1
|
Bastian K, Orozco‐Moreno M, Thomas H, Hodgson K, Visser EA, Rossing E, Pijnenborg JFA, Eerden N, Wilson L, Saravannan H, Hanley O, Grimsley G, Frame F, Peng Z, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Maitland NJ, Heer R, Wang N, Goddard‐Borger ED, Guerrero RH, Boltje TJ, Drake RR, Scott E, Elliott DJ, Munkley J. FUT8 Is a Critical Driver of Prostate Tumour Growth and Can Be Targeted Using Fucosylation Inhibitors. Cancer Med 2025; 14:e70959. [PMID: 40387385 PMCID: PMC12086987 DOI: 10.1002/cam4.70959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND An unmet clinical need requires the discovery of new treatments for men facing advanced prostate cancer. Aberrant glycosylation is a universal feature of cancer cells and plays a key role in tumour growth, immune evasion and metastasis. Alterations in tumour glycosylation are closely associated with prostate cancer progression, making glycans promising therapeutic targets. Fucosyltransferase 8 (FUT8) drives core fucosylation by adding α1,6-fucose to the innermost GlcNAc residue on N-glycans. While FUT8 is recognised as a crucial factor in cancer progression, its role in prostate cancer remains poorly understood. METHODS & RESULTS Here, we demonstrate using multiple independent clinical cohorts that FUT8 is upregulated in high grade and metastatic prostate tumours, and in the blood of prostate cancer patients with aggressive disease. Using novel tools, including PhosL lectin immunofluorescence and N-glycan MALDI mass spectrometry imaging (MALDI-MSI), we find FUT8 underpins the biosynthesis of malignant core fucosylated N-glycans in prostate cancer cells and using both in vitro and in vivo models, we find FUT8 promotes prostate tumour growth, cell motility and invasion. Mechanistically we show FUT8 regulates the expression of genes and signalling pathways linked to prostate cancer progression. Furthermore, we find that fucosylation inhibitors can inhibit the activity of FUT8 in prostate cancer to suppress the growth of prostate tumours. CONCLUSIONS Our study cements FUT8-mediated core fucosylation as an important driver of prostate cancer progression and suggests targeting FUT8 activity for prostate cancer therapy as an exciting area to explore.
Collapse
Affiliation(s)
- Kayla Bastian
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Margarita Orozco‐Moreno
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Kirsty Hodgson
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Eline A. Visser
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | | | | | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Hasvini Saravannan
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Oliver Hanley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Grace Grimsley
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Fiona Frame
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Ziqian Peng
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Malcolm Crundwell
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Norman J. Maitland
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical MedicineThe University of SheffieldSheffieldUK
- Leicester Cancer Research Centre, Department of Genetics, Genomics, and Cancer SciencesUniversity of LeicesterLeicesterUK
| | - Ethan D. Goddard‐Borger
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ramon Hurtado Guerrero
- University of ZaragozaZaragozaSpain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Thomas J. Boltje
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Richard R. Drake
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Emma Scott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - David J. Elliott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Jennifer Munkley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| |
Collapse
|
2
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
3
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
6
|
Kanto N, Ohkawa Y, Kitano M, Maeda K, Shiida M, Ono T, Ota F, Kizuka Y, Kunimasa K, Nishino K, Mukai M, Seike M, Azuma A, Harada Y, Fukuda T, Gu J, Taniguchi N. A highly specific antibody against the core fucose of the N-glycan in IgG identifies the pulmonary diseases and its regulation by CCL2. J Biol Chem 2023; 299:105365. [PMID: 37865317 PMCID: PMC10663832 DOI: 10.1016/j.jbc.2023.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549 cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.
Collapse
Affiliation(s)
- Noriko Kanto
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Kitano
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kento Maeda
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Masafumi Shiida
- Research and Development Division, Minaris Medical Co, Ltd, Shizuoka, Japan
| | - Tatsuya Ono
- Research and Development Division, Minaris Medical Co, Ltd, Shizuoka, Japan
| | - Fumi Ota
- Disease Glycomics Team, Global Research Cluster, RIKEN, Saitama, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research, Gifu University, Gifu, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Mikio Mukai
- Deparetment of Medical Check-up, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoichiro Harada
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Naoyuki Taniguchi
- Depertment of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
7
|
Selionova M, Aibazov M, Sermyagin A, Belous A, Deniskova T, Mamontova T, Zharkova E, Zinovieva N. Genome-Wide Association and Pathway Analysis of Carcass and Meat Quality Traits in Karachai Young Goats. Animals (Basel) 2023; 13:3237. [PMID: 37893961 PMCID: PMC10603756 DOI: 10.3390/ani13203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. The work aimed to search for candidate genes related to body measurements and body weight of Karachai goats and develop an experimental PCR-RV test system for genotyping significant SNPs. Comparison of GWAS results for ages 4 and 8 months revealed 58 common SNPs for significant genotypes. 11 common SNPs were identified for body weight, 4 SNPs-for group of traits withers height, rump height, body length, 2 SNPs-for withers height and rump height, 1 SNP-for body length and chest depth. Structural annotation of genomic regions covering a window of ±0.20 Mb showed the presence of 288 genes; 52 of them had the described functions in accordance with gene ontology. The main molecular functions of proteins encoded by these genes are the regulation of transcription, cell proliferation, angiogenesis, body growth, fatty acid and lipid metabolism, nervous system development, and spermatogenesis. SNPs common to body weight and localized within a window of ±200 kb from the structural genes CRADD, HMGA2, MSRB3, FUT8, MAX, and RAB15 were selected to create a test system. The study of meat productivity after slaughter and chemical analysis of muscle tissue in Karachai goats at the age of 8 months of different genotypes according to the identified SNPs revealed that rs268269710 is the most promising for further research and use in breeding. The GG genotype is associated with a larger live weight of animals, a larger carcass yield, the content of the boneless part in it, and the ratio of protein and adipose tissue in meat preferred for dietary nutrition. These results will contribute to the genetic improvement of Karachai goats.
Collapse
Affiliation(s)
- Marina Selionova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Magomet Aibazov
- North Caucasian Agrarian Center, Zootechnicheski 15, 355017 Stavropol, Russia;
| | - Alexander Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Anna Belous
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Deniskova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Mamontova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Ekaterina Zharkova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Natalia Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| |
Collapse
|
8
|
Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. J Anim Sci Biotechnol 2023; 14:136. [PMID: 37805653 PMCID: PMC10559557 DOI: 10.1186/s40104-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Abdelbary M, Nolz JC. N-linked glycans: an underappreciated key determinant of T cell development, activation, and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00035. [PMID: 38027254 PMCID: PMC10662610 DOI: 10.1097/in9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Jin LW, di Lucente J, Mendiola UR, Tang X, Zivkovic AM, Lebrilla CB, Maezawa I. The role of FUT8-catalyzed core fucosylation in Alzheimer's amyloid-β oligomer-induced activation of human microglia. Glia 2023; 71:1346-1359. [PMID: 36692036 PMCID: PMC11021125 DOI: 10.1002/glia.24345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Fucosylation, especially core fucosylation of N-glycans catalyzed by α1-6 fucosyltransferase (fucosyltransferase 8 or FUT8), plays an important role in regulating the peripheral immune system and inflammation. However, its role in microglial activation is poorly understood. Here we used human induced pluripotent stem cells-derived microglia (hiMG) as a model to study the role of FUT8-catalyzed core fucosylation in amyloid-β oligomer (AβO)-induced microglial activation, in view of its significant relevance to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AβO and lipopolysaccharides (LPS) with a pattern of pro-inflammatory activation as well as enhanced core fucosylation and FUT8 expression within 24 h. Furthermore, we found increased FUT8 expression in both human AD brains and microglia isolated from 5xFAD mice, a model of AD-like cerebral amyloidosis. Inhibition of fucosylation in AβO-stimulated hiMG reduced the induction of pro-inflammatory cytokines, suppressed the activation of p38MAPK, and rectified phagocytic deficits. Specific inhibition of FUT8 by siRNA-mediated knockdown also reduced AβO-induced pro-inflammatory cytokines. We further showed that p53 binds to the two consensus binding sites in the Fut8 promoter, and that p53 knockdown abolished FUT8 overexpression in AβO-activated hiMG. Taken together, our evidence supports that FUT8-catalyzed core fucosylation is a signaling pathway required for AβO-induced microglia activation and that FUT8 is a component of the p53 signaling cascade regulating microglial behavior. Because microglia are a key driver of AD pathogenesis, our results suggest that microglial FUT8 could be an anti-inflammatory therapeutic target for AD.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Jacopo di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Ulises R. Mendiola
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, CA 95618
| | | | | | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| |
Collapse
|
11
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
12
|
Yang Q, Smagghe G, Staes A, Gevaert K, De Schutter K. α-1,6-fucosyltransferase plays a critical role during embryogenesis of the hemimetabolous insect Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 154:103918. [PMID: 36758646 DOI: 10.1016/j.ibmb.2023.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, modulating the properties of proteins. In insects, α-1,6-fucosyltransferase (FucT6) is an important enzyme in the glycosylation pathway, modifying the core structure of N-glycans on glycoproteins with the addition of a fucose residue. In our previous study, RNAi-mediated silencing of FucT6 in the third-instar nymphs of Nilaparvata lugens caused a failure of the ecdysis process during nymphal development, leading to high mortality. These results suggested the requirement of FucT6 during nymphal development in N. lugens. In this study, RNAi-mediated gene silencing of FucT6 in adults did not cause lethality. However, parental RNAi of FucT6 led to full failure in the hatching of eggs, and this effect was maternally mediated. Interestingly, gene expression levels of FucT6 in the eggs peaked at the katatrepsis event, where the embryo rotates 180° resulting in the head pointing towards the anterior side of the egg. Proteome analysis showed significant differences in the abundance of proteins between different embryonal developmental stages, suggesting the crucial role of FucT6 mediated core N-fucosylation in embryonal development. Therefore, correct α-1,6-fucosylation of glycoproteins is important for N. lugens during embryonic development and this study provides new insights into the role of N-glycosylation in embryogenesis in insects.
Collapse
Affiliation(s)
- Qun Yang
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
13
|
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24043786. [PMID: 36835197 PMCID: PMC9966421 DOI: 10.3390/ijms24043786] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eleni Papakonstantinou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
| | - Daiana Stolz
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +49-(0)-761-270-37050
| |
Collapse
|
14
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
15
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
16
|
Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj J 2022; 39:167-176. [PMID: 35089466 PMCID: PMC8795723 DOI: 10.1007/s10719-022-10041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Collapse
|
17
|
Fujita K, Hatano K, Hashimoto M, Tomiyama E, Miyoshi E, Nonomura N, Uemura H. Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:13333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| |
Collapse
|
18
|
Sanda M, Ahn J, Kozlik P, Goldman R. Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS. Sci Rep 2021; 11:23273. [PMID: 34857845 PMCID: PMC8639754 DOI: 10.1038/s41598-021-02838-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA. .,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA.
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, 20057, USA.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
19
|
Xiaoli L, Fengbin H, Shihui H, Xi N, Sheng L, Zhou W, Xueqin R, Jiafu W. Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing. Aging (Albany NY) 2021; 13:24710-24739. [PMID: 34837693 PMCID: PMC8660620 DOI: 10.18632/aging.203711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.
Collapse
Affiliation(s)
- Liu Xiaoli
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hu Fengbin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huang Shihui
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Niu Xi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Li Sheng
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Zhou
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ran Xueqin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Jiafu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Khoder-Agha F, Kietzmann T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol 2021; 42:101888. [PMID: 33602616 PMCID: PMC8113034 DOI: 10.1016/j.redox.2021.101888] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) carry out prime physiological roles as intracellular signaling agents, yet pathologically high concentrations of ROS cause irreversible damage to biomolecules, alter cellular programs and contribute to various diseases. While decades of intensive research have identified redox-related patterns and signaling pathways, very few addressed how the glycosylation machinery senses and responds to oxidative stress. A common trait among ROS and glycans residing on glycoconjugates is that they are both highly dynamic, as they are quickly fine-tuned in response to stressors such as inflammation, cancer and infectious diseases. On this account, the delicate balance of the redox potential, which is tightly regulated by dozens of enzymes including NOXs, and the mitochondrial electron transport chain as well as the fluidity of glycan biosynthesis resulting from the cooperation of glycosyltransferases, glycosidases, and nucleotide sugar transporters, is paramount to cell survival. Here, we review the broad spectrum of the interplay between redox changes and glycosylation with respect to their principle consequences on human physiology.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| |
Collapse
|
21
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
22
|
Yu C, Yang N, Wang W, Du X, Tang Q, Lin H, Li L. Blocking core fucosylation of epidermal growth factor (EGF) receptor prevents peritoneal fibrosis progression. Ren Fail 2021; 43:869-877. [PMID: 33993842 PMCID: PMC8143636 DOI: 10.1080/0886022x.2021.1918557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Peritoneal fibrosis (PF) ultimately causes ultrafiltration failure and peritoneal dialysis (PD) termination, but there are few effective therapies for it. Core fucosylation, which is catalyzed by α1,6-fucosyltransferase (Fut8) in mammals, may play a crucial role in PF development. This study aims to assess the effects of inhibiting core fucosylation of epidermal growth factor (EGF) receptor on PF rats. METHODS PF rats (established by 4.25% glucose dialysate) were treated with either an adenovirus-Fut8 short hairpin RNA (Fut8shRNA) or adenovirus-control. Masson's staining and net ultrafiltration were performed at week six. Fut8 level and core fucosylation of EGF receptor and collagen I in the peritoneal membrane were assessed, and EGF signaling was detected, including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) and their phosphorylation. Monocyte chemoattractant protein-1 (MCP-1) in peritoneal effluent was examined. RESULTS Fut8 was upregulated in PF rats but decreased after Fut8shRNA treatment. EGF and EGF receptor expression was upregulated in PF rats, while core fucosylation of EGF receptor decreased after Fut8shRNA treatment. Masson's staining results showed an increase in peritoneal thickness in PF rats but a decrease after Fut8shRNA treatment. Fut8shRNA treatment increased net ultrafiltration, reduced the expression of collagen I and MCP-1 compared to PF rats. Fut8shRNA treatment suppressed phosphorylation of STAT3 and NF-κB in the peritoneal membrane of PF rats. CONCLUSIONS Fut8shRNA treatment ameliorated the fibrotic changes in PF rats. A potential mechanism may be that Fut8shRNA treatment inactivated EGF signaling pathway by suppressing the phosphorylation of STAT3 and NF-κB.
Collapse
Affiliation(s)
- Changqing Yu
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Yang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weidong Wang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangning Du
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingzhu Tang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongli Lin
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Longkai Li
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Kuang M, Wu H, Hu L, Guo X, He D, Liu B, Chen M, Gu J, Gu J, Zeng X, Ruan Y. Up-regulation of FUT8 inhibits TGF-β1-induced activation of hepatic stellate cells during liver fibrogenesis. Glycoconj J 2021; 38:77-87. [PMID: 33608773 DOI: 10.1007/s10719-021-09975-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a continuous wound healing response caused by chronic liver injury, and the activation of hepatic stellate cells (HSCs) is considered as the main event for it. Core fucosylation catalyzed by FUT8 refers to adding the fucosyl moiety to the innermost GlcNAc residue of N-linked oligosaccharides and is involved in many biological processes such as cell differentiation, migration, and signaling transduction. Aberrant core fucosylation is associated with a variety of diseases including cardiovascular disease, tumors and neuroinflammation, but much less is understood in liver fibrosis. Herein, we reported FUT8 mRNA level was increased in patients with liver fibrosis from GEO database and positively correlated with fibrosis progression. FUT8 expression and the core fucosylation were also elevated in TAA-induced mouse liver fibrosis model, and were mainly distributed in the fibrous septum of mouse liver. TGF-β1, as the most pro-fibrogenic cytokine, could promote the expression of FUT8 and total core fucosylation levels in HSCs in vitro. However, up-regulation of FUT8 in turn inhibited TGF-β1-induced trans-differentiation, migration and pro-fibrogenic signaling pathways in HSCs. In conclusion, our results suggest that the up-regulation of FUT8 inhibits TGF-β1-induced HSC activation in a negative feedback loop, and provide potential new therapeutic strategy for liver fibrosis by targeting FUT8.
Collapse
Affiliation(s)
- Mengzhen Kuang
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Wu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lan Hu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinying Guo
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Daochuan He
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Liu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengqian Chen
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
24
|
Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021; 22:57. [PMID: 33451291 PMCID: PMC7811220 DOI: 10.1186/s12864-020-07341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. Conclusions The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07341-z.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
25
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
26
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
27
|
Liu SQ, Grantham A, Landry C, Granda B, Chopra R, Chakravarthy S, Deutsch S, Vogel M, Russo K, Seiss K, Tschantz WR, Rejtar T, Ruddy DA, Hu T, Aardalen K, Wagner JP, Dranoff G, D'Alessio JA. A CRISPR Screen Reveals Resistance Mechanisms to CD3-Bispecific Antibody Therapy. Cancer Immunol Res 2020; 9:34-49. [PMID: 33177106 DOI: 10.1158/2326-6066.cir-20-0080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
CD3-bispecific antibodies represent an important therapeutic strategy in oncology. These molecules work by redirecting cytotoxic T cells to antigen-bearing tumor cells. Although CD3-bispecific antibodies have been developed for several clinical indications, cases of cancer-derived resistance are an emerging limitation to the more generalized application of these molecules. Here, we devised whole-genome CRISPR screens to identify cancer resistance mechanisms to CD3-bispecific antibodies across multiple targets and cancer types. By validating the screen hits, we found that deficiency in IFNγ signaling has a prominent role in cancer resistance. IFNγ functioned by stimulating the expression of T-cell killing-related molecules in a cell type-specific manner. By assessing resistance to the clinical CD3-bispecific antibody flotetuzumab, we identified core fucosylation as a critical pathway to regulate flotetuzumab binding to the CD123 antigen. Disruption of this pathway resulted in significant resistance to flotetuzumab treatment. Proper fucosylation of CD123 was required for its normal biological functions. In order to treat the resistance associated with fucosylation loss, flotetuzumab in combination with an alternative targeting CD3-bispecific antibody demonstrated superior efficacy. Together, our study reveals multiple mechanisms that can be targeted to enhance the clinical potential of current and future T-cell-engaging CD3-bispecific antibody therapies.
Collapse
Affiliation(s)
- Si-Qi Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Alyssa Grantham
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Casey Landry
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Brian Granda
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Sabine Deutsch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Vogel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Katie Russo
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Katherine Seiss
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Tomas Rejtar
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Tiancen Hu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Kimberly Aardalen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Joel P Wagner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
28
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
29
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
30
|
Li H, Patel V, DiMartino SE, Froehlich JW, Lee RS. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes. Mol Cell Proteomics 2020; 19:1767-1776. [PMID: 32737218 DOI: 10.1074/mcp.ra120.002225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viral Patel
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon E DiMartino
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Tsutsui M, Sianturi J, Masui S, Tokunaga K, Manabe Y, Fukase K. Efficient Synthesis of Antigenic Trisaccharides ContainingN-Acetylglucosamine: Protection of NHAc as NAc2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masato Tsutsui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Julinton Sianturi
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Seiji Masui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Kento Tokunaga
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| |
Collapse
|
32
|
Schweigert A, Areaux RG. Childhood glaucoma in association with congenital disorder of glycosylation caused by mutations in fucosyltransferase 8. J AAPOS 2019; 23:351-352. [PMID: 31580894 DOI: 10.1016/j.jaapos.2019.08.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 10/25/2022]
Abstract
A rare form of congenital disorder of glycosylation (CDG) was recently discovered in individuals with biallelic mutations in fucosyltransferase 8 (FUT8). The clinical characteristics of patients with FUT8-CDG include intrauterine growth retardation, feeding difficulties, hypotonia, microcephaly, seizures, short stature, developmental delay, and respiratory abnormalities. We report the first case of glaucoma in an infant with FUT8-CGD and hypothesize a pathogenesis for glaucoma.
Collapse
Affiliation(s)
- Anna Schweigert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis.
| | - Raymond G Areaux
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis
| |
Collapse
|
33
|
Sun Y, Sun W, Yang N, Liu J, Tang H, Li F, Sun X, Gao L, Pei F, Liu J, Lin H, Taihua W. The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int J Biochem Cell Biol 2019; 117:105639. [PMID: 31669139 DOI: 10.1016/j.biocel.2019.105639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
The main event in the progression of pulmonary fibrosis is the appearance of myofibroblasts. Recent evidence supports pericytes as a major source of myofibroblasts. TGFβ/Smad2/3 and PDGF/Erk signaling pathways are important for regulating pericyte activation. Previous studies have demonstrated that PDGFβR and TGFβR are modified by core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). The aim of this study was to compare the effect of inhibiting CF versus the PDGFβR and TGFβR signaling pathways on pericyte activation and lung fibrosis. FUT8shRNA was used to knock down FUT8-mediated CF both in vivo and in isolated lung pericytes. The small molecule receptor antagonists, ST1571 (imatinib) and LY2109761, were used to block the PDGFβ/pErk and TGFβ/pSmad2/3 signaling pathways, respectively. Pericyte detachment and myofibroblastic transformation were assessed by immunofluorescence and Western blot. Histochemical and immunohistochemical staining were used to evaluate the effect of the intervention on pulmonary fibrosis. Our findings demonstrate that FUT8shRNA significantly blocked pericyte activation and the progression of pulmonary fibrosis, achieving intervention effects superior to the small molecule inhibitors. The PDGFβ and TGFβ pathways were simultaneously affected by the CF blockade. FUT8 expression was upregulated with the transformation of pericytes into myofibroblasts, and silencing FUT8 expression inhibited this transformation. In addition, there is a causal relationship between CF modification catalyzed by FUT8 and pulmonary fibrosis. Our findings suggest that FUT8 may be a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Sun
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Wei Sun
- Post-doctoral research station, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, PR China
| | - Ning Yang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fengzhou Li
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fuyang Pei
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Jia Liu
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| | - Wu Taihua
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
34
|
Fang M, Kang L, Wang X, Guo X, Wang W, Qin B, Du X, Tang Q, Lin H. Inhibition of core fucosylation limits progression of diabetic kidney disease. Biochem Biophys Res Commun 2019; 520:612-618. [PMID: 31623829 DOI: 10.1016/j.bbrc.2019.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND FUT8-mediated core fucosylation, which transfers a fucose residue from GDP-fucose to core-GlcNAc of the N-linked type glycoproteins, is crucial for signaling receptors function. Core fucosylation is involved in various biological processes such as cell proliferation, apoptosis, differentiation and immune regulation. Our previous studies demonstrated that inhibiting core fucosylation prevented renal interstitial fibrosis of UUO murine models, but its role in the development of diabetic kidney disease (DKD) remains unclear. This study aimed to clarify the protective effects and molecular mechanisms during the progress of DKD by inhibiting core fucosylation in vivo. METHODS Core fucosylation was examined in streptozotocin (STZ)-induced diabetic mouse model. Then a new Fut8 mutation mouse model in which exon 7 of Fut8 gene is deleted was constructed for diabetes induction. Metabolic and renal parameters were measured. Renal structure, fibrosis, and podocyte injury were assessed, and underlying mechanisms were investigated. RESULTS The levels of fasting blood glucose, glycated hemoglobin, kidney-weight-to- body-weight (KW/BW) and urine albumin-to-creatinine (ACR) were increased at 16 weeks post injection. KW/BW and urine ACR were decreased significantly by inhibiting core fucosylation. The renal pathology, fibrosis, and podocyte injury were mitigated significantly by inhibiting core fucosylation. The protective effects of inhibiting core fucosylation were mediated by downregulated of the phosphorylation of Smad2/3 and extracellular signal-regulated kinase (ERK). CONCLUSIONS Our results indicate that FUT8-based treatment might be a promising intervention strategy in therapeutic paradigm of DKD.
Collapse
Affiliation(s)
- Ming Fang
- Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, China; Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Le Kang
- Department of Physiology and Pathophysiology, Medical College of Dalian University, 10 Xuefu Road, Dalian, 116622, China
| | - Xiaolang Wang
- Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Xianan Guo
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Biaojie Qin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Xiangning Du
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Qingzhu Tang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China
| | - Hongli Lin
- Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, China; Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Center for Kidney Diseases Translational Medicine of Liaoning Province, Dalian, 116011, China.
| |
Collapse
|
35
|
Egashira Y, Suganuma M, Kataoka Y, Higa Y, Ide N, Morishita K, Kamada Y, Gu J, Fukagawa K, Miyoshi E. Establishment and characterization of a fucosylated α-fetoprotein-specific monoclonal antibody: a potential application for clinical research. Sci Rep 2019; 9:12359. [PMID: 31451706 PMCID: PMC6710264 DOI: 10.1038/s41598-019-48821-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/13/2019] [Indexed: 11/08/2022] Open
Abstract
The Lens culinaris agglutinin (LCA)-reactive fraction of α-fetoprotein (AFP-L3) is a well-known cancer biomarker for hepatocellular carcinoma (HCC) with very high specificity. Because LCA recognizes only bi-antennary N-glycans with a core fucose, some of fucosylated AFP in HCC patients may not be detected. Then glycan antibodies, which recognize both specific glycan and protein, are desired for glycobiology. Here, we successfully established a novel glycan antibody for fucosylated AFP and demonstrated its potential clinical application. After immunization with a fucosylated AFP peptide, positive screening was performed for fucosylated AFP peptides using solid-phase enzyme-linked immunosorbent assay (ELISA). The newly developed antibody was designated: fucosylated AFP-specific mAb (FasMab). Western blot analysis showed that FasMab reacted with AFP produced by HepG2 cells, but not with AFP produced by α-1,6-fucosyltransferase deficient HepG2 cells. The specific binding of FasMab to fucosylated AFP was confirmed with ELISA as well as western blot analysis. A preliminary high sensitivity chemiluminescence enzyme immunoassay kit showed increased levels of fucosylated AFP in the sera of patients with HCC, but not in the sera of normal patients, or patients with chronic liver diseases. Thus, the novel glycan antibody, FasMab, is a promising tool to study fucosylated AFP with clinical and basic research applications.
Collapse
Affiliation(s)
- Yuriko Egashira
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Masatoshi Suganuma
- Central Research Laboratory, Sysmex Corporation, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yukiko Kataoka
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Yukiko Higa
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Nobuyuki Ide
- Central Research Laboratory, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Yamada-oka, Suita, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Yamada-oka, Suita, 565-0871, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima, Aobaku, Sendai, 981-8558, Miyagi, Japan
| | - Koji Fukagawa
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan.
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Yamada-oka, Suita, 565-0871, Japan.
| |
Collapse
|
36
|
Yang Y, Zhang D, Qin H, Liu S, Yan Q. poFUT1 promotes endometrial decidualization by enhancing the O-fucosylation of Notch1. EBioMedicine 2019; 44:563-573. [PMID: 31201143 PMCID: PMC6606927 DOI: 10.1016/j.ebiom.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial stromal cell decidualization is critical for embryo implantation. Dysfunctional decidualization leads to implantation failure, miscarriage and even pregnancy associated disorders in subsequent pregnancy trimesters. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is the key enzyme for the O-fucosylation of proteins. However, the role and mechanism of poFUT1 in human endometrial stromal cell decidualization remain elusive. METHODS We employed immunohistochemistry to detect the level of poFUT1 in the uterine endometrium from those of the proliferative phase, secretory phase, early pregnancy women and miscarriage patients. Using human endometrial stromal cells (hESCs) and a mouse model, the underlying mechanisms of poFUT1 in decidualization was investigated. FINDINGS The level of poFUT1 was increased in the stromal cells of the secretory phase relative to those in the proliferative phase of the menstrual cycle, and decreased in the stromal cells of miscarriage patients compared to women with healthy early pregnancies. Furthermore, we found that poFUT1 promoted hESCs decidualization. The results also demonstrated that poFUT1 increased O-fucosylation on Notch1 in hESCs, which activated Notch1 signaling pathway. Activated Notch1 (NICD), as a specific trans-factor of PRL and IGFBP1 promoters, enhanced PRL and IGFBP1 transcriptional activity, thus inducing hESCs decidualization. INTERPRETATION Level of poFUT1 is lower in the uterine endometrium from miscarriage patients than early pregnancy women. poFUT1 is critical in endometrial decidualization by controlling the O-fucosylation on Notch1. Our findings provide a new mechanism perspective on poFUT1 in uterine decidualization that may be a useful diagnostic and therapeutic target for miscarriage. FUND: National Natural Science Foundation of China (31770857, 31670810 and 31870794). Liaoning Provincial Program for Top Discipline of Basic Medical Sciences.
Collapse
Affiliation(s)
- Yu Yang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Dandan Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
37
|
Herrera H, Dilday T, Uber A, Scott D, Zambrano JN, Wang M, Angel PM, Mehta AS, Drake RR, Hill EG, Yeh ES. Core-Fucosylated Tetra-Antennary N-Glycan Containing A Single N-Acetyllactosamine Branch Is Associated with Poor Survival Outcome in Breast Cancer. Int J Mol Sci 2019; 20:E2528. [PMID: 31126011 PMCID: PMC6566954 DOI: 10.3390/ijms20102528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023] Open
Abstract
(1) Glycoproteins account for ~80% of proteins located at the cell surface and in the extracellular matrix. A growing body of evidence indicates that α-L-fucose protein modifications contribute to breast cancer progression and metastatic disease. (2) Using a combination of techniques, including matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) based in cell and on tissue imaging and glycan sequencing using exoglycosidase analysis coupled to hydrophilic interaction ultra-high performance liquid chromatography (HILIC UPLC), we establish that a core-fucosylated tetra-antennary glycan containing a single N-acetyllactosamine (F(6)A4G4Lac1) is associated with poor clinical outcomes in breast cancer, including lymph node metastasis, recurrent disease, and reduced survival. (3) This study is the first to identify a single N-glycan, F(6)A4G4Lac1, as having a correlation with poor clinical outcomes in breast cancer.
Collapse
Affiliation(s)
- Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Tinslee Dilday
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Allison Uber
- Department of Pediatrics, Division of Hematology/Oncology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
38
|
Lu X, Zhang D, Shoji H, Duan C, Zhang G, Isaji T, Wang Y, Fukuda T, Gu J. Deficiency of α1,6-fucosyltransferase promotes neuroinflammation by increasing the sensitivity of glial cells to inflammatory mediators. Biochim Biophys Acta Gen Subj 2019; 1863:598-608. [DOI: 10.1016/j.bbagen.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
39
|
Yu M, Cui X, Wang H, Liu J, Qin H, Liu S, Yan Q. FUT8 drives the proliferation and invasion of trophoblastic cells via IGF-1/IGF-1R signaling pathway. Placenta 2018; 75:45-53. [PMID: 30712666 DOI: 10.1016/j.placenta.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Trophoblast proliferation and invasion are essential for embryo implantation and placentation. Protein glycosylation is one of the most common and vital post-translational modifications, regulates protein physical and biochemical properties. FUT8 is the only known fucosyltransferase responsible for catalyzing α1,6-fucosylation in mammals, and α1,6-fucosylated glycoproteins are found to participate in various physiopathological processes. However, whether FUT8/α1,6-fucosylation modulates the functions of trophoblastic cells remains elusive. METHODS FUT8 in human placenta villi during 6-8 gestational weeks and trophoblastic cells were detected by Western blot and immunofluorescent staining. α1,6-fucosylation in tissues or cells were measured by Lectin LCA (Lens culinaris) fluorescent staining and Lectin blot. FUT8 expression was down-regulated by siRNA transfection in JAR and JEG-3 cells, and cell viability, motility and invasiveness ability were detected by the functional experiments. α1,6-fucosylation of insulin-like growth factor receptor (IGF-1R) was examined by immunoprecipitation, and the amount of phosphorylated IGF-1R was detected in FUT8 down-regulated JAR cells. RESULTS Human placenta villi and trophoblastic cells expressed FUT8/α1,6-fucosylation. Knockdown FUT8 by siRNA transfection suppressed the proliferation, epithelial-mesenchymal transition, migration and invasion of JAR and JEG-3 cells. Furthermore, we found that FUT8 modified the α1,6-fucosylation of IGF-1R, and regulated IGF-1 dependent activation of IGF-1R, MAPK and PI3K/Akt signaling pathways in JAR cells. CONCLUSIONS Our results implicate a critical role for FUT8 in maintaining the normal functions of trophoblastic cells, suggesting manipulating FUT8 may be an effective approach in pregnancy.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China.
| |
Collapse
|
40
|
Li L, Shen N, Wang N, Wang W, Tang Q, Du X, Carrero JJ, Wang K, Deng Y, Li Z, Lin H, Wu T. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int 2018; 93:1384-1396. [DOI: 10.1016/j.kint.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/25/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
41
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Li LK, Wang N, Wang WD, Du XN, Wen XY, Wang LY, Deng YY, Wang DP, Lin HL. Blocking Posttranslational Core Fucosylation Ameliorates Rat Peritoneal Mesothelial Cell Epithelial-Mesenchymal Transition. Chin Med J (Engl) 2018; 130:2147-2155. [PMID: 28875950 PMCID: PMC5598325 DOI: 10.4103/0366-6999.213963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Core fucosylation (CF), catalyzed by α-1,6 fucosyltransferase (Fut8) in mammals, plays an important role in pathological processes through posttranslational modification of key signaling receptor proteins, including transforming growth factor (TGF)-β receptors and platelet-derived growth factor (PDGF) receptors. However, its effect on peritoneal fibrosis is unknown. Here, we investigated its influence on epithelial-mesenchymal transition (EMT) of rat peritoneal mesothelial cells (PMCs) in vitro induced by a high-glucose (HG) culture solution. Methods: Rat PMCs were first cultured in a HG (2.5%) culture solution to observe the CF expression level (fluorescein isothiocyanate-lens culinaris agglutinin), we next established a knockdown model of rat PMCs in vitro with Fut8 small interfering RNA (siRNA) to observe whether inhibiting CF decreases the messenger RNA (mRNA) expression and protein expression of Fut8 and reverses EMT status. Rat PMCs were randomly divided into control group, mock group (transfected with scrambled siRNA), Fut8 siRNA group, HG group, HG + mock group, and HG + Fut8 siRNA group. Finally, we examined the activation of TGF-β/Smad2/3 signaling and PDGF/extracellular signal-regulated kinase (ERK) signaling to observe the influence of CF on them. Results: CF, Fut8 mRNA, and protein expression were all significantly upregulated in HG- induced EMT model than those in the control rat PMCs (P < 0.05). Fut8 siRNA successfully blocked CF of TGF-β receptors and PDGF receptors and attenuated the EMT status (E-cadherin and α-SMA and phenotypic changes) in HG-induced rat PMCs. In TGF-β/Smad2/3 signaling, Fut8 siRNA did not suppress the protein expression of TGF-β receptors and Smad2/3; however, it significantly suppressed the phosphorylation of Smad2/3 (relative expression folds of HG + Fut8 group vs. HG group: 7.6 ± 0.4 vs. 15.1 ± 0.6, respectively, P < 0.05). In PDGF/ERK signaling, Fut8 siRNA did not suppress the protein expression of PDGF receptors and ERK, but it significantly suppressed the phosphorylation of ERK (relative expression folds of HG + Fut8 group vs. HG group: 8.7 ± 0.9 vs. 15.6 ± 1.2, respectively, P < 0.05). Blocking CF inactivated the activities of TGF-β and PDGF signaling pathways, and subsequently blocked EMT. Conclusions: These results demonstrate that CF contributes to rat PMC EMT, and that blocking it attenuates EMT. CF regulation is a potential therapeutic target of peritoneal fibrosis.
Collapse
Affiliation(s)
- Long-Kai Li
- Graduate School, Dalian Medical University, Dalian, Liaoning 116044; Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Nan Wang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Wei-Dong Wang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Xiang-Ning Du
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Xin-Yu Wen
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Ling-Yu Wang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yi-Yao Deng
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Da-Peng Wang
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Hong-Li Lin
- Department of Nephrology, Liaoning Translational Medicine Center of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
43
|
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018. [DOI: 10.1016/j.chembiol.2018.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Fujihira H, Masahara-Negishi Y, Tamura M, Huang C, Harada Y, Wakana S, Takakura D, Kawasaki N, Taniguchi N, Kondoh G, Yamashita T, Funakoshi Y, Suzuki T. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet 2017; 13:e1006696. [PMID: 28426790 PMCID: PMC5398483 DOI: 10.1371/journal.pgen.1006696] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
The cytoplasmic peptide:N-glycanase (Ngly1 in mammals) is a de-N-glycosylating enzyme that is highly conserved among eukaryotes. It was recently reported that subjects harboring mutations in the NGLY1 gene exhibited severe systemic symptoms (NGLY1-deficiency). While the enzyme obviously has a critical role in mammals, its precise function remains unclear. In this study, we analyzed Ngly1-deficient mice and found that they are embryonic lethal in C57BL/6 background. Surprisingly, the additional deletion of the gene encoding endo-β-N-acetylglucosaminidase (Engase), which is another de-N-glycosylating enzyme but leaves a single GlcNAc at glycosylated Asn residues, resulted in the partial rescue of the lethality of the Ngly1-deficient mice. Additionally, we also found that a change in the genetic background of C57BL/6 mice, produced by crossing the mice with an outbred mouse strain (ICR) could partially rescue the embryonic lethality of Ngly1-deficient mice. Viable Ngly1-deficient mice in a C57BL/6 and ICR mixed background, however, showed a very severe phenotype reminiscent of the symptoms of NGLY1-deficiency subjects. Again, many of those defects were strongly suppressed by the additional deletion of Engase in the C57BL/6 and ICR mixed background. The defects observed in Ngly1/Engase-deficient mice (C57BL/6 background) and Ngly1-deficient mice (C57BL/6 and ICR mixed background) closely resembled some of the symptoms of patients with an NGLY1-deficiency. These observations strongly suggest that the Ngly1- or Ngly1/Engase-deficient mice could serve as a valuable animal model for studies related to the pathogenesis of the NGLY1-deficiency, and that cytoplasmic ENGase represents one of the potential therapeutic targets for this genetic disorder. Ngly1 is a cytoplasmic de-N-glycosylating enzyme that is ubiquitously found in eukaryotes. This enzyme is involved in a process referred to as endoplasmic reticulum-associated degradation (ERAD), one of the quality control mechanisms for newly synthesized proteins. A genetic disorder, NGLY1-deficiency, caused by mutations in the NGLY1 gene has recently been discovered. However, the precise mechanism for the pathogenesis of this devastating disease continues to remain unclear. We report herein that Ngly1-deficient mice are embryonically lethal in a C57BL/6 background. Surprisingly, the lethality was suppressed by crossing the mice with an outbred mouse strain (ICR), suggesting that the phenotypic consequence of Ngly1 is greatly influenced by their genetic background. In both cases, the additional deletion of Engase in Ngly1-deficient mice could strongly mitigate the phenotypes. Interestingly, the remaining defects in Ngly1-deficient or Ngly1/Engase-deficient mice were reminiscent of the symptoms of subjects with an NGLY1-deficiency. Our results clearly point to the importance of Ngly1 in mammals and show that the inhibition of ENGase represents an effective therapy for treating an NGLY1-deficiency. Most importantly, the mice described herein could serve as valuable viable model mice for studies related to the pathophysiology of an NGLY1-deficiency.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Yuki Masahara-Negishi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, BioResourse Center, RIKEN, Ibaraki, Japan
| | - Chengcheng Huang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, BioResourse Center, RIKEN, Ibaraki, Japan
| | - Daisuke Takakura
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Nana Kawasaki
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Saitama, Japan
- * E-mail:
| |
Collapse
|
46
|
Nagasaki M, Manabe Y, Minamoto N, Tanaka K, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. J Org Chem 2016; 81:10600-10616. [PMID: 27775350 DOI: 10.1021/acs.joc.6b02106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc2 dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Collapse
Affiliation(s)
- Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
47
|
Guo H, Abbott KL. Functional impact of tumor-specific N-linked glycan changes in breast and ovarian cancers. Adv Cancer Res 2015; 126:281-303. [PMID: 25727151 DOI: 10.1016/bs.acr.2014.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in glycosylation have been implicated in various human diseases, including cancer. Research over the past few decades has produced significant findings that illustrate the importance of cancer-specific alterations in glycosylation in the regulation of tumor formation and metastasis. The identification of glycan-based biomarkers and strategies targeting specific glycan epitopes on the tumor cell surface has become one of the widely pursued research areas. In this chapter, we will summarize and provide perspective on available knowledge about the functional roles that glycan structures play in the development and progression of the gynecological cancers, breast and ovarian, with a specific focus on N-linked glycans. A better understanding of the functional roles for glycans in cancer will drive future innovations for diagnostics and therapeutics.
Collapse
|
48
|
Feng L, Jiang H, Wu P, Marlow FL. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish. Dev Biol 2014; 395:268-86. [PMID: 25238963 DOI: 10.1016/j.ydbio.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023]
Abstract
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
Collapse
Affiliation(s)
- Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA.
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
49
|
New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling. Kidney Int 2014; 84:11-4. [PMID: 23812359 DOI: 10.1038/ki.2013.95] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shen et al. exploit glycobiology to dampen transforming growth factor-β (TGF-β) signaling and ameliorate renal fibrosis after ureteral obstruction. Core fucosylation of N-linked oligosaccharides in TGF-β receptors is required for receptor function. Adenoviruses expressing Fut8-fucosyl transferase-shRNA inhibited receptor fucosylation, decreased tubule TGF-β signaling, and reduced fibrosis. Fut8-shRNA interferes with core fucosylation of other receptors also. Regardless, this first attempt to capitalize on a new aspect of TGF-β receptor function provides a basis for further research.
Collapse
|
50
|
Kurimoto A, Kitazume S, Kizuka Y, Nakajima K, Oka R, Fujinawa R, Korekane H, Yamaguchi Y, Wada Y, Taniguchi N. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function. J Biol Chem 2014; 289:11704-11714. [PMID: 24619415 DOI: 10.1074/jbc.m113.502542] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8(-/-)) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8(-/-) mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8(-/-) MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8(-/-) mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8(-/-) MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8(-/-) MEFs. These data suggest that Fut8(-/-) mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.
Collapse
Affiliation(s)
- Ayako Kurimoto
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Shinobu Kitazume
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Yasuhiko Kizuka
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Kazuki Nakajima
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Ritsuko Oka
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Reiko Fujinawa
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Hiroaki Korekane
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN Global Research Cluster, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Yoshinao Wada
- Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Naoyuki Taniguchi
- Disease Glycomic Team, RIKEN-Max Planck Joint Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198.
| |
Collapse
|