1
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc Natl Acad Sci U S A 2022; 119:e2208060119. [PMID: 35972962 PMCID: PMC9407321 DOI: 10.1073/pnas.2208060119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.
Collapse
|
3
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
4
|
Li J, LoBue A, Heuser SK, Leo F, Cortese-Krott MM. Using diaminofluoresceins (DAFs) in nitric oxide research. Nitric Oxide 2021; 115:44-54. [PMID: 34325012 DOI: 10.1016/j.niox.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Diaminofluoresceins (DAFs) are fluorescent probes widely applied to measure nitric oxide (NO) formation in cells and tissues. The main advantages of these compounds are their availability and low cost, and the general availability of instruments able to detect green fluorescence in all laboratories; these include fluorimeters, flow cytometers, and fluorescent microscopes. What made these molecules particularly interesting for many scientists approaching the NO field is that they are apparently very easy to use, as compared with other techniques requiring specific instrumentation and knowledge like chemiluminescence and electron paramagnetic resonance. However, the reactivity and biological chemistry of these probes in the cellular environment is rather complex and still not fully understood. Moreover, secondary reactions with ascorbate, or interference with thiols occur in cells. Therefore, the use of DAFs requires specific experimental planning and a careful interpretation of the results obtained. In this methodological review, we described in detail what is known about the reactivity of DAFs, their application in biological assays, list some principles to help experimental planning, including the necessary controls, and list the caveats concerning result interpretation. These guiding principles will help to understand the "Method behind our DAF-madness".
Collapse
Affiliation(s)
- Junjie Li
- Myocardial Infarction Research Group, Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Group, Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Group, Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Francesca Leo
- Myocardial Infarction Research Group, Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Group, Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Dranova TY, Vorobev AY, Pisarev EV, Moskalensky AE. Diaminorhodamine and Light-Activatable NO Donors: Photorelease Quantification and Potential Pitfalls. J Fluoresc 2021; 31:11-16. [PMID: 33159280 DOI: 10.1007/s10895-020-02643-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Light-activatable nitric oxide (NO) donors have become of interest in the recent years. They produce NO when illuminated by light, which enables the control of its local concentration and is promising for biomedical applications. Several successful prototypes of photodonors have been published, but further research is needed to improve their properties such as water-solubility, activation wavelength, biocompatibility etc. One of major challenges on this way is to evaluate the efficiency of NO generation. Several methods may be used to track NO, including spin traps, specific electrodes and fluorescence-based probes. We have studied the applicability of well-known fluorescent reporter, diaminorhodamine (DAR-2), for the evaluation of NO production by photodonors. Our results indicate that DAR-2 can be used for the quantification of NO photorelease if this process is not accompanied by the singlet oxygen formation. Otherwise the oxidation of probe results in huge fluorescence increase, which interferes with signal due to reaction with NO. This issue should be taken into account when studying hybrids releasing both NO and 1O2, which are promising for photodynamic therapy.
Collapse
Affiliation(s)
- Tatyana Yu Dranova
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya str. 3, 630090, Novosibirsk, Russia
| | - Aleksey Yu Vorobev
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Eduard V Pisarev
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| | - Alexander E Moskalensky
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia.
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya str. 3, 630090, Novosibirsk, Russia.
| |
Collapse
|
6
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Brown MD, Schoenfisch MH. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem Rev 2019; 119:11551-11575. [DOI: 10.1021/acs.chemrev.8b00797] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
9
|
Kępczyński J, Cembrowska-Lech D. Application of flow cytometry with a fluorescent dye to measurement of intracellular nitric oxide in plant cells. PLANTA 2018; 248:279-291. [PMID: 29704056 PMCID: PMC6061057 DOI: 10.1007/s00425-018-2901-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/22/2018] [Indexed: 05/07/2023]
Abstract
A simple and rapid method involving flow cytometry and NO-specific probe (DAF-FM DA) proved useful for detection and determination of intracellular NO production in Medicago truncatula suspension cells and leaves as well as in cells of Avena fatua, Amaranthus retroflexus embryos and leaves. The measurement of nitric oxide (NO) in plant material is important for examining the regulatory roles of endogenous NO in various physiological processes. The possibility of detecting and determining intracellular NO production by flow cytometry (FCM) with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA), an NO-specific probe in Medicago truncatula cells in suspension and leaves as well as in cells of embryos and leaves of Avena fatua L. or Amaranthus retroflexus L. was explored. To detect and measure NO production by cell suspension or embryos and leaves, the recommended DAF-FM DA concentration is 5 or 10 µM, respectively, applied for 30 min. Exogenous NO increased the intensity of the fluorescent signal in embryos and leaves of both plants, while carboxy-PTIO (cPTIO), an NO scavenger, decreased it. Thus, these results demonstrate that NO can be detected and an increase and a decrease of its intracellular level can be estimated. Wounding was observed to increase the fluorescence signal, indicating an increase in the intracellular NO level. In addition, the levels of exogenous and endogenous ascorbic acid were demonstrated to have no effect on the NO-related fluorescence signal, indicating the signal's specificity only in relation with NO. The applicability of the proposed method for detection and determination of NO was confirmed (1) by in situ NO imaging in cell suspensions and (2) by determining the NO concentration in embryos and leaves using the Griess reagent. In view of the data obtained, FCM is recommended as a rapid and simple method with which to detect and determine intracellular NO production in plant cells.
Collapse
Affiliation(s)
- Jan Kępczyński
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| | - Danuta Cembrowska-Lech
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| |
Collapse
|
10
|
Brown MD, Schoenfisch MH. Catalytic selectivity of metallophthalocyanines for electrochemical nitric oxide sensing. Electrochim Acta 2018; 273:98-104. [PMID: 30739948 PMCID: PMC6366661 DOI: 10.1016/j.electacta.2018.03.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The catalytic properties of metallophthalocyanine (MPc) complexes have long been applied to electrochemical sensing of nitric oxide (NO) to amplify sensitivity and reduce the substantial overpotential required for NO oxidation. The latter point has significant ramifications for in situ amperometric detection, as large working potentials oxidize biological interferents (e.g., nitrite, L-ascorbate, and carbon monoxide). Herein, we sought to isolate and quantify, for the first time, the selectivity benefits of MPc modification of glassy carbon electrodes. A series of the most catalytically active MPc complexes towards NO, including Fe(II)Pc, Co(II)Pc, Ni(II)Pc, and Zn(II)Pc, was selected and probed for NO sensing ability under both differential pulse voltammetry (DPV) and constant potential amperometry (CPA). Data from DPV measurements provided information with respect to MPc signal sensitivity amplification (~1.5×) and peak shifting (100-200 mV). Iron-Pc exerted the most specific catalytic activity towards NO over nitrite. Catalyst-enabled reduction of the working potential under CPA was found to improve selectivity for NO over high potential interferents, regardless of MPc. However, impaired selectivity against low potential interferents was also noted.
Collapse
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| |
Collapse
|
11
|
Fleming G, Aveyard J, Fothergill JL, McBride F, Raval R, D'Sa RA. Nitric Oxide Releasing Polymeric Coatings for the Prevention of Biofilm Formation. Polymers (Basel) 2017; 9:E601. [PMID: 30965904 PMCID: PMC6418929 DOI: 10.3390/polym9110601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)) were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed by immobilisation of two aminosilane molecules: N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) and N-(3-trimethoxysilyl)propyl)aniline (PTMSPA). N-diazeniumdiolate nitric oxide donors were formed at the secondary amine sites on the aminosilane molecules producing NO-releasing polymeric coatings. The NO payload and release were controlled by the aminosilane precursor, as DET3 has two secondary amine sites and PTMSPA only one. The antibacterial efficacy of these coatings was tested using a clinical isolate of Pseudomonas aeruginosa (PA14). All NO-releasing coatings in this study were shown to significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the aminosilane modification and the underlying substrate. These NO-releasing polymers demonstrate the potential and utility of this facile coating technique for preventing biofilms for indwelling medical devices.
Collapse
Affiliation(s)
- George Fleming
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Jenny Aveyard
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK.
| | - Fiona McBride
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Rasmita Raval
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| |
Collapse
|
12
|
Chaturvedi P, Vanegas DC, Hauser BA, Foster JS, Sepúlveda MS, McLamore ES. Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:6061-6072. [PMID: 39825509 DOI: 10.1039/c7ay01964e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge. Here, we report the development, application, and validation of a self referencing (i.e., oscillating) NO microelectrode for field studies of biological cells and tissues. The durable microelectrode is based on a hybrid nanomaterial composed of nanoceria, reduced graphene oxide and nanoplatinum and is intended for field use. One of the main focuses was to address the common pitfall of high overpotential through use of hydrophobic, and size/charge-selective materials in a thin film coated on top of the nanocatalyst sensor. The sensitivity (0.95 ± 0.03 pA nM-1), response time (1.1 ± 0.1 s), operating potential (+720 mV), and selectivity of the nanomaterial-modified microelectrode are similar to laboratory microelectrode designs, enabling studies of NO flux in field studies. NO efflux was first measured from chitosan and alginate polymers in abiotic studies, and a deterministic model used to determine the effective diffusion coefficient for each polymer composite. To demonstrate the practicality of the sensor, NO flux was quantified in three model organisms with known NO pathways, including: bacteria, plant, and an invertebrate animal. For each organism, an established hypothesis was validated based on NO flux measurement and the results confirm data collected using standard analytical techniques. The sensor can be used to expand our fundamental knowledge of NO transport by facilitating field experiments which are not possible with standard techniques.
Collapse
Affiliation(s)
- P Chaturvedi
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - D C Vanegas
- Food Engineering Department, Universidad del Valle, Cali, Colombia
| | - B A Hauser
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - J S Foster
- Department of Microbiology and Cell Sciences, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - M S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - E S McLamore
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Shleev S. Quo Vadis, Implanted Fuel Cell? Chempluschem 2017; 82:522-539. [DOI: 10.1002/cplu.201600536] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Sergey Shleev
- Department of Biomedical Science; Malmö University; Jan Waldenströms gata 25 214 28 Malmö Sweden
- Kurchatov NBICS Centre; National Research Centre “Kurchatov Institute”; Akademika Kurchatova pl. 1 123 182 Moscow Russia
| |
Collapse
|
14
|
Brown MD, Schoenfisch MH. Nitric oxide permselectivity in electropolymerized films for sensing applications. ACS Sens 2016; 1:1453-1461. [PMID: 31875180 DOI: 10.1021/acssensors.6b00596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The presence of biological interferents in physiological media necessitates chemical modification of the working electrode to facilitate accurate electrochemical measurement of nitric oxide (NO). In this study, we evaluated a series of self-terminating electropolymerized films prepared from one of three isomers of phenylenediamine (PD), phenol, eugenol, or 5-amino-1-naphthol (5A1N) to improve the NO selectivity of a platinum working electrode. The electrodeposition procedure for each monomer was individually optimized using cyclic voltammetry (CV) or constant potential amperometry (CPA). Cyclic voltammetry deposition parameters favoring slower film formation generally yielded films with improved selectivity for NO over nitrite and l-ascorbate. Nitric oxide sensors were fabricated and compared using the optimized deposition procedure for each monomer. Sensors prepared using poly-phenol and poly-5A1N film-modified platinum working electrodes demonstrated the most ideal analytical performance, with the former demonstrating the best selectivity. In simulated wound fluid, platinum electrodes modified with poly-5A1N films proved superior with respect to the NO sensitivity and detection limit.
Collapse
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North
Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North
Carolina 27599, United States
| |
Collapse
|
15
|
Keum DH, Jung HS, Wang T, Shin MH, Kim YE, Kim KH, Ahn GO, Hahn SK. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv Healthc Mater 2015; 4:1153-8. [PMID: 25728402 DOI: 10.1002/adhm.201500012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/04/2015] [Indexed: 01/07/2023]
Abstract
A dual-diagnostic system of endom-icroscope and microneedle sensor is developed to demonstrate high-resolution imaging combined with electrical real-time detection of NO released from cancer tissues. The dual-diagnostic system can be a new platform for facile, precise, rapid, and accurate detection of cancers in various biomedical applications.
Collapse
Affiliation(s)
- Do Hee Keum
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Ho Sang Jung
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Taejun Wang
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Myeong Hwan Shin
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Young-Eun Kim
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Ki Hean Kim
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - G-One Ahn
- Department of Integrative Biosciences and Biotechnology; POSTECH; 77 Cheongam-ro, Nam-gu Pohang Kyungbuk 790-784 Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); San 31, Hyoja-dong, Nam-gu Pohang Kyungbuk 790-784 Korea
| |
Collapse
|
16
|
Hunter RA, Schoenfisch MH. S-Nitrosothiol analysis via photolysis and amperometric nitric oxide detection in a microfluidic device. Anal Chem 2015; 87:3171-6. [PMID: 25714120 DOI: 10.1021/ac503220z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 530 nm light emitting diode was coupled to a microfluidic sensor to facilitate photolysis of nitrosothiols (i.e., S-nitrosoglutathione, S-nitrosocysteine, and S-nitrosoalbumin) and amperometric detection of the resulting nitric oxide (NO). This configuration allowed for maximum sensitivity and versatility, while limiting potential interference from nitrate decomposition caused by ultraviolet light. Compared to similar measurements of total S-nitrosothiol content in bulk solution, use of the microfluidic platform permitted significantly enhanced analytical performance in both phosphate-buffered saline and plasma (6-20× improvement in sensitivity depending on nitrosothiol type). Additionally, the ability to reduce sample volumes from milliliters to microliters provides increased clinical utility. To demonstrate its potential for biological analysis, this device was used to measure basal nitrosothiol levels from the vasculature of a healthy porcine model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Liu YL, Wang XY, Xu JQ, Xiao C, Liu YH, Zhang XW, Liu JT, Huang WH. Functionalized graphene-based biomimetic microsensor interfacing with living cells to sensitively monitor nitric oxide release. Chem Sci 2015; 6:1853-1858. [PMID: 28706641 PMCID: PMC5486208 DOI: 10.1039/c4sc03123g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/21/2015] [Indexed: 01/20/2023] Open
Abstract
We present a biomimetic and reusable microsensor with sub-nanomolar sensitivity by elaboratly functionalizing graphene for monitoring NO release in real-time.
It is a great challenge to develop electrochemical sensors with superior sensitivity that concurrently possess high biocompatibility for monitoring at the single cell level. Herein we report a novel and reusable biomimetic micro-electrochemical sensor array with nitric oxide (NO) sensing-interface based on metalloporphyrin and 3-aminophenylboronic acid (APBA) co-functionalized reduced graphene oxide (rGO). The assembling of high specificity catalytic but semi-conductive metalloporphyrin with high electric conductive rGO confers the sensor with sub-nanomolar sensitivity. Further coupling with the small cell-adhesive molecule APBA obviously enhances the cytocompatibility of the microsensor without diminishing the sensitivity, while the reversible reactivity between APBA and cell membrane carbohydrates allows practical reusability. The microsensor was successfully used to sensitively monitor, in real-time, the release of NO molecules from human endothelial cells being cultured directly on the sensor. This demonstrates its potential application in the detection of NO with very low bioactive concentrations for the better understanding of its physiological function and for medical tracking of patient states.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Xue-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Jia-Quan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Chong Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Yan-Hong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Jun-Tao Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China . ; ; Tel: +86-27-68752149
| |
Collapse
|
18
|
Martens-Habbena W, Qin W, Horak REA, Urakawa H, Schauer AJ, Moffett JW, Armbrust EV, Ingalls AE, Devol AH, Stahl DA. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 2015; 17:2261-74. [DOI: 10.1111/1462-2920.12677] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Willm Martens-Habbena
- Department of Civil and Environmental Engineering; University of Washington; Seattle WA 98195 USA
| | - Wei Qin
- Department of Civil and Environmental Engineering; University of Washington; Seattle WA 98195 USA
| | | | - Hidetoshi Urakawa
- Department of Marine and Ecological Sciences; Florida Gulf Coast University; Fort Myers FL 33965 USA
| | - Andrew J. Schauer
- Department of Earth and Space Sciences; University of Washington; Seattle WA 98195 USA
| | - James W. Moffett
- Department of Biological Sciences; University of Southern California; Los Angeles CA 90089 USA
| | | | - Anitra E. Ingalls
- School of Oceanography; University of Washington; Seattle WA 98195 USA
| | - Allan H. Devol
- School of Oceanography; University of Washington; Seattle WA 98195 USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
19
|
Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Csonka C, Páli T, Bencsik P, Görbe A, Ferdinandy P, Csont T. Measurement of NO in biological samples. Br J Pharmacol 2014; 172:1620-32. [PMID: 24990201 DOI: 10.1111/bph.12832] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022] Open
Abstract
Although the physiological regulatory function of the gasotransmitter NO (a diatomic free radical) was discovered decades ago, NO is still in the frontline research in biomedicine. NO has been implicated in a variety of physiological and pathological processes; therefore, pharmacological modulation of NO levels in various tissues may have significant therapeutic value. NO is generated by NOS in most of cell types and by non-enzymatic reactions. Measurement of NO is technically difficult due to its rapid chemical reactions with a wide range of molecules, such as, for example, free radicals, metals, thiols, etc. Therefore, there are still several contradictory findings on the role of NO in different biological processes. In this review, we briefly discuss the major techniques suitable for measurement of NO (electron paramagnetic resonance, electrochemistry, fluorometry) and its derivatives in biological samples (nitrite/nitrate, NOS, cGMP, nitrosothiols) and discuss the advantages and disadvantages of each method. We conclude that to obtain a meaningful insight into the role of NO and NO modulator compounds in physiological or pathological processes, concomitant assessment of NO synthesis, NO content, as well as molecular targets and reaction products of NO is recommended.
Collapse
Affiliation(s)
- C Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
de Mel A, Naghavi N, Cousins BG, Clatworthy I, Hamilton G, Darbyshire A, Seifalian AM. Nitric oxide-eluting nanocomposite for cardiovascular implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:917-929. [PMID: 24293239 DOI: 10.1007/s10856-013-5103-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
Cardiovascular implants must resist thrombosis and intimal hyperplasia, but they are prone to such patency limiting conditions during graft implantation and prior to endothelialisation. Nitric oxide (NO) released from the endothelium has a complex protective role in the cardiovascular system, and this study has addressed: (1) in situ NO release profiles from S-nitrosothiols ((S-Nitroso-N-acetylpenicillamine (SNAP) and (S-Nitrosoglutathione (GSNO)) incorporated into polyhedral oligomeric silsesquioxanepoly(carbonate-urea)urethane (POSS-PCU) coronary artery bypass grafts (CABG) in a physiological pulsatile flow, and (2) the determination of their interaction with endothelial progenitor cells (EPCs), smooth muscle cells, platelets, whole blood kinetics. It was found that 1, 2, and 3 wt% SNAP/GSNO incorporated into POSS-PCU-CABG successfully eluted NO, but optimal elution was evident with 2 %-SNAP-POSS-PCU. NO release determined under static conditions using the Griess assay, and in situ measurements under pulsatile flow using amperometric probe was found to differ, thus confirming the significance of monitoring NO-elution under haemodynamic conditions. 2 %-SNAP-POSS-PCU demonstrated anti-thrombogenic kinetics through thromboelastography measurements, while metabolic activity using Alamar Blue™ assay and scanning electron microscopy demonstrated greater adhesion of EPCs and reduced adhesion of platelets.
Collapse
Affiliation(s)
- Achala de Mel
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Xu T, Scafa N, Xu LP, Su L, Li C, Zhou S, Liu Y, Zhang X. Electrochemical Sensors for Nitric Oxide Detection in Biological Applications. ELECTROANAL 2014. [DOI: 10.1002/elan.201300564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Jiang S, Cheng R, Wang X, Xue T, Liu Y, Nel A, Huang Y, Duan X. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 2014; 4:2225. [PMID: 23887829 DOI: 10.1038/ncomms3225] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022] Open
Abstract
Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hunter RA, Privett BJ, Henley WH, Breed ER, Liang Z, Mittal R, Yoseph BP, McDunn JE, Burd EM, Coopersmith CM, Ramsey JM, Schoenfisch MH. Microfluidic amperometric sensor for analysis of nitric oxide in whole blood. Anal Chem 2013; 85:6066-72. [PMID: 23692300 PMCID: PMC3712765 DOI: 10.1021/ac400932s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Standard photolithographic techniques and a nitric oxide (NO) selective xerogel polymer were utilized to fabricate an amperometric NO microfluidic sensor with low background noise and the ability to analyze NO levels in small sample volumes (~250 μL). The sensor exhibited excellent analytical performance in phosphate buffered saline, including a NO sensitivity of 1.4 pA nM(-1), a limit of detection (LOD) of 840 pM, and selectivity over nitrite, ascorbic acid, acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and both protonated and deprotonated peroxynitrite (selectivity coefficients of -5.3, -4.2, -4.0, -5.0, -6.0, -5.8, -3.8, -1.5, and -4.0, respectively). To demonstrate the utility of the microfluidic NO sensor for biomedical analysis, the device was used to monitor changes in blood NO levels during the onset of sepsis in a murine pneumonia model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of nitric oxide measurement methods in biological media. Anal Chem 2013; 85:1957-63. [PMID: 23286383 PMCID: PMC3565040 DOI: 10.1021/ac303787p] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite growing reports on the biological action of nitric oxide (NO) as a function of NO payload, the validity of such work is often questionable due to the manner in which NO is measured and/or the solution composition in which NO is quantified. To highlight the importance of measurement technique for a given sample type, NO produced from a small-molecule NO donor (N-diazeniumdiolated l-proline, PROLI/NO) and a NO-releasing xerogel film were quantified in a number of physiological buffers and fluids, cell culture media, and bacterial broth by the Griess assay, a chemiluminescence analyzer, and an amperometric NO sensor. Despite widespread use, the Griess assay proved to be inaccurate for measuring NO in many of the media tested. In contrast, the chemiluminescence analyzer provided superb kinetic information in most buffers but was impractical for NO analysis in proteinaceous media. The electrochemical NO sensor enabled greater flexibility across the various media with potential for spatial resolution, albeit at lower than expected NO totals versus either the Griess assay or chemiluminescence. The results of this study highlight the importance of measurement strategy for accurate NO analysis and reporting NO-based biological activity.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
26
|
Mah E, Noh SK, Ballard KD, Park HJ, Volek JS, Bruno RS. Supplementation of a γ-tocopherol-rich mixture of tocopherols in healthy men protects against vascular endothelial dysfunction induced by postprandial hyperglycemia. J Nutr Biochem 2013; 24:196-203. [DOI: 10.1016/j.jnutbio.2012.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
|
27
|
Liu X, Zweier JL. Application of Electrode Methods in Studies of Nitric Oxide Metabolism and Diffusion Kinetics. J Electroanal Chem (Lausanne) 2013; 688:32-39. [PMID: 23730264 DOI: 10.1016/j.jelechem.2012.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) has many important physiological roles in the body. Since NO electrodes can directly measure NO concentration in the nM range and in real time, NO electrode methods have been generally used in laboratories for measuring NO concentration in vivo and in vitro. This review focuses on the application of electrode methods in studies of NO diffusion and metabolic kinetics. We have described the physical and chemical properties that need to be considered in the preparation of NO stock solution, discussed the effect of several interfering factors on the measured curves of NO concentration that need to be eliminated in the experimental setup for NO measurements, and provided an overview of the application of NO electrode methods in measuring NO diffusion and metabolic kinetics in solution and in biological systems. This overview covers NO metabolism by oxygen (O2), superoxide, heme proteins, cells and tissues. Important conclusions and physiological implication of these studies are discussed.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University College of Medicine, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
28
|
Cortese-Krott MM, Rodriguez-Mateos A, Kuhnle GGC, Brown G, Feelisch M, Kelm M. A multilevel analytical approach for detection and visualization of intracellular NO production and nitrosation events using diaminofluoresceins. Free Radic Biol Med 2012; 53:2146-58. [PMID: 23026413 DOI: 10.1016/j.freeradbiomed.2012.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) has gained increasing popularity in recent years because of its improved NO sensitivity, pH stability, and resistance to photobleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. Although this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry, and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology, and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Bedioui F, Griveau S. Electrochemical Detection of Nitric Oxide: Assessement of Twenty Years of Strategies. ELECTROANAL 2012. [DOI: 10.1002/elan.201200306] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Pacheco LGC, Castro TLP, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, Slade SE, Scrivens JH, Feelisch M, Meyer R, Miyoshi A, Oliveira SC, Dowson CG, Azevedo V. A Role for Sigma Factor σ(E) in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress. Front Microbiol 2012; 3:126. [PMID: 22514549 PMCID: PMC3322355 DOI: 10.3389/fmicb.2012.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/17/2012] [Indexed: 11/16/2022] Open
Abstract
Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ) factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σE for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE-null mutant strain (ΔsigE) of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO). The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS), confirming the significance of σE for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σE in composition of this bacterium’s exoproteome.
Collapse
Affiliation(s)
- Luis G C Pacheco
- Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of Bushen Huoxue Yin () on brain NF-κB and NO content in the parkinson's disease model mouse. J TRADIT CHIN MED 2012; 32:67-70. [DOI: 10.1016/s0254-6272(12)60034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Kang LS, Nurkiewicz TR, Wu G, Boegehold MA. Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth. Am J Physiol Heart Circ Physiol 2012; 302:H560-6. [PMID: 22140037 PMCID: PMC3353788 DOI: 10.1152/ajpheart.00277.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca(2+) ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr(495) dephosphorylation and eNOS Ser(1177) phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser(1177) phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34-66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser(1177) phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins.
Collapse
Affiliation(s)
- Lori S Kang
- Center for Cardiovascular and Respiratory Sciences, West Virginia Univ. School of Medicine, 1 Medical Center Dr., PO Box 9105, Morgantown, WV 26506-9105, USA
| | | | | | | |
Collapse
|
33
|
Analysis of radicals and radical reaction products in cell signalling and biomolecular damage: the long hard road to gold-standard measures. Biochem Soc Trans 2012; 39:1217-20. [PMID: 21936792 DOI: 10.1042/bst0391217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.
Collapse
|
34
|
Doctorovich F, Bikiel D, Pellegrino J, Suárez SA, Larsen A, Martí MA. Nitroxyl (azanone) trapping by metalloporphyrins. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Mah E, Noh SK, Ballard KD, Matos ME, Volek JS, Bruno RS. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine. J Nutr 2011; 141:1961-8. [PMID: 21940510 DOI: 10.3945/jn.111.144592] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function.
Collapse
Affiliation(s)
- Eunice Mah
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | |
Collapse
|
36
|
Álvares TS, Meirelles CM, Bhambhani YN, Paschoalin VM, Gomes PS. L-Arginine as a Potential Ergogenic Aid in Healthy Subjects. Sports Med 2011; 41:233-48. [DOI: 10.2165/11538590-000000000-00000] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Abstract
Plant-microbe interactions-whether pathogenic or symbiotic-exert major influences on plant physiology and productivity. Analysis of such interactions represents a particular challenge to metabolomic approaches due to the intimate association between the interacting partners coupled with a general commonality of metabolites. We here describe an approach based on co-cultivation of Arabidopsis cell cultures and bacterial plant pathogens to assess the metabolomes of both interacting partners, which we refer to as dual metabolomics.
Collapse
|
38
|
Privett BJ, Shin JH, Schoenfisch MH. Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 2010; 39:1925-35. [PMID: 20502795 DOI: 10.1039/b701906h] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. In this tutorial review, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed.
Collapse
Affiliation(s)
- Benjamin J Privett
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
39
|
Heller A. The need for monitoring the actual nitric oxide concentration in tumors. ACTA ACUST UNITED AC 2009; 1:3-6. [PMID: 20234843 PMCID: PMC2837249 DOI: 10.1007/s12566-009-0003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
Abstract
The significance of the role of nitric oxide (NO) in cancer is evident from 1,100 publications on the subject; its triggering of apoptosis at high concentrations is documented in 300 publications. While aspects of the rate of generation of NO in tumors have been extensively studied, the rate of its removal from tumors has not been considered, even though it is the difference between the two rates that determines the all important steady-state NO concentration, and thus the likelihood of apoptosis-triggering. The rate of transport of NO scales with its concentration gradient at the interface between a neoplasm and the phase to which it diffuses, which can be air, fat, or blood. Diffusional loss of NO to air would explain the initial two-dimensionality of neoplasms of the skin and lung. The greater solubility of NO in lipids than in aqueous phases should cause its extraction by nearby fat, and would account for the positive correlation between obesity and the incidence of some cancers, such as cancers of the breast. And the rapid consumption of NO by red blood cells implies depletion of excess NO in tumors after they are vascularized: angiogenesis should blunt any apoptosis-triggering NO attack of the immune system. Thus, cancer research and the practice of oncology may benefit of in-tumor monitoring of the actual NO concentration. Miniature NO monitoring electrodes, that might serve the purpose, are reviewed.
Collapse
Affiliation(s)
- Adam Heller
- Department of Chemical Engineering, University of Texas, Austin, TX 78712 USA
| |
Collapse
|
40
|
Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, Boegehold MA, Castranova V. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 2009; 110:191-203. [PMID: 19270016 DOI: 10.1093/toxsci/kfp051] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs is/are unclear. The purpose of this study was to identify alterations in the production of reactive species and endogenous nitric oxide (NO) after nanoparticle exposure, and determine the relative contribution of hemoproteins and oxidative enzymes in this process. Sprague-Dawley rats were exposed to fine TiO2 (primary particle diameter approximately 1 microm) and TiO2 nanoparticles (primary particle diameter approximately 21 nm) via aerosol inhalation at depositions of 4-90 microg per rat. As in previous intravital experiments in the spinotrapezius muscle, dose-dependent arteriolar dilations were produced by intraluminal infusions of the calcium ionophore A23187. Nanoparticle exposure robustly attenuated these endothelium-dependent responses. However, this attenuation was not due to altered microvascular smooth muscle NO sensitivity because nanoparticle exposure did not alter arteriolar dilations in response to local sodium nitroprusside iontophoresis. Nanoparticle exposure significantly increased microvascular oxidative stress by approximately 60%, and also elevated nitrosative stress fourfold. These reactive stresses coincided with a decreased NO production in a particle deposition dose-dependent manner. Radical scavenging, or inhibition of either myeloperoxidase or nicotinamide adenine dinucleotide phosphate oxidase (reduced) oxidase partially restored NO production as well as normal microvascular function. These results indicate that in conjunction with microvascular dysfunction, nanoparticle exposure also decreases NO bioavailability through at least two functionally distinct mechanisms that may mutually increase local reactive species.
Collapse
Affiliation(s)
- Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|