anserine is rapidly cleaved by carnosinase, limiting its effectiveness. This study examined the effects of anserine on AβPPswe/PSEN1dE9 Alzheimer’s disease (AD) model mice over 18-months old, an age at which these mice exhibit detectable memory deficits. We found that 8 weeks of anserine treatment completely recovered the memory deficits, improved pericyte coverage on endothelial cells in the brain, and diminished chronic glial neuroinflammatory reactions in these mice. These results suggest that anserine (beta-alanyl-3-methyl-L-histidine) supplementation improved memory functions in AD-model mice by exerting a protective effect on the neurovascular units, which are composed of endothelial cells, pericytes, and supporting glial cells.
Collapse
|
19
|
Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET Tracers for Imaging Proteinopathies. Semin Nucl Med 2017; 47:553-575. [PMID: 28826526 DOI: 10.1053/j.semnuclmed.2017.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we provide a review of the challenges and advances in developing successful PET imaging agents for 3 major types of aggregated amyloid proteins: amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn). These 3 amyloids are involved in the pathogenesis of a variety of neurodegenerative diseases, referred to as proteinopathies or proteopathies, that include Alzheimer disease, Lewy body dementias, multiple system atrophy, and frontotemporal dementias, among others. In the Introduction section, we briefly discuss the history of amyloid in neurodegenerative diseases and describe why progress in developing effective imaging agents has been hampered by the failure of crystallography to provide definitive ligand-protein interactions for rational radioligand design efforts. Instead, the field has relied on largely serendipitous, trial-and-error methods to achieve useful and specific PET amyloid imaging tracers for Aβ, tau, and α-syn deposits. Because many of the proteopathies involve more than 1 amyloid protein, it is important to develop selective PET tracers for the different amyloids to help assess the relative contribution of each to total amyloid burden. We use Pittsburgh compound B to illustrate some of the critical steps in developing a potent and selective Aβ PET imaging agent. Other selective Aβ and tau PET imaging compounds have followed similar pathways in their developmental processes. Success for selective α-syn PET imaging agents has not been realized yet, but work is ongoing in multiple laboratories throughout the world. In the tau sections, we provide background regarding 3-repeat (3R) and 4-repeat (4R) tau proteins and how they can affect the binding of tau radioligands in different tauopathies. We review the ongoing efforts to assess the properties of tau ligands, which are useful in 3R, 4R, or combined 3R-4R tauopathies. Finally, we describe in the α-syn sections recent attempts to develop selective tracers to image α-synucleinopathies.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
20
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
21
|
Mi Z, Halfter W, Abrahamson EE, Klunk WE, Mathis CA, Mufson EJ, Ikonomovic MD. Tenascin-C Is Associated with Cored Amyloid-β Plaques in Alzheimer Disease and Pathology Burdened Cognitively Normal Elderly. J Neuropathol Exp Neurol 2016; 75:868-76. [PMID: 27444354 PMCID: PMC5909866 DOI: 10.1093/jnen/nlw062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein linked to inflammatory processes in pathological conditions including Alzheimer disease (AD). We examined the distribution of TN-C immunoreactivity (ir) in relation to amyloid-β (Aβ) plaques and vascular Aβ deposits in autopsy brain tissues from 14 patients with clinical and neuropathological AD and 10 aged-matched controls with no cognitive impairment; 5 of the controls had Aβ plaques and 5 did not. TN-C ir was abundant in cortical white matter and subpial cerebral gray matter in all cases, whereas TN-C ir was weak in blood vessels. In all cases with Aβ plaques but not in plaque-free controls, TN-C ir was detected as large (>100 µm in diameter) diffuse extracellular deposits in cortical grey matter. TN-C plaques completely overlapped and surrounded cored Aβ plaques labeled with X-34, a fluorescent derivative of Congo red, and they were associated with reactive astrocytes astrocytes, microglia and phosphorylated tau-containing dystrophic neurites. Diffuse Aβ plaques lacking amyloid cores, reactive glia or dystrophic neurites showed no TN-C ir. In cases with cerebral amyloid angiopathy, TN-C ir in vessel walls did not spread into the surrounding neuropil. These results suggest a role for TN-C in Aβ plaque pathogenesis and its potential as a biomarker and therapy target.
Collapse
Affiliation(s)
- Zhiping Mi
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - Willi Halfter
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - Eric E Abrahamson
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - William E Klunk
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - Chester A Mathis
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - Elliott J Mufson
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| | - Milos D Ikonomovic
- From the Departments of Neurology (ZM, EEA, WEK, MDI)Department of Neurobiology (WH)Department of Psychiatry (WEK, MDI)Department of Radiology, University of Pittsburgh (CAM)Department of Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System (ZM, EEA, MDI)Department of Neurobiology, Barrow Neurological Institute, Pittsburgh, PA, USA (EJM)
| |
Collapse
|
22
|
Mufson EJ, Perez SE, Nadeem M, Mahady L, Kanaan NM, Abrahamson EE, Ikonomovic MD, Crawford F, Alvarez V, Stein T, McKee AC. Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Inj 2016; 30:1399-1413. [PMID: 27834536 PMCID: PMC5348250 DOI: 10.1080/02699052.2016.1219058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. METHOD To characterize NFT pathology, tau-antibodies marking early, intermediate and late stages of NFT development in CBF tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI) were used. RESULTS Analysis revealed that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pre-tangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percentage of pS422/p75NTR, pS422 and TNT1 labelled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. CONCLUSION The development of NFTs within the cholinergic nbM neurons could contribute to an axonal disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Muhammad Nadeem
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Laura Mahady
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Nicholas M. Kanaan
- Dept. Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Eric E. Abrahamson
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | | | - Victor Alvarez
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Thor Stein
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Ann C. McKee
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| |
Collapse
|
23
|
Mizukami K, Akatsu H, Abrahamson EE, Mi Z, Ikonomovic MD. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease. Neuropathology 2015; 36:135-45. [PMID: 26293308 DOI: 10.1111/neup.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
Studies of acetylcholine degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in Alzheimer's disease (AD) have suggested their potential role in the development of fibrillar amyloid-β (Aβ) plaques (amyloid plaques). A recent genome-wide association study analysis identified a novel association between genetic variations in the BCHE locus and amyloid burden. We studied BChE immunoreactivity in hippocampal tissue sections from AD and control cases, and examined its relationship with amyloid plaques, neurofibrillary tangles (NFT), dystrophic neurites (DN) and neuropil threads (NT). Compared to controls, AD cases had greater BChE immunoreactivity in hippocampal neurons and neuropils in CA2/3, but not in the CA1, CA4 and dentate gyrus. The majority of amyloid plaques (> 80%, using a pan-amyloid marker X-34) contained discrete neuritic clusters which were dual-labeled with antibodies against BChE and phosphorylated tau (clone AT8). There was no association between overall regional BChE immunoreaction intensity and amyloid plaque burden. In contrast to previous reports, BChE was localized in only a fraction (~10%) of classic NFT (positive for X-34). A similar proportion of BChE-immunoreactive pyramidal cells were AT8 immunoreactive. Greater NFT and DN loads were associated with greater BChE immunoreaction intensity in CA2/3, but not in CA1, CA4 and dentate gyrus. Our results demonstrate that in AD hippocampus, BChE accumulates in neurons and plaque-associated neuritic clusters, but only in a small proportion of NFT. The association between greater neurofibrillary pathology burden and markedly increased BChE immunoreactivity, observed selectively in CA2/3 region, could reflect a novel compensatory mechanism. Since CA2/3 is generally considered more resistant to AD pathology, BChE upregulation could impact the cholinergic modulation of glutamate neurotransmission to prevent/reduce neuronal excitotoxicity in AD hippocampus.
Collapse
Affiliation(s)
- Katsuyoshi Mizukami
- Faculty of Health and Sport Sciences, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medicine, Nagoya City University Graduate School of Medicine, Nagoya, Japan.,Choju Medical Institute, Fukushimura Hospital, Toyohashi, Japan
| | - Eric E Abrahamson
- Departments of Neurology, University of Pittsburgh, Pittsburgh, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, USA
| | - Zhiping Mi
- Departments of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Milos D Ikonomovic
- Departments of Neurology, University of Pittsburgh, Pittsburgh, USA.,Psychiatry, University of Pittsburgh, Pittsburgh, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, USA
| |
Collapse
|
24
|
Perez SE, He B, Nadeem M, Wuu J, Scheff SW, Abrahamson EE, Ikonomovic MD, Mufson EJ. Resilience of precuneus neurotrophic signaling pathways despite amyloid pathology in prodromal Alzheimer's disease. Biol Psychiatry 2015; 77:693-703. [PMID: 24529280 PMCID: PMC4096429 DOI: 10.1016/j.biopsych.2013.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Reduction of precuneus choline acetyltransferase activity co-occurs with greater beta-amyloid (Aβ) in Alzheimer's disease (AD). Whether this cholinergic deficit is associated with alteration in nerve growth factor (NGF) signaling and its relation to Aβ plaque and neurofibrillary tangle (NFT) pathology during disease onset is unknown. METHODS Precuneus NGF upstream and downstream signaling levels relative to Aβ and NFT pathology were evaluated using biochemistry and histochemistry in 62 subjects with a premortem diagnosis of non-cognitively impaired (NCI; n = 23), mild cognitive impairment (MCI; n = 21), and mild to moderate AD (n = 18). RESULTS Immunoblots revealed increased levels of proNGF in AD subjects but not MCI subjects, whereas cognate receptors were unchanged. There were no significant differences in protein level for the downstream survival kinase-signaling proteins Erk and phospho-Erk among groups. Apoptotic phospho-JNK, phospho-JNK/JNK ratio, and Bcl-2 were significantly elevated in AD subjects. Soluble Aβ1-42 and fibrillar Aβ measured by [(3)H] Pittsburgh compound-B ([(3)H]PiB) binding were significantly higher in AD subjects compared with MCI and NCI subjects. The density of plaques showed a trend to increase, but only 6-CN-PiB-positive plaques reached significance in AD subjects. AT8-positive, TOC-1-positive, and Tau C3-positive NFT densities were unchanged, whereas only AT8-positive neuropil thread density was statistically higher in AD subjects. A negative correlation was found between proNGF, phospho-JNK, and Bcl-2 levels and phospho-JNK/JNK ratio and cognition, whereas proNGF correlated positively with 6-CN-PiB-positive plaques during disease progression. CONCLUSIONS Data indicate that precuneus neurotrophin pathways are resilient to amyloid toxicity during the onset of AD.
Collapse
Affiliation(s)
- Sylvia E. Perez
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Bin He
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Muhammad Nadeem
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Joanne Wuu
- Dept. Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University Kentucky College of Medicine, Lexington, KY
| | - Eric E. Abrahamson
- Depts. Neurology and Psychiatry, University of Pittsburgh and Geriatric Research Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Depts. Neurology and Psychiatry, University of Pittsburgh and Geriatric Research Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Elliott J. Mufson
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL
| |
Collapse
|
25
|
Matveev SV, Kwiatkowski S, Sviripa VM, Fazio RC, Watt DS, LeVine H. Tritium-labeled (E,E)-2,5-bis(4'-hydroxy-3'-carboxystyryl)benzene as a probe for β-amyloid fibrils. Bioorg Med Chem Lett 2014; 24:5534-6. [PMID: 25452000 PMCID: PMC4254541 DOI: 10.1016/j.bmcl.2014.09.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[(3)H]-2,5-bis(4'-hydroxy-3'-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils.
Collapse
Affiliation(s)
- Sergey V Matveev
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States
| | - Stefan Kwiatkowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Robert C Fazio
- ViTrax Radiochemicals, 660 S. Jefferson Street, Unit E, Placentia, CA 92870, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States.
| | - Harry LeVine
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States.
| |
Collapse
|
26
|
Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 2013; 521:4318-38. [PMID: 23881733 PMCID: PMC6317365 DOI: 10.1002/cne.23428] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
The two major histopathologic hallmarks of Alzheimer's disease (AD) are amyloid beta protein (Aβ) plaques and neurofibrillary tangles (NFT). Aβ pathology is a common feature in the aged nonhuman primate brain, whereas NFT are found almost exclusively in humans. Few studies have examined AD-related pathology in great apes, which are the closest phylogenetic relatives of humans. In the present study, we examined Aβ and tau-like lesions in the neocortex and hippocampus of aged male and female western lowland gorillas using immunohistochemistry and histochemistry. Analysis revealed an age-related increase in Aβ-immunoreactive plaques and vasculature in the gorilla brain. Aβ plaques were more abundant in the neocortex and hippocampus of females, whereas Aβ-positive blood vessels were more widespread in male gorillas. Plaques were also Aβ40-, Aβ42-, and Aβ oligomer-immunoreactive, but only weakly thioflavine S- or 6-CN-PiB-positive in both sexes, indicative of the less fibrillar (diffuse) nature of Aβ plaques in gorillas. Although phosphorylated neurofilament immunostaining revealed a few dystrophic neurites and neurons, choline acetyltransferase-immunoreactive fibers were not dystrophic. Neurons stained for the tau marker Alz50 were found in the neocortex and hippocampus of gorillas at all ages. Occasional Alz50-, MC1-, and AT8-immunoreactive astrocyte and oligodendrocyte coiled bodies and neuritic clusters were seen in the neocortex and hippocampus of the oldest gorillas. This study demonstrates the spontaneous presence of both Aβ plaques and tau-like lesions in the neocortex and hippocampus in old male and female western lowland gorillas, placing this species at relevance in the context of AD research.
Collapse
Affiliation(s)
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Cleveland Metroparks Zoo, Cleveland, Ohio 44109
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - Milos D. Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pennsylvania 15213
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pennsylvania 15213
| | - Pascale N. Lacor
- Neurobiology Department and Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, Illinois 60208
| | - Joseph M. Erwin
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | | |
Collapse
|
27
|
Dendritic spine density, morphology, and fibrillar actin content surrounding amyloid-β plaques in a mouse model of amyloid-β deposition. J Neuropathol Exp Neurol 2013; 72:791-800. [PMID: 23860033 DOI: 10.1097/nen.0b013e31829ecc89] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Dendritic spines are the site of most excitatory synapses, the loss of which correlates with cognitive impairment in patients with Alzheimer disease. Substantial evidence indicates that amyloid-β (Aβ) peptide, either insoluble fibrillar Aβ deposited into plaques or soluble nonfibrillar Aβ species, can cause spine loss but the concurrent contributions of fibrillar Aβ and nonfibrillar Aβ to spine loss has not been previously assessed. We used multiple-label immunohistochemistry to measure spine density, size, and F-actin content surrounding plaques in the cerebral cortex in the PSAPP mouse model of Aβ deposition. Our approach allowed us to measure fibrillar Aβ plaque content and an index of nonfibrillar Aβ species concurrently. We found that spine density was reduced within 6 μm of the plaque perimeter, remaining spines were more compact, and F-actin content per spine was increased. Measures of fibrillar Aβ plaque content were associated with reduced spine density near plaques, whereas measures of nonfibrillar Aβ species were associated with reduced spine density and size but not altered F-actin content. These findings suggest that strategies to preserve dendritic spines in AD patients may need to address both nonfibrillar and fibrillar forms of Aβ and that nonfibrillar Aβ may exert spine toxicity through pathways not mediated by depolymerization of F-actin.
Collapse
|
28
|
Mizukami K, Abrahamson EE, Mi Z, Ishikawa M, Watanabe K, Kinoshita S, Asada T, Ikonomovic MD. Immunohistochemical analysis of ubiquilin-1 in the human hippocampus: association with neurofibrillary tangle pathology. Neuropathology 2013; 34:11-8. [PMID: 23869942 DOI: 10.1111/neup.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022]
Abstract
This post mortem immunohistochemical study examined the localization and distribution of ubiquilin-1 (UBL), a shuttle protein which interacts with ubiquitin and the proteasome, in the hippocampus from Alzheimer's disease (AD) dementia cases, and age-matched cases without dementia. In Braak stages 0-I-II cases, UBL immunoreactivity was detected in a dense fiber network in the neuropil, and in the cell cytoplasm and nucleoplasm of neurons in Cornu Ammonis (CA) fields and dentate gyrus granular neurons. In Braak stages III-IV and V-VI cases, UBL immunoreactivity was reduced in the neuropil and in the cytoplasm of the majority of CA1 neurons; some CA1 pyramidal neurons and the majority of CA2/3 pyramidal, CA4 multipolar, and dentate granular neurons had markedly increased UBL immunoreactivity in the nucleoplasm. Dual immunofluorescence analysis of UBL and antibody clone AT8 revealed co-localization most frequently in CA1 pyramidal neurons in Braak stage III-IV and V-VI cases. Further processing using the pan-amyloid marker X-34 revealed prominent UBL/X-34 dual labeling of extracellular NFT confined to the CA1/subiculum in Braak stage V-VI cases. Our results demonstrate that in AD hippocampus, early NFT changes are associated with neuronal up-regulation of UBL in nucleoplasm, or its translocation from the cytoplasm to the nucleus. The perseverance of UBL changes in CA2/3, CA4 and dentate gyrus, generally considered as more resistant to NFT pathology, but not in the CA1, may mark a compensatory, potentially protective response to increased tau phosphorylation in hippocampal neurons; the failure of such a response may contribute to neuronal degeneration in end-stage AD.
Collapse
Affiliation(s)
- Katsuyoshi Mizukami
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med 2013; 42:423-32. [PMID: 23026364 DOI: 10.1053/j.semnuclmed.2012.07.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For 100 years, β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) have been recognized as the neuropathological hallmarks of Alzheimer's disease (AD), and their presence or absence could only be assessed postmortem using stains and dyes that identified these microscopic structures. Approximately 10 years ago, the first successful Aβ plaque-specific positron emission tomography (PET) imaging study was conducted in a living human subject clinically diagnosed with probable AD using the (11)C-labeled radiopharmaceutical Pittsburgh Compound B (PiB). Laboratory studies and preclinical evaluations to design PiB began a decade earlier than the first human PiB PET study and involved chemical modifications of different well-known dyes that bound specifically to the extended β-pleated sheets that comprise the fibrils of amyloid proteins such as Aβ plaques, NFTs, α-synuclein deposits, and prions. These preclinical studies were conducted in our laboratories at the University of Pittsburgh, starting with Congo red derivatives, followed by Chrysamine G derivatives, followed by X-series compounds, and finally with neutral derivatives of thioflavin-T. The in vitro and in vivo evaluations of the different derivatives as candidate PET radioligands for imaging Aβ plaques and neurofibrillary tangles in human brain are described in this review, along with the specific evaluation criteria by which the candidate radioligands were judged. Out of these studies came PiB, a PET radioligand that binds selectively and with high affinity to only fibrillar forms of Aβ. PiB has been used in many different human research protocols throughout the world and has demonstrated the usefulness of assessing the Aβ plaque status of subjects many years before the clinical diagnosis of probable AD. Recently, longer-lived (18)F-radiolabeled Aβ-selective radiopharmaceuticals have been developed. It is likely that the full clinical impact of these imaging agents will be realized by identifying presymptomatic subjects who would benefit from early drug treatments with future disease-modifying AD therapeutics.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
30
|
Ikonomovic MD, Abrahamson EE, Price JC, Hamilton RL, Mathis CA, Paljug WR, Debnath ML, Cohen AD, Mizukami K, DeKosky ST, Lopez OL, Klunk WE. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study. Acta Neuropathol 2012; 123:433-47. [PMID: 22271153 PMCID: PMC3383058 DOI: 10.1007/s00401-012-0943-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/15/2011] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) deposits are detectable in the brain in vivo using positron emission tomography (PET) and [C-11]-labeled Pittsburgh Compound B ([C-11]PiB); however, the sensitivity of this technique is not well understood. In this study, we examined Aβ pathology in an individual who had clinical diagnoses of probable dementia with Lewy bodies and possible Alzheimer's disease (AD) but with no detectable [C-11]PiB PET retention ([C-11]PiB(-)) when imaged 17 months prior to death. Brain samples were processed in parallel with region-matched samples from an individual with a clinical diagnosis of probable AD and a positive [C-11]PiB PET scan ([C-11]PiB(+)) when imaged 10 months prior to death. In the [C-11]PiB(-) case, Aβ plaques were sparse, occupying less than 2% cortical area, and were weakly labeled with 6-CN-PiB, a highly fluorescent derivative of PiB. In contrast, Aβ plaques occupied up to 12% cortical area in the [C-11]PiB(+) case, and were intensely labeled with 6-CN-PIB. The [C-11]PiB(-) case had low levels of [H-3]PiB binding (< 100 pmol/g) and Aβ1-42 (< 500 pmol/g) concentration except in the frontal cortex where Aβ1-42 values (788 pmol/g) approached cortical values in the [C-11]PiB(+) case (800-1, 700 pmol/g). In several cortical regions of the [C-11]PiB(-) case, Aβ1-40 levels were within the range of cortical Aβ1-40 values in the [C-11]PiB(+) case. Antemortem [C-11]PiB DVR values correlated well with region-matched postmortem measures of Aβ1-42 and Aβ1-40 in the [C-11]PiB(+), and with Aβ1-42 only in the [C-11]PiB(-) case. The low ratios of [H-3]PiB binding levels to Aβ concentrations and 6-CN-PiB to Aβ plaque loads in the [C-11]PiB(-) case indicate that Aβ pathology in the brain may be associated with low or undetectable levels of [C-11]PiB retention. Studies in greater numbers of [C-11]PiB PET autopsy cases are needed to define the Aβ concentration and [H-3]PiB binding levels required to produce a positive [C-11]PiB PET signal.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, 200 Lothrop Street BST S521, Pittsburgh, PA 15213. USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thomas SN, Funk KE, Wan Y, Liao Z, Davies P, Kuret J, Yang AJ. Dual modification of Alzheimer's disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol 2012; 123:105-17. [PMID: 22033876 PMCID: PMC3249157 DOI: 10.1007/s00401-011-0893-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 11/04/2022]
Abstract
In sporadic Alzheimer’s disease (AD), neurofibrillary lesion formation is preceded by extensive post-translational modification of the microtubule associated protein tau. To identify the modification signature associated with tau lesion formation at single amino acid resolution, immunopurified paired helical filaments were isolated from AD brain and subjected to nanoflow liquid chromatography–tandem mass spectrometry analysis. The resulting spectra identified monomethylation of lysine residues as a new tau modification. The methyl-lysine was distributed among seven residues located in the projection and microtubule binding repeat regions of tau protein, with one site, K254, being a substrate for a competing lysine modification, ubiquitylation. To characterize methyl lysine content in intact tissue, hippocampal sections prepared from post mortem late-stage AD cases were subjected to double-label confocal fluorescence microscopy using anti-tau and anti-methyl lysine antibodies. Anti-methyl lysine immunoreactivity colocalized with 78 ± 13% of neurofibrillary tangles in these specimens. Together these data provide the first evidence that tau in neurofibrillary lesions is post-translationally modified by lysine methylation.
Collapse
|
32
|
Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Melicharek DJ, Utreja S, Khandelwal P, Ansaloni S, Goldstein LE, Moir RD, Lee JC, Tabb LP, Saunders AJ, Marenda DR. Characterization of a Drosophila Alzheimer's disease model: pharmacological rescue of cognitive defects. PLoS One 2011; 6:e20799. [PMID: 21673973 PMCID: PMC3108982 DOI: 10.1371/journal.pone.0020799] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/13/2011] [Indexed: 02/07/2023] Open
Abstract
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ(40) and Aβ(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.
Collapse
Affiliation(s)
- Ranjita Chakraborty
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Vidya Vepuri
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Siddhita D. Mhatre
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brie E. Paddock
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sean Miller
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sarah J. Michelson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Radha Delvadia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Arkit Desai
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Marianna Vinokur
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - David J. Melicharek
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Suruchi Utreja
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Preeti Khandelwal
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University, Boston, Massachusetts, United States of America
| | - Robert D. Moir
- Genetics and Aging Research Unit, MIND, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy C. Lee
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Liu Q, Wu WH, Fang CL, Li RW, Liu P, Lei P, Hu J, Sun X, Zheng YZ, Zhao YF, Li YM. Mapping ApoE/Aβ binding regions to guide inhibitor discovery. MOLECULAR BIOSYSTEMS 2011; 7:1693-700. [PMID: 21409287 DOI: 10.1039/c1mb05019b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blocking the interaction between the E4 isoform of apolipoprotein E (ApoE) and amyloid beta-peptide (Aβ) may be an avenue for pharmacological intervention in Alzheimer's disease (AD). The main regions of interaction of the two proteins are, respectively, ApoE244-272 and Aβ12-28. These protein segments are too large to facilitate the design of small molecule inhibitors. We mapped the primary components of ApoE/Aβ interaction to smaller peptide segments. Within the three motifs that are primarily responsible for ApoE/Aβ interaction, we identified four peptides that substantially block ApoE/Aβ interaction and further improved their inhibitory activity by rational hydrophobic amino acid substitution. Moreover, the mapping results provide the clue that the Aβ residues which interact with ApoE appear to be in the same region where Aβ self-interacts. According to this information, we found that Congo Red and X-34 could strongly inhibit ApoE/Aβ interaction. Our findings extend our understanding of ApoE/Aβ interaction and may guide the discovery of inhibitors that treat AD by antagonizing ApoE/Aβ interaction.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, Reinwald LT, Carter D, Felton A, Holtzman DM, Mintun MA, Klunk WE, Morris JC. Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. ACTA ACUST UNITED AC 2010; 66:1557-62. [PMID: 20008664 DOI: 10.1001/archneurol.2009.279] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, there have been no reports of individuals who have been characterized longitudinally using clinical and cognitive measures and who transitioned from cognitive normality to early symptomatic Alzheimer disease (AD) during a period when both cerebrospinal fluid (CSF) markers and Pittsburgh Compound B (PiB) amyloid imaging were obtained. OBJECTIVE To determine the temporal relationships of clinical, cognitive, CSF, and PiB amyloid imaging markers of AD. DESIGN Case report. SETTING Alzheimer disease research center. PARTICIPANT Longitudinally assessed 85-year-old man in a memory and aging study who was cognitively normal at his initial and next 3 annual assessments. MAIN OUTCOME MEASURES Serial clinical and psychometric assessments over 6 years in addition to PiB imaging with positron emission tomography (PET) and CSF biomarker assays before autopsy. RESULTS Decline in measures of episodic memory and, to a lesser degree, working memory began at about age 88 years. PiB PET amyloid imaging was negative at age 88(1/2) years, but at age 89(1/2) years there was reduced amyloid beta 42 and elevated levels of tau in the CSF. Beginning at age 89 years, very mild cognitive and functional decline reported by his collateral source resulted in a diagnosis of very mild dementia of the Alzheimer type. After death at age 91 years, the autopsy revealed foci of frequent neocortical diffuse amyloid beta plaques sufficient to fulfill Khachaturian neuropathologic criteria for definite AD, but other neuropathologic criteria for AD were not met because only sparse neuritic plaques and neurofibrillary tangles were present. Postmortem biochemical analysis of the cerebral tissue confirmed that PiB PET binding was below the level needed for in vivo detection. CONCLUSION Clinical, cognitive, and CSF markers consistent with AD may precede detection of cerebral amyloid beta using amyloid imaging agents such as PiB that primarily label fibrillar amyloid beta plaques.
Collapse
Affiliation(s)
- Nigel J Cairns
- Alzheimer's Disease Research Center, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang E, Honson NS, Bandyopadhyay B, Funk KE, Jensen JR, Kim S, Naphade S, Kuret J. Modulation and detection of tau aggregation with small-molecule ligands. Curr Alzheimer Res 2009; 6:409-14. [PMID: 19874263 DOI: 10.2174/156720509789207976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/16/2009] [Indexed: 11/22/2022]
Abstract
Recent results from high-throughput and other screening approaches reveal that small molecules can directly interact with recombinant full-length tau monomers and fibrillar tau aggregates in three distinct modes. First, in the high concentration regime (>10 micromolar), certain anionic molecules such as Congo red efficiently promote tau filament formation through a nucleation-elongation mechanism involving a dimeric nucleus and monomer-mediated elongation. These compounds are useful for modeling tau aggregation in vitro and in biological models. Second, in the low concentration regime (<1 micromolar), other ligands, including cyanine dyes, display aggregation antagonist activity. Compounds that can prevent or reverse fibrillization are candidate modifiers of disease pathology. Finally, certain compounds bind mature tau fibrils with varying affinities at multiple binding sites without modulating the aggregation reaction. For some ligands, >10-fold selectivity for tau aggregates relative to filaments composed of beta-amyloid or alpha-synuclein can be demonstrated at the level of binding affinity. Together these observations suggest that small-molecules have utility for interrogating the tau aggregation pathway, for inhibiting neuritic lesion formation, and for selective pre-mortem detection of neurofibrillary lesions through whole brain imaging.
Collapse
Affiliation(s)
- Edward Chang
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Iwakiri M, Mizukami K, Ikonomovic MD, Ishikawa M, Abrahamson EE, DeKosky ST, Asada T. An immunohistochemical study of GABA A receptor gamma subunits in Alzheimer's disease hippocampus: relationship to neurofibrillary tangle progression. Neuropathology 2009; 29:263-9. [PMID: 19019179 PMCID: PMC3078755 DOI: 10.1111/j.1440-1789.2008.00978.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunohistochemical characterization of the distribution of GABA(A) receptor subunits gamma1/3 and 2 in the hippocampus relative to neurofibrillary tangle (NFT) pathology staging was performed in cognitively normal subjects (Braak stage I/II, n = 4) and two groups of Alzheimer's disease (AD) patients (Braak stage III/IV, n = 4; Braak stage V/VI, n = 8). In both Braak groups of AD patients, neuronal gamma1/3 and gamma2 immunoreactivity was preserved in all hippocampal subfields. However, compared to normal controls neuronal gamma1/3 immunoreactivity was more intense in several end-stage AD subjects. Despite increased NFT pathology in the Braak V/VI AD group, GABA(A)gamma1/3 and gamma2 immunoreactivity did not co-localize with markers of NFT. These results suggest that upregulating or preserving GABA(A)gamma1/3 and gamma2 receptors may protect neurons against neurofibrillary pathology in AD.
Collapse
Affiliation(s)
- Masahiko Iwakiri
- Department of Psychiatry, Ishizaki Hosipital,, 4698Kamiishizaki, Ibaraki-machi, Ibaraki 311-3122, Japan
| | - Katsuyoshi Mizukami
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba city, Ibaraki 305-8575, Japan
| | - Milos D. Ikonomovic
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, Pennsylvania 15213, USA
- Department of Psychiatry, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, Pennsylvania 15213, USA
| | - Masanori Ishikawa
- Department of Psychiatry, National Center of Neurology and Psychiatry,4-1-1Ogawahigashi-machi, Kodaira city, Tokyo, Japan
| | - Eric E. Abrahamson
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, Pennsylvania 15213, USA
| | - Steven T. DeKosky
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, Pennsylvania 15213, USA
- Department of Psychiatry, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, Pennsylvania 15213, USA
| | - Takashi Asada
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba city, Ibaraki 305-8575, Japan
| |
Collapse
|
37
|
Abstract
ABCA1, a member of the ATP-binding cassette family of transporters, lipidates ApoE (apolipoprotein A) and is essential for the generation of HDL (high-density lipoprotein)-like particles in the CNS (central nervous system). Lack of Abca1 increases amyloid deposition in several AD (Alzheimer's disease) mouse models. We hypothesized that deletion of only one copy of Abca1 in APP23 (where APP is amyloid precursor protein) AD model mice will aggravate memory deficits in these mice. Using the Morris Water Maze, we demonstrate that 2-year-old Abca1 heterozygous APP23 mice (referred to as APP23/het) have impaired learning during acquisition, and impaired memory retention during the probe trial when compared with age-matched wild-type mice (referred to as APP23/wt). As in our previous studies, the levels of ApoE in APP23/het mice were decreased, but the differences in the levels of Aβ and thioflavin-S-positive plaques between both groups were insignificant. Importantly, dot blot analysis demonstrated that APP23/het mice have a significantly higher level of soluble A11-positive Aβ (amyloid β protein) oligomers compared with APP23/wt which correlated negatively with cognitive performance. To confirm this finding, we performed immunohistochemistry with the A11 antibody, which revealed a significant increase of A11-positive oligomer structures in the CA1 region of hippocampi of APP23/het. This characteristic region-specific pattern of A11 staining was age-dependent and was missing in younger APP23 mice lacking Abca1. In contrast, the levels of Aβ*56, as well as other low-molecular-mass Aβ oligomers, were unchanged among the groups. Overall, the results of the present study demonstrate that in aged APP23 mice memory deficits depend on Abca1 and are likely to be mediated by the amount of Aβ oligomers deposited in the hippocampus.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review will focus on the coming proliferation of amyloid-beta imaging tracers and give an opinion on how the Alzheimer's disease field can develop a systematic means of evaluating which tracers are useful and how the useful tracers compare to each other. RECENT FINDINGS Several new tracers have been reported to be useful for human amyloid-beta imaging. The most recent of these are labeled with fluorine-18. Compared with the 20 min half-life of carbon-11 used in the most widely used tracer, Pittsburgh Compound-B, the 110 min half-life of fluorine-18 allows for wider utilization in research and clinical settings. SUMMARY It is likely that more than one fluorine-18-labeled tracer will come into common use. The use of preclinical and clinical 'bridging studies' to [C-11]Pittsburgh Compound-B could be a means to determine whether the sizable body of knowledge already gained in [C-11]Pittsburgh Compound-B studies can be applied to the understanding of these new tracers and to form a basis for the comparison among them. This approach could save resources and help sort out a potentially bewildering onslaught of new amyloid-beta imaging tracers.
Collapse
Affiliation(s)
- William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
39
|
Rapid detection of Abeta deposits in APP transgenic mice by Hoechst 33342. Neurosci Lett 2008; 448:279-81. [PMID: 18955112 DOI: 10.1016/j.neulet.2008.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
The accumulation of beta-amyloid (Abeta) is the earliest event seen in the neocortex and hippocampus of Alzheimer's disease (AD) patients. Transgenic mouse models of Abeta deposition are excellent tools for validating pharmacological therapies for reducing Abeta burden. Sensitive and rapid probes should be needed for detecting Abeta plaques ex vivo and in vivo in the transgenic mouse models. However, a thioflavin derivative, Pittsburgh Compound-B (PIB), which is a successful PET tracer for detecting Abeta plaques in AD brains, does not visualize Abeta plaques in APP and PS1/APP transgenic mice. Here, we report that Hoechst 33342, a cell-permeable fluorescent probe for staining DNA and nuclei, also detects Abeta plaques in APP Tg mouse. These findings could allow us to rapidly detect Abeta plaques in AD mouse models, and to develop improved compounds for detecting Abeta plaques in vivo in mouse models.
Collapse
|
40
|
Klunk WE. Biopsy support for the validity of Pittsburgh compound B positron emission tomography with a twist. ARCHIVES OF NEUROLOGY 2008; 65:1281-3. [PMID: 18852340 PMCID: PMC2637565 DOI: 10.1001/archneur.65.10.1281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
41
|
Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. J Histochem Cytochem 2008; 56:1065-73. [PMID: 18678882 DOI: 10.1369/jhc.2008.951855] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proinflammatory enzyme 5-lipoxygenase (5-LOX) is upregulated in Alzheimer's disease (AD), but its localization and association with the hallmark lesions of the disease, beta-amyloid (Abeta) plaques and neurofibrillary tangles (NFTs), is unknown. This study examined the distribution and cellular localization of 5-LOX in the medial temporal lobe from AD and control subjects. The spatial relationship between 5-LOX immunoreactive structures and AD lesions was also examined. We report that, in AD subjects, 5-LOX immunoreactivity is elevated relative to controls, and its localization is dependent on the antibody-targeted portion of the 5-LOX amino acid sequence. Carboxy terminus-directed antibodies detected 5-LOX in glial cells and neurons, but less frequently in neurons with dystrophic (NFT) morphology. In contrast, immunoreactivity observed using 5-LOX amino terminus-directed antibodies was virtually absent in neurons and abundant in NFTs, neuritic plaques, and glia. Double-labeling studies showed a close association of 5-LOX-immunoreactive processes and glial cells with Abeta immunoreactive plaques and vasculature and also detected 5-LOX in tau immunoreactive and amyloid containing NFTs. Different immunolabeling patterns with antibodies against carboxy vs amino terminus of 5-LOX may be caused by post-translational modifications of 5-LOX protein in Abeta plaques and NFTs. The relationship between elevated intracellular 5-LOX and hallmark AD pathological lesions provides further evidence that neuroinflammatory pathways contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, BSTWR S-521, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- William E. Klunk
- Department of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chester A. Mathis
- Department of Radiology, Pharmacology, and Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
43
|
Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008; 131:1630-45. [PMID: 18339640 PMCID: PMC2408940 DOI: 10.1093/brain/awn016] [Citation(s) in RCA: 691] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 12/29/2007] [Accepted: 01/21/2008] [Indexed: 11/13/2022] Open
Abstract
The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to beta-pleated sheet aggregates of the amyloid-beta (Abeta) peptide in vitro. The in vivo retention of PiB in brains of people with Alzheimer's disease shows a regional distribution that is very similar to distribution of Abeta deposits observed post-mortem. However, the basis for regional variations in PiB binding in vivo, and the extent to which it binds to different types of Abeta-containing plaques and tau-containing neurofibrillary tangles (NFT), has not been thoroughly investigated. The present study examined 28 clinically diagnosed and autopsy-confirmed Alzheimer's disease subjects, including one Alzheimer's disease subject who had undergone PiB-PET imaging 10 months prior to death, to evaluate region- and substrate-specific binding of the highly fluorescent PiB derivative 6-CN-PiB. These data were then correlated with region-matched Abeta plaque load and peptide levels, [(3)H]PiB binding in vitro, and in vivo PET retention levels. We found that in Alzheimer's disease brain tissue sections, the preponderance of 6-CN-PiB binding is in plaques immunoreactive to either Abeta42 or Abeta40, and to vascular Abeta deposits. 6-CN-PiB labelling was most robust in compact/cored plaques in the prefrontal and temporal cortices. While diffuse plaques, including those in caudate nucleus and presubiculum, were less prominently labelled, amorphous Abeta plaques in the cerebellum were not detectable with 6-CN-PiB. Only a small subset of NFT were 6-CN-PiB positive; these resembled extracellular 'ghost' NFT. In Alzheimer's disease brain tissue homogenates, there was a direct correlation between [(3)H]PiB binding and insoluble Abeta peptide levels. In the Alzheimer's disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [(3)H]PiB binding, insoluble Abeta peptide levels, 6-CN-PiB- and Abeta plaque load, but not with measures of NFT. These results demonstrate, in a typical Alzheimer's disease brain, that PiB binding is highly selective for insoluble (fibrillar) Abeta deposits, and not for neurofibrillary pathology. The strong direct correlation of in vivo PiB retention with region-matched quantitative analyses of Abeta plaques in the same subject supports the validity of PiB-PET imaging as a method for in vivo evaluation of Abeta plaque burden.
Collapse
Affiliation(s)
- Milos D. Ikonomovic
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William E. Klunk
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Eric E. Abrahamson
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chester A. Mathis
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Julie C. Price
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nicholas D. Tsopelas
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brian J. Lopresti
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Scott Ziolko
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Wenzhu Bi
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William R. Paljug
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Manik L. Debnath
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Caroline E. Hope
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Barbara A. Isanski
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ronald L. Hamilton
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Steven T. DeKosky
- Department of Neurology, Department of Psychiatry, Department of Radiology and Department of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
44
|
Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography. J Neurosci 2007; 27:10957-68. [PMID: 17928437 DOI: 10.1523/jneurosci.0673-07.2007] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide the first evidence for the capability of a high-resolution positron emission tomographic (PET) imaging system in quantitatively mapping amyloid accumulation in living amyloid precursor protein transgenic (Tg) mice. After the intravenous administration of N-[11C]methyl-2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (or [11C]PIB for "Pittsburgh Compound-B") with high-specific radioactivity, the Tg mice exhibited high-level retention of radioactivity in amyloid-rich regions. PET investigation for Tg mice over an extended range of ages, including longitudinal assessments, demonstrated age-dependent increase in radioligand binding consistent with progressive amyloid accumulation. Reduction in amyloid levels in the hippocampus of Tg mice was also successfully monitored by multiple PET scans along the time course of anti-amyloid treatment using an antibody against amyloid beta peptide (Abeta). Moreover, PET scans with [18F]fluoroethyl-DAA1106, a radiotracer for activated glia, were conducted for these individuals parallel to amyloid imaging, revealing treatment-induced neuroinflammatory responses, the magnitude of which intimately correlated with the levels of pre-existing amyloid estimated by [11C]PIB. It is also noteworthy that the localization and abundance of [11C]PIB autoradiographic signals were closely associated with those of N-terminally truncated and modified Abeta, AbetaN3-pyroglutamate, in Alzheimer's disease (AD) and Tg mouse brains, implying that the detectability of amyloid by [11C]PIB positron emission tomography is dependent on the accumulation of specific Abeta subtypes. Our results support the usefulness of the small animal-dedicated PET system in conjunction with high-specific radioactivity probes and appropriate Tg models not only for clarifying the mechanistic properties of amyloidogenesis in mouse models but also for preclinical tests of emerging diagnostic and therapeutic approaches to AD.
Collapse
|
45
|
Nilsson KPR, Aslund A, Berg I, Nyström S, Konradsson P, Herland A, Inganäs O, Stabo-Eeg F, Lindgren M, Westermark GT, Lannfelt L, Nilsson LNG, Hammarström P. Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer's disease using novel luminescent probes. ACS Chem Biol 2007; 2:553-60. [PMID: 17672509 DOI: 10.1021/cb700116u] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using luminescent conjugated polyelectrolyte probes (LCPs), we demonstrate the possibility to distinguish amyloid-beta 1-42 peptide (Abeta1-42) fibril conformations, by analyzing in vitro generated amyloid fibrils of Abeta1-42 formed under quiescent and agitated conditions. LCPs were then shown to resolve such conformational heterogeneity of amyloid deposits in vivo. A diversity of amyloid deposits depending upon morphology and anatomic location was illustrated with LCPs in frozen ex vivo brain sections from a transgenic mouse model (tg-APP swe) of Alzheimer's disease. Comparative LCP fluorescence showed that compact-core plaques of amyloid beta precursor protein transgenic mice were composed of rigid dense amyloid. A more abundant form of amyloid plaque displayed morphology of a compact center with a protruding diffuse exterior. Surprisingly, the compact center of these plaques showed disordered conformations of the fibrils, and the exterior was composed of rigid amyloid protruding from the disordered center. This type of plaque appears to grow from more loosely assembled regions toward solidified amyloid tentacles. This work demonstrates how application of LCPs can prove helpful to monitor aggregate structure of in vivo formed amyloid deposits such as architecture, maturity, and origin.
Collapse
Affiliation(s)
- K Peter R Nilsson
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, Bi W, Hoge JA, Cohen AD, Ikonomovic MD, Saxton JA, Snitz BE, Pollen DA, Moonis M, Lippa CF, Swearer JM, Johnson KA, Rentz DM, Fischman AJ, Aizenstein HJ, DeKosky ST. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27:6174-84. [PMID: 17553989 PMCID: PMC3265970 DOI: 10.1523/jneurosci.0730-07.2007] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/01/2007] [Accepted: 05/01/2007] [Indexed: 11/21/2022] Open
Abstract
The amyloid cascade hypothesis suggests that the aggregation and deposition of amyloid-beta protein is an initiating event in Alzheimer's disease (AD). Using amyloid imaging technology, such as the positron emission tomography (PET) agent Pittsburgh compound-B (PiB), it is possible to explore the natural history of preclinical amyloid deposition in people at high risk for AD. With this goal in mind, asymptomatic (n = 5) and symptomatic (n = 5) carriers of presenilin-1 (PS1) mutations (C410Y or A426P) that lead to early-onset AD and noncarrier controls from both kindreds (n = 2) were studied with PiB-PET imaging and compared with sporadic AD subjects (n = 12) and controls from the general population (n = 18). We found intense and focal PiB retention in the striatum of all 10 PS1 mutation carriers studied (ages 35-49 years). In most PS1 mutation carriers, there also were increases in PiB retention compared with controls in cortical brain areas, but these increases were not as great as those observed in sporadic AD subjects. The two PS1 mutation carriers with a clinical diagnosis of early-onset AD did not show the typical regional pattern of PiB retention observed in sporadic AD. Postmortem evaluation of tissue from two parents of PS1C410Y subjects in this study confirmed extensive striatal amyloid deposition, along with typical cortical deposition. The early, focal striatal amyloid deposition observed in these PS1 mutation carriers is often is not associated with clinical symptoms.
Collapse
Affiliation(s)
- William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|