1
|
Bin X, Pawelek PD. Evidence of isochorismate channeling between the Escherichia coli enterobactin biosynthetic enzymes EntC and EntB. Protein Sci 2024; 33:e5122. [PMID: 39031458 PMCID: PMC11258883 DOI: 10.1002/pro.5122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Enterobactin is a high-affinity iron chelator produced and secreted by Escherichia coli and Salmonella typhimurium to scavenge scarce extracellular Fe3+ as a micronutrient. EntC and EntB are the first two enzymes in the enterobactin biosynthetic pathway. Isochorismate, produced by EntC, is a substrate for EntB isochorismatase. By using a competing isochorismate-consuming enzyme (the E. coli SEPHCHC synthase MenD), we found in a coupled assay that residual EntB isochorismatase activity decreased as a function of increasing MenD concentration. In the presence of excess MenD, EntB isochorismatase activity was observed to decrease by 84%, indicative of partial EntC-EntB channeling (16%) of isochorismate. Furthermore, addition of glycerol to the assay resulted in an increase of residual EntB isochorismatase activity to approximately 25% while in the presence of excess MenD. These experimental outcomes supported the existence of a substrate channeling surface identified in a previously reported protein-docking model of the EntC-EntB complex. Two positively charged EntB residues (K21 and R196) that were predicted to electrostatically guide negatively charged isochorismate between the EntC and EntB active sites were mutagenized to determine their effects on substrate channeling. The EntB variants K21D and R196D exhibited a near complete loss of isochorismatase activity, likely due to electrostatic repulsion of the negatively charged isochorismate substrate. Variants K21A, R196A, and K21A/R196A retained partial EntB isochorismatase activity in the absence of EntC; in the presence of EntC, isochorismatase activity in all variants increased to near wild-type levels. The MenD competition assay of the variants revealed that while K21A channeled isochorismate as efficiently as wild-type EntB (~ 15%), the variants K21A/R196A and R196A exhibited an approximately 5-fold loss in observed channeling efficiency (~3%). Taken together, these results demonstrate that partial substrate channeling occurs between EntC and EntB via a leaky electrostatic tunnel formed upon dynamic EntC-EntB complex formation and that EntB R196 plays an essential role in isochorismate channeling.
Collapse
Affiliation(s)
- Xue Bin
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Peter D. Pawelek
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
2
|
Diaz-Bárcena A, Fernandez-Pacios L, Giraldo P. Structural Characterization and Molecular Dynamics Study of the REPI Fusion Protein from Papaver somniferum L. Biomolecules 2023; 14:2. [PMID: 38275743 PMCID: PMC10813097 DOI: 10.3390/biom14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
REPI is a pivotal point enzyme in plant benzylisoquinoline alkaloid metabolism as it promotes the evolution of the biosynthetic branch of morphinan alkaloids. Experimental studies of its activity led to the identification of two modules (DRS and DRR) that catalyze two sequential steps of the epimerization of (S)- to (R)-reticuline. Recently, special attention has been paid to its genetic characterization and evolutionary history, but no structural analyses of the REPI protein have been conducted to date. We present here a computational structural characterization of REPI with heme and NADP cofactors in the apo state and in three complexes with substrate (S)-reticuline in DRS and intermediate 1,2-dehydroreticuline in DRS and in DRR. Since no experimental structure exists for REPI, we used its AlphaFold model as a scaffold to build up these four systems, which were submitted to all-atom molecular dynamics (MD) simulations. A comparison of MD results for the four systems revealed key dynamic changes associated with cofactor and ligand binding and provided a dynamic picture of the evolution of their structures and interactions. We also explored the possible dynamic occurrence of tunnels and electrostatic highways potentially involved in alternative mechanisms for channeling the intermediate from DRS to DRR.
Collapse
Affiliation(s)
- Alba Diaz-Bárcena
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (L.F.-P.); (P.G.)
| | | | | |
Collapse
|
3
|
Fisher G, Pečaver E, Read BJ, Leese SK, Laing E, Dickson AL, Czekster CM, da Silva RG. Catalytic Cycle of the Bifunctional Enzyme Phosphoribosyl-ATP Pyrophosphohydrolase/Phosphoribosyl-AMP Cyclohydrolase. ACS Catal 2023; 13:7669-7679. [PMID: 37288093 PMCID: PMC10242683 DOI: 10.1021/acscatal.3c01111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Indexed: 06/09/2023]
Abstract
The bifunctional enzyme phosphoribosyl-ATP pyrophosphohydrolase/phosphoribosyl-AMP cyclohydrolase (HisIE) catalyzes the second and third steps of histidine biosynthesis: pyrophosphohydrolysis of N1-(5-phospho-β-D-ribosyl)-ATP (PRATP) to N1-(5-phospho-β-D-ribosyl)-AMP (PRAMP) and pyrophosphate in the C-terminal HisE-like domain, and cyclohydrolysis of PRAMP to N-(5'-phospho-D-ribosylformimino)-5-amino-1-(5″-phospho-D-ribosyl)-4-imidazolecarboxamide (ProFAR) in the N-terminal HisI-like domain. Here we use UV-VIS spectroscopy and LC-MS to show Acinetobacter baumannii putative HisIE produces ProFAR from PRATP. Employing an assay to detect pyrophosphate and another to detect ProFAR, we established the pyrophosphohydrolase reaction rate is higher than the overall reaction rate. We produced a truncated version of the enzyme-containing only the C-terminal (HisE) domain. This truncated HisIE was catalytically active, which allowed the synthesis of PRAMP, the substrate for the cyclohydrolysis reaction. PRAMP was kinetically competent for HisIE-catalyzed ProFAR production, demonstrating PRAMP can bind the HisI-like domain from bulk water, and suggesting that the cyclohydrolase reaction is rate-limiting for the overall bifunctional enzyme. The overall kcat increased with increasing pH, while the solvent deuterium kinetic isotope effect decreased at more basic pH but was still large at pH 7.5. The lack of solvent viscosity effects on kcat and kcat/KM ruled out diffusional steps limiting the rates of substrate binding and product release. Rapid kinetics with excess PRATP demonstrated a lag time followed by a burst in ProFAR formation. These observations are consistent with a rate-limiting unimolecular step involving a proton transfer following adenine ring opening. We synthesized N1-(5-phospho-β-D-ribosyl)-ADP (PRADP), which could not be processed by HisIE. PRADP inhibited HisIE-catalyzed ProFAR formation from PRATP but not from PRAMP, suggesting that it binds to the phosphohydrolase active site while still permitting unobstructed access of PRAMP to the cyclohydrolase active site. The kinetics data are incompatible with a build-up of PRAMP in bulk solvent, indicating HisIE catalysis involves preferential channeling of PRAMP, albeit not via a protein tunnel.
Collapse
Affiliation(s)
- Gemma Fisher
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Ennio Pečaver
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Benjamin J. Read
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Susannah K. Leese
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Erin Laing
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Alison L. Dickson
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Clarissa M. Czekster
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| | - Rafael G. da Silva
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews, Fife KY16 9ST, U.K.
| |
Collapse
|
4
|
Yadav MK, Tripathi MK, Yadav S. Discovery of novel inhibitors targeting Plasmodium knowlesi dihydrofolate reductase using molecular docking and molecular dynamics simulation. Microb Pathog 2021; 161:105214. [PMID: 34592368 DOI: 10.1016/j.micpath.2021.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Plasmodium knowlesi, recognized as the fifth Plasmodium parasite, is the least studied malaria parasite. It is a significant cause of morbidity and mortality in the South-East Asia region. Enzymes of folate synthesis, especially dihydrofolate reductase (DHFR), is a well-approved drug target in other Plasmodium species, but its role in Plasmodium knowlesi is poorly studied. This work characterizes PkDHFR as a drug target and identifies inhibitors that can withstand the upcoming problem of resistance. The 3D structure of the PkDHFR target is modelled using comparative modelling, and further, it is refined and validated using energy minimization and torsional angle analysis methods. We extracted 13 compounds from DrugBank and ZINC databases using the "target similarity search" criteria. These compounds were categorized based on their binding affinity (-4.49 to -10.08 kcal/mol) and pose prediction against the active site of PkDHFR. Later on, the top 5 PkDHFR-compound complexes with high or equivalent binding affinity to its natural ligand (dihydrofolate) have undergone for dynamics. The simulation experiments reveal the higher stability of DB00563-PkDHFR complex and less conformational fluctuations and share a similar degree of compactness throughout the simulation trajectory. The MM/GBSA calculation of free energy of DB00563 is also the least (-72.84 kcal/mol) compared to others. Furthermore, the flexible side chain of DB00563 can bind and block the active site of PkDHFR more efficiently. Thus, the identified drug may be considered as a potential candidate for treating P. knowlesi malaria.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Bioinformatics, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India.
| | - Manish Kumar Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India
| | - Srishti Yadav
- Medical Biotechnology Division, Department of Biochemistry, Pt. Jawaharlal Nehru Memorial Medical College, Raipur, 492 001, Chhattisgarh, India
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.
Collapse
Affiliation(s)
- John J Tanner
- 1 Department of Biochemistry and University of Missouri-Columbia , Columbia, Missouri.,2 Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
6
|
Kasaragod P, Midekessa GB, Sridhar S, Schmitz W, Kiema TR, Hiltunen JK, Wierenga RK. Structural enzymology comparisons of multifunctional enzyme, type-1 (MFE1): the flexibility of its dehydrogenase part. FEBS Open Bio 2017; 7:1830-1842. [PMID: 29226071 PMCID: PMC5715344 DOI: 10.1002/2211-5463.12337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/23/2022] Open
Abstract
Multifunctional enzyme, type‐1 (MFE1) is a monomeric enzyme with a 2E‐enoyl‐CoA hydratase and a 3S‐hydroxyacyl‐CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short‐chain substrate 2E‐butenoyl‐CoA into acetoacetyl‐CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode of binding of acetoacetyl‐CoA (to the hydratase active site) and the very similar mode of binding of NAD+ and NADH (to the HAD part) are described and compared with those of their monofunctional counterparts. Structural comparisons suggest that the conformational flexibility of the HAD and hydratase parts of MFE1 are correlated. The possible importance of the conformational flexibility of MFE1 for its biocatalytic properties is discussed. Database Structural data are available in PDB database under the accession number 5MGB.
Collapse
Affiliation(s)
- Prasad Kasaragod
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| | - Getnet B Midekessa
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| | - Shruthi Sridhar
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter) University of Würzburg Germany
| | - Tiila-Riikka Kiema
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| | - Jukka K Hiltunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| | - Rik K Wierenga
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine University of Oulu Finland
| |
Collapse
|
7
|
Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017; 632:142-157. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
8
|
Korasick DA, Gamage TT, Christgen S, Stiers KM, Beamer LJ, Henzl MT, Becker DF, Tanner JJ. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J Biol Chem 2017; 292:9652-9665. [PMID: 28420730 PMCID: PMC5465489 DOI: 10.1074/jbc.m117.786855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Å resolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.
Collapse
Affiliation(s)
| | | | - Shelbi Christgen
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | | | | | | | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Biochemistry and
- Chemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
9
|
Anderson KS. Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR. Protein Eng Des Sel 2017; 30:253-261. [PMID: 28338744 PMCID: PMC6438133 DOI: 10.1093/protein/gzx004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Leishmania major (Lm), Plasmodium falciparum (Pf), Toxoplasma gondii (Tg) and Cryptosporidium hominis (Ch), contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the two sequential catalytic activities contained on a single polypeptide chain. It has been suggested that the bifunctional nature of the two catalytic activities may enable substrate channeling. The 3D structures for each of these enzymes reveals distinct features for each species. While three of the four species (Pf, Tg and Ch) contain a junctional region linking the two domains, this is lacking in Lm. The Lm and Pf contain N-terminal amino acid extensions. A multidisciplinary approach using structural studies and transient kinetic analyses combined with mutational analysis has investigated the roles of these unique structural features for each enzyme. Additionally, the possibility of substrate channeling behavior was explored. These studies have identified unique, functional regions in both the TS and DHFR domains that govern efficient catalysis for each species. Surprisingly, even though there are structural similarities among the species, each is regulated in a distinct manner. This structural and mechanistic information was also used to exploit species-specific inhibitor design.
Collapse
Affiliation(s)
- Karen S. Anderson
- Departments of Pharmacology and Molecular Biophysics and Biochemistry,
Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| |
Collapse
|
10
|
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 2016; 291:24065-24075. [PMID: 27679491 DOI: 10.1074/jbc.m116.756965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/26/2016] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded β-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs.
Collapse
Affiliation(s)
- Min Luo
- From the Departments of Chemistry and
| | | | - Benjamin W Arentson
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Katherine N Schlasner
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Donald F Becker
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Chemistry and .,Biochemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
11
|
Wang N, McCammon JA. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Protein Sci 2015; 25:79-86. [PMID: 26096018 DOI: 10.1002/pro.2720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022]
Abstract
In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa.
Collapse
Affiliation(s)
- Nuo Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92037
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92037.,Department of Pharmacology, University of California San Diego, La Jolla, California, 92037.,Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, 92037
| |
Collapse
|
12
|
Arentson B, Luo M, Pemberton TA, Tanner JJ, Becker DF. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A. Biochemistry 2014; 53:5150-61. [PMID: 25046425 PMCID: PMC4131897 DOI: 10.1021/bi5007404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate Δ(1)-pyrroline-5-carboxylate/glutamate-γ-semialdehyde (P5C/GSA). In this work, the structure of the channel was explored by inserting large side chain residues at four positions along the channel in BjPutA. Kinetic analysis of the different mutants revealed replacement of D779 with Tyr (D779Y) or Trp (D779W) significantly decreased the overall rate of the PRODH-P5CDH channeling reaction. X-ray crystal structures of D779Y and D779W revealed that the large side chains caused a constriction in the central section of the tunnel, thus likely impeding the travel of P5C/GSA in the channel. The D779Y and D779W mutants have PRODH activity similar to that of wild-type BjPutA but exhibit significantly lower P5CDH activity, suggesting that exogenous P5C/GSA enters the channel upstream of Asp779. Replacement of nearby Asp778 with Tyr (D778Y) did not impact BjPutA channeling activity. Consistent with the kinetic results, the X-ray crystal structure of D778Y shows that the main channel pathway is not impacted; however, an off-cavity pathway is closed off from the channel. These findings provide evidence that the off-cavity pathway is not essential for substrate channeling in BjPutA.
Collapse
Affiliation(s)
- Benjamin
W. Arentson
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Min Luo
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Travis A. Pemberton
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
13
|
Evans HG, Fernando R, Vaishnav A, Kotichukkala M, Heyl D, Hachem F, Brunzelle JS, Edwards BFP, Evans DR. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus. Protein Sci 2014; 23:100-9. [PMID: 24353170 DOI: 10.1002/pro.2396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/06/2022]
Abstract
Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (K(i) = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.
Collapse
Affiliation(s)
- Hedeel Guy Evans
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, 48197; Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan, 48201
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma H, Landau MJ, Vargo MA, Spasov KA, Anderson KS. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling. Biochemistry 2013; 52:7305-7317. [PMID: 24053355 DOI: 10.1021/bi400576t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Toxoplasma gondii , contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the catalytic activities contained on a single polypeptide chain. The prevalence of T. gondii infections across the world, especially for those immunocompromised, underscores the need to understand TS-DHFR enzyme function and to find new avenues to exploit for the design of novel antiparasitic drugs. As a first step, we have solved the first three-dimensional structures of T. gondii TS-DHFR at 3.7 Å and of a loop truncated TS-DHFR, removing several flexible surface loops in the DHFR domain, improving resolution to 2.2 Å. Distinct structural features of the TS-DHFR homodimer include a junctional region containing a kinked crossover helix between the DHFR domains of the two adjacent monomers, a long linker connecting the TS and DHFR domains, and a DHFR domain that is positively charged. The roles of these unique structural features were probed by site-directed mutagenesis coupled with presteady state and steady state kinetics. Mutational analysis of the crossover helix region combined with kinetic characterization established the importance of this region not only in DHFR catalysis but also in modulating the distal TS activity, suggesting a role for TS-DHFR interdomain interactions. Additional kinetic studies revealed that substrate channeling occurs in which dihydrofolate is directly transferred from the TS to DHFR active site without entering bulk solution. The crystal structure suggests that the positively charged DHFR domain governs this electrostatically mediated movement of dihydrofolate, preventing release from the enzyme. Taken together, these structural and kinetic studies reveal unique, functional regions on the T. gondii TS-DHFR enzyme that may be targeted for inhibition, thus paving the way for designing species specific inhibitors.
Collapse
Affiliation(s)
- Hitesh Sharma
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Mark J Landau
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.,The Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| | - Melissa A Vargo
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Krasimir A Spasov
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Karen S Anderson
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.,The Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
15
|
Luo M, Singh RK, Tanner JJ. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot. J Mol Biol 2013; 425:3106-20. [PMID: 23747974 DOI: 10.1016/j.jmb.2013.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily member Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD(+)-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher-order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD(+)-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions.
Collapse
Affiliation(s)
- Min Luo
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
16
|
Venkatesan R, Wierenga RK. Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway. ACS Chem Biol 2013; 8:1063-73. [PMID: 23496842 DOI: 10.1021/cb400007k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of tuberculosis is increasing due to the appearance of new drug-resistant variants. A thorough understanding of the disease organism is essential in order to create more effective drugs. In an attempt to understand better the poorly studied lipid metabolism of Mycobacterium tuberculosis (Mtb), we identified and characterized its fatty acid β-oxidation complex (trifunctional enzyme (TFE)). TFE is an α(2)β(2) complex consisting of two types of polypeptides catalyzing three of the four reactions of the β-oxidation of fatty acids. The kinetic constants (k(cat) and K(m)) show that the complexed α chain is more active than the individual α chain. Crystal structures of Mtb TFE (mtTFE) reveal that the quaternary assembly is strikingly different from the already known Pseudomonas fragi TFE (pfTFE) assembly due to the presence of a helical insertion (LA5) in the mtTFE-β subunit. This helical insertion prevents the pfTFE mode of assembly, as it would clash with helix H9A of the TFE-α chain. The mtTFE assembly appears to be more rigid and results in a different substrate channeling path between the α and the β subunits. Structural comparisons suggest that the mtTFE active sites can accommodate bulkier fatty acyl chains than in pfTFE. Although another thiolase (FadA2), more closely related to human TFE-β/thiolase, is present in the Mtb genome, it does not form a complex with mtTFE-α. Extensive phylogenetic analyses show that there are at least four TFE subfamilies. Our studies highlight the molecular properties of mtTFE, significantly extending the structural knowledge on this type of very interesting multifunctional enzymes.
Collapse
Affiliation(s)
- Rajaram Venkatesan
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| | - Rik K. Wierenga
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| |
Collapse
|
17
|
Kim J, Almo SC. Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. BMC STRUCTURAL BIOLOGY 2013; 13:5. [PMID: 23617613 PMCID: PMC3648344 DOI: 10.1186/1472-6807-13-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022]
Abstract
Background Methylaminomethyl modification of uridine or 2-thiouridine (mnm5U34 or mnm5s2U34) at the wobble position of tRNAs specific for glutamate, lysine and arginine are observed in Escherichia coli and allow for specific recognition of codons ending in A or G. In the biosynthetic pathway responsible for this post-transcriptional modification, the bifunctional enzyme MnmC catalyzes the conversion of its hypermodified substrate carboxymethylaminomethyl uridine (cmnm5U34) to mnm5U34. MnmC catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidative cleavage of carboxymethyl group from cmnm5U34 via an imine intermediate to generate aminomethyl uridine (nm5U34), which is subsequently methylated by S-adenosyl-L-methionine (SAM) to yield methylaminomethyl uridine (mnm5U34). Results The X-ray crystal structures of SAM/FAD-bound bifunctional MnmC from Escherichia coli and Yersinia pestis, and FAD-bound bifunctional MnmC from Yersinia pestis were determined and the catalytic functions verified in an in vitro assay. Conclusion The crystal structures of MnmC from two Gram negative bacteria reveal the overall architecture of the enzyme and the relative disposition of the two independent catalytic domains: a Rossmann-fold domain containing the SAM binding site and an FAD containing domain structurally homologous to glycine oxidase from Bacillus subtilis. The structures of MnmC also reveal the detailed atomic interactions at the interdomain interface and provide spatial restraints relevant to the overall catalytic mechanism.
Collapse
Affiliation(s)
- Jungwook Kim
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | |
Collapse
|
18
|
|
19
|
Arentson BW, Sanyal N, Becker DF. Substrate channeling in proline metabolism. Front Biosci (Landmark Ed) 2012; 17:375-88. [PMID: 22201749 DOI: 10.2741/3932] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism.
Collapse
Affiliation(s)
- Benjamin W Arentson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
20
|
Singh RK, Tanner JJ. Unique structural features and sequence motifs of proline utilization A (PutA). Front Biosci (Landmark Ed) 2012; 17:556-68. [PMID: 22201760 DOI: 10.2741/3943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.
Collapse
Affiliation(s)
- Ranjan K Singh
- Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
21
|
Bhaskaran H, Perona JJ. Two-step aminoacylation of tRNA without channeling in Archaea. J Mol Biol 2011; 411:854-69. [PMID: 21726564 DOI: 10.1016/j.jmb.2011.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here, we apply transient kinetics approaches developed to study channeling in bienzyme complexes to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNA(Gln). Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNA(Gln) synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRS(ND)) and the tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE and preferential elongation factor binding to the cognate Gln-tRNA(Gln) together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRS(ND) and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
22
|
Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 2011; 29:11-23. [DOI: 10.1016/j.biotechadv.2010.07.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/17/2010] [Accepted: 07/26/2010] [Indexed: 11/23/2022]
|
23
|
Wang ML, Motamed M, Infante RE, Abi-Mosleh L, Kwon HJ, Brown MS, Goldstein JL. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab 2010; 12:166-73. [PMID: 20674861 PMCID: PMC3034247 DOI: 10.1016/j.cmet.2010.05.016] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/20/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Water-soluble Niemann-Pick C2 (NPC2) and membrane-bound NPC1 are cholesterol-binding lysosomal proteins required for export of lipoprotein-derived cholesterol from lysosomes. The binding site in NPC1 is located in its N-terminal domain (NTD), which projects into the lysosomal lumen. Here we perform alanine-scanning mutagenesis to identify residues in NPC2 that are essential for transfer of cholesterol to NPC1(NTD). Transfer requires three residues that form a patch on the surface of NPC2. We previously identified a patch of residues on the surface of NPC1(NTD) that are required for transfer. We present a model in which these two surface patches on NPC2 and NPC1(NTD) interact, thereby opening an entry pore on NPC1(NTD) and allowing cholesterol to transfer without passing through the water phase. We refer to this transfer as a hydrophobic handoff and hypothesize that this handoff is essential for cholesterol export from lysosomes.
Collapse
Affiliation(s)
- Michael L Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Anderson KS. A transient kinetic approach to investigate nucleoside inhibitors of mitochondrial DNA polymerase gamma. Methods 2010; 51:392-8. [PMID: 20573564 PMCID: PMC2916041 DOI: 10.1016/j.ymeth.2010.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 01/07/2023] Open
Abstract
Nucleoside analogs play an essential role in treating human immunodeficiency virus (HIV) infection since the beginning of the AIDS epidemic and work by inhibition of HIV-1 reverse transcriptase (RT), a viral polymerase essential for DNA replication. Today, over 90% of all regimens for HIV treatment contain at least one nucleoside. Long-term use of nucleoside analogs has been associated with adverse effects including mitochondrial toxicity due to inhibition of the mitochondrial polymerase, DNA polymerase gamma (mtDNA pol gamma). In this review, we describe our efforts to delineate the molecular mechanism of nucleoside inhibition of HIV-1 RT and mtDNA pol gamma based upon a transient kinetic approach using rapid chemical quench methodology. Using transient kinetic methods, the maximum rate of polymerization (k(pol)), the dissociation constant for the ground state binding (K(d)), and the incorporation efficiency (k(pol)/K(d)) can be determined for the nucleoside analogs and their natural substrates. This analysis allowed us to develop an understanding of the structure activity relationships that allow correlation between the structural and stereochemical features of the nucleoside analog drugs with their mechanistic behavior toward the viral polymerase, RT, and the host cell polymerase, mtDNA pol gamma. An in-depth understanding of the mechanisms of inhibition of these enzymes is imperative in overcoming problems associated with toxicity.
Collapse
Affiliation(s)
- Karen S Anderson
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, P.O. Box 208066, New Haven, CT 06520-8066, USA.
| |
Collapse
|
25
|
Yang J, Rawat S, Stemmler TL, Rosen BP. Arsenic binding and transfer by the ArsD As(III) metallochaperone. Biochemistry 2010; 49:3658-66. [PMID: 20361763 DOI: 10.1021/bi100026a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ArsD is a metallochaperone that delivers trivalent metalloids [As(III) or Sb(III)] to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Interaction with ArsD increases the affinity of ArsA for As(III), conferring resistance to environmental concentrations of arsenic. Previous genetic analysis suggested that ArsD residues Cys12, Cys13, and Cys18 are involved in the transfer of As(III) to ArsA. Here X-ray absorption spectroscopy was used to show that As(III) is coordinated with three sulfur atoms, consistent with the three cysteine residues forming the As(III) binding site. Two single-tryptophan derivatives of ArsD exhibited quenching of intrinsic protein fluorescence upon binding of As(III) or Sb(III), which allowed estimation of the rates of binding and affinities for metalloids. Substitution of Cys12, Cys13, or Cys18 decreased the affinity for As(III) more than 10-fold. Reduced glutathione greatly increased the rate of binding of As(III) to ArsD but did not affect binding of As(III) to ArsA. This suggests that in vivo cytosolic As(III) might be initially bound to GSH and transferred to ArsD and then to ArsAB, which pumps the metalloid out of the cell. The As(III) chelator dimercaptosuccinic acid did not block the transfer from ArsD to ArsA, consistent with channeling of the metalloid from one protein to the other, as opposed to release and rebinding of the metalloid. Finally, transfer of As(III) from ArsD to ArsA occurred in the presence of MgATP at 23 degrees C but not at 4 degrees C. Neither MgADP nor MgATP-gamma-S could replace MgATP. These results suggest that transfer occurs with a conformation of ArsA that transiently forms during the catalytic cycle.
Collapse
Affiliation(s)
- Jianbo Yang
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
26
|
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 2010; 107:2878-83. [PMID: 20133651 DOI: 10.1073/pnas.0906101107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 A resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 A. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 A and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Delta(1)-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Delta(1)-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site.
Collapse
|
27
|
Johnson ET, Schmidt-Dannert C. Characterization of Three Homologs of the Large Subunit of the Magnesium Chelatase from Chlorobaculum tepidum and Interaction with the Magnesium Protoporphyrin IX Methyltransferase. J Biol Chem 2008; 283:27776-27784. [DOI: 10.1074/jbc.m804486200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Mouilleron S, Golinelli-Pimpaneau B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 2007; 17:653-64. [PMID: 17951049 DOI: 10.1016/j.sbi.2007.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases (GATs), which catalyze the synthesis of different aminated products, channel ammonia over 10-40 A from a glutamine substrate at the glutaminase site to an acceptor substrate at the synthase site. Ammonia production usually uses a cysteine-histidine-glutamate triad or a N-terminal cysteine residue. Crystal structures of several amidotransferase ligand complexes, mimicking intermediates along the catalytic cycle, have now been determined. In most cases, acceptor binding triggers glutaminase activation through domain-hinged movements and other conformational changes. Structural information shows how flexible loops of the synthase and glutaminase domains move to shield the two catalytic sites and anchor the substrates, and how the ammonia channel forms and opens or closes.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie structurales, CNRS Bâtiment 34, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
29
|
Pickard BG. Delivering Force and Amplifying Signals in Plant Mechanosensing. MECHANOSENSITIVE ION CHANNELS, PART A 2007. [DOI: 10.1016/s1063-5823(06)58014-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Thellier M, Legent G, Amar P, Norris V, Ripoll C. Steady-state kinetic behaviour of functioning-dependent structures. FEBS J 2006; 273:4287-99. [PMID: 16939622 DOI: 10.1111/j.1742-4658.2006.05425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A fundamental problem in biochemistry is that of the nature of the coordination between and within metabolic and signalling pathways. It is conceivable that this coordination might be assured by what we term functioning-dependent structures (FDSs), namely those assemblies of proteins that associate with one another when performing tasks and that disassociate when no longer performing them. To investigate a role in coordination for FDSs, we have studied numerically the steady-state kinetics of a model system of two sequential monomeric enzymes, E(1) and E(2). Our calculations show that such FDSs can display kinetic properties that the individual enzymes cannot. These include the full range of basic input/output characteristics found in electronic circuits such as linearity, invariance, pulsing and switching. Hence, FDSs can generate kinetics that might regulate and coordinate metabolism and signalling. Finally, we suggest that the occurrence of terms representative of the assembly and disassembly of FDSs in the classical expression of the density of entropy production are characteristic of living systems.
Collapse
Affiliation(s)
- Michel Thellier
- Laboratoire 'Assemblages moléculaires: modélisation et imagerie SIMS', Faculté des Sciences de l'Université de Rouen, Mont-Saint-Aignan Cedex, France.
| | | | | | | | | |
Collapse
|
31
|
Lherbet C, Pojer F, Richard SB, Noel JP, Poulter CD. Absence of substrate channeling between active sites in the Agrobacterium tumefaciens IspDF and IspE enzymes of the methyl erythritol phosphate pathway. Biochemistry 2006; 45:3548-53. [PMID: 16533036 PMCID: PMC2516919 DOI: 10.1021/bi0520075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conversion of 2-C-methyl-d-erythritol 4-phosphate (MEP) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution, raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE(D152A) mutant in the presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site of the IspF module of IspDF.
Collapse
Affiliation(s)
- Christian Lherbet
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
32
|
Kwok EY, Stoj CS, Severance S, Kosman DJ. An engineered bifunctional high affinity iron uptake protein in the yeast plasma membrane. J Inorg Biochem 2006; 100:1053-60. [PMID: 16387364 DOI: 10.1016/j.jinorgbio.2005.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 10/28/2005] [Accepted: 11/15/2005] [Indexed: 11/19/2022]
Abstract
High affinity iron uptake in fungi is supported by a plasma membrane protein complex that includes a multicopper ferroxidase enzyme and a ferric iron permease. In Saccharomyces cerevisiae, this complex is composed of the ferroxidase Fet3p and the permease Ftr1p. Fe(II) serves as substrate for Fe-uptake by being substrate for Fet3p; the resulting Fet3p-produced Fe(III) is then transported across the membrane via Ftr1p. A model of metabolite channeling of this Fe(III) is tested here by first constructing and kinetically characterizing in Fe-uptake two Fet3p-Ftr1p chimeras in which the multicopper oxidase/ferroxidase domain of Fet3p has been fused to the Ftr1p iron permease. Although the bifunctional chimeras are as kinetically efficient in Fe-uptake as is the wild type two-component system, they lack the adaptability and fidelity in Fe-uptake of the wild type. Specifically, Fe-uptake through the Fet3p, Ftr1p complex is insensitive to a potential Fe(III) trapping agent - citrate - whereas Fe-uptake via the chimeric proteins is competitively inhibited by this Fe(III) chelator. This inhibition does not appear to be due to scavenging Fet3p-produced Fe(III) that is in equilibrium with bulk solvent but could be due to leakiness to citrate found in the bifunctional but not the two-component system. The data are consistent with a channeling model of Fe-trafficking in the Fet3p, Ftr1p complex and suggest that in this system, Fet3p serves as a redox sieve that presents Fe(III) specifically for permeation through Ftr1p.
Collapse
Affiliation(s)
- E Y Kwok
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
33
|
Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B. Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J Biol Chem 2005; 281:4404-12. [PMID: 16339762 DOI: 10.1074/jbc.m511689200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucosamine-6P synthase catalyzes the synthesis of glucosamine-6P from fructose-6P and glutamine and uses a channel to transfer ammonia from its glutaminase to its synthase active site. X-ray structures of glucosamine-6P synthase have been determined at 2.05 Angstroms resolution in the presence of fructose-6P and at 2.35 Angstroms resolution in the presence of fructose-6P and 6-diazo-5-oxo-L-norleucine, a glutamine affinity analog that covalently modifies the N-terminal catalytic cysteine, therefore mimicking the gamma-glutamyl-thioester intermediate formed during hydrolysis of glutamine. The fixation of the glutamine analog activates the enzyme through several major structural changes: 1) the closure of a loop to shield the glutaminase site accompanied by significant domain hinging, 2) the activation of catalytic residues involved in glutamine hydrolysis, i.e. the alpha-amino group of Cys-1 and Asn-98 that is positioned to form the oxyanion hole, and 3) a 75 degrees rotation of the Trp-74 indole group that opens the ammonia channel.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et de Biochimie Structurales, Unite Propre de Recherche 9063, France
| | | | | |
Collapse
|
34
|
Anderson KS. Detection of novel enzyme intermediates in PEP-utilizing enzymes. Arch Biochem Biophys 2005; 433:47-58. [PMID: 15581565 DOI: 10.1016/j.abb.2004.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
This review will focus on established and newly emerging strategies for identifying and characterizing enzyme intermediates using a rapid transient kinetic approach. The merits of this methodology as well as the basics of experimental design are described. Several illustrative examples of PEP-utilizing enzymes have been chosen as they all perform unique, novel chemistries involving enzyme intermediates and have proven to be exciting pharmaceutical targets for antibiotics and herbicides. A novel application of this approach using time-resolved electrospray mass spectrometry to detect chemically labile enzyme intermediates is also discussed.
Collapse
Affiliation(s)
- Karen S Anderson
- Department of Pharmacology, SHM B350B, Yale University School of Medicine, 333 Cedar Street New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Severance S, Chakraborty S, Kosman DJ. The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure-function relationships. Biochem J 2004; 380:487-96. [PMID: 14992688 PMCID: PMC1224186 DOI: 10.1042/bj20031921] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 02/11/2004] [Accepted: 03/01/2004] [Indexed: 11/17/2022]
Abstract
Ftr1p is the permease component of the Fet3p-Ftr1p high affinity iron-uptake complex, in the plasma membrane of Saccharomyces cerevisiae, that transports the Fe3+ produced by the Fet3p ferroxidase into the cell. In this study we show that Ftr1p probably has seven transmembrane domains with an orientation of N-terminal outside, and C-terminal inside the cell. Within the context of this topology of the Fet3p-Ftr1p complex, we have identified several sequence elements in Ftr1p that are required for wild-type uptake function. First to be identified were two REXLE (Arg-Glu-Xaa-Leu-Glu) motifs in transmembrane domains 1 and 4. Alanine substitutions at any one of these combined six arginine or glutamic acid residues inactivated Ftr1p in iron uptake, indicating that both motifs were essential to iron permeation. R-->K and E-->D substitutions in these two motifs led to a variable loss of activity, suggesting that while all six residues were essential, their contributions to uptake were quantitatively and/or mechanistically distinct. The terminal glutamate in an EDLWE89 element, associated with transmembrane domain 3, and a DASE motif, located in extracellular loop 6, were also required. The double substitution to AASA in the latter, inactivated Ftr1p in iron uptake while the Ftr1p(E89A) mutant had only 20% of wild-type activity. The two REXLE and the EDLWE and DASE motifs are strongly conserved among fungal Ftr1p homologues, suggesting that these motifs are essential to iron permeation. Finally another important residue, Ile369, was identified in the Ftr1p cytoplasmic C-terminal domain. Deletion or substitution of this residue led to a 70% loss of iron-uptake activity. Ile369 was the only residue identified in this domain that made such a major contribution to iron uptake by the Fet3p-Ftr1p complex.
Collapse
Affiliation(s)
- Scott Severance
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
36
|
Kuchel PW. Current status and challenges in connecting models of erythrocyte metabolism to experimental reality. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:325-42. [PMID: 15142750 DOI: 10.1016/j.pbiomolbio.2004.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Detailed kinetic models of human erythrocyte metabolism have served to summarize the vast literature and to predict outcomes from laboratory and "Nature's" experiments on this simple cell. Mathematical methods for handling the large array of nonlinear ordinary differential equations that describe the time dependence of this system are well developed, but experimental methods that can guide the evolution of the models are in short supply. NMR spectroscopy is one method that is non-selective with respect to analyte detection but is highly specific with respect to their identification and quantification. Thus time courses of metabolism are readily recorded for easily changed experimental conditions. While the data can be simulated, the systems of equations are too complex to allow solutions of the inverse problem, namely parameter-value estimation for the large number of enzyme and membrane-transport reactions operating in situ as opposed to in vitro. Other complications with the modelling include the dependence of cell volume on time, and the rates of membrane transport processes are often dependent on the membrane potential. These matters are discussed in the light of new modelling strategies.
Collapse
Affiliation(s)
- Philip W Kuchel
- School of Molecular and Microbial Biosciences, University of Sydney, Building G08, Sydney, NSW 2006, Australia.
| |
Collapse
|
37
|
Wimalasena DS, Wimalasena K. Kinetic evidence for channeling of dopamine between monoamine transporter and membranous dopamine-beta-monooxygenase in chromaffin granule ghosts. J Biol Chem 2004; 279:15298-304. [PMID: 14732710 DOI: 10.1074/jbc.m313325200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nature of coupling between the uptake and dopamine-beta-monooxygenase (DbetaM) catalyzed hydroxylation of dopamine (DA) was studied in bovine chromaffin granule ghosts. Initial rate and transient kinetics of DA uptake and conversion were determined under a variety of conditions. The uptake kinetics of DA, norepinephrine (NE), and epinephrine demonstrate that DA is a better substrate than NE and epinephrine under optimal uptake conditions. The transient kinetics of DA accumulation and NE production under both optimal uptake and uptake and conversion conditions were zero-order with no detectable lag or burst periods. The mathematical analyses of the data show that a normal sequential uptake followed by the conversion process could not explain the observed kinetics, under any condition. On the other hand, all experimental data are in agreement with a mechanism in which DA is efficiently channeled from the vesicular monoamine transporter to membranous DbetaM for hydroxylation, prior to the release into the bulk medium of the ghost interior. The slow accumulation of DA under optimal conversion conditions appears to be caused by the slow leakage of DA from the channeling pathway to the ghost interior. Because DbetaM activity in intact granules is equally distributed between soluble and membranous forms of DbetaM, if an efficient channeling mechanism is operative in vivo, soluble DbetaM may not have access to the substrate, making the catalytic activity of soluble DbetaM physiologically insignificant, which is consistent with the increasing experimental evidence that membranous DbetaM may be the physiologically functional form.
Collapse
|
38
|
Maher AD, Kuchel PW, Ortega F, de Atauri P, Centelles J, Cascante M. Mathematical modelling of the urea cycle. A numerical investigation into substrate channelling. ACTA ACUST UNITED AC 2003; 270:3953-61. [PMID: 14511377 DOI: 10.1046/j.1432-1033.2003.03783.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabolite channelling, the process in which consecutive enzymes have confined substrate transfer in metabolic pathways, has been proposed as a biochemical mechanism that has evolved because it enhances catalytic rates and protects unstable intermediates. Results from experiments on the synthesis of radioactive urea [Cheung, C., Cohen, N.S. & Raijman, L (1989) J. Biol. Chem.264, 4038-4044] have been interpreted as implying channelling of arginine between argininosuccinate lyase and arginase in permeabilized hepatocytes. To investigate this interpretation further, a mathematical model of the urea cycle was written, using Mathematica it simulates time courses of the reactions. The model includes all relevant intermediates, peripheral metabolites, and subcellular compartmentalization. Analysis of the output from the simulations supports the argument for a high degree of, but not absolute, channelling and offers insights for future experiments that could shed more light on the quantitative aspects of this phenomenon in the urea cycle and other pathways.
Collapse
Affiliation(s)
- Anthony D Maher
- School of Molecular and Microbial Biosciences, University of Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Atreya CE, Johnson EF, Williamson J, Chang SY, Liang PH, Anderson KS. Probing electrostatic channeling in protozoal bifunctional thymidylate synthase-dihydrofolate reductase using site-directed mutagenesis. J Biol Chem 2003; 278:28901-11. [PMID: 12754260 DOI: 10.1074/jbc.m212689200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we used site-directed mutagenesis to test the hypothesis that substrate channeling in the bifunctional thymidylate synthase-dihydrofolate reductase enzyme from Leishmania major occurs via electrostatic interactions between the negatively charged dihydrofolate produced at thymidylate synthase and a series of lysine and arginine residues on the surface of the protein. Accordingly, 12 charge reversal or charge neutralization mutants were made, with up to 6 putative channel residues changed at once. The mutants were assessed for impaired channeling using two criteria: a lag in product formation at dihydrofolate reductase and an increase in dihydrofolate accumulation. Surprisingly, none of the mutations produced changes consistent with impaired channeling, so our findings do not support the electrostatic channeling hypothesis. Burst experiments confirmed that the mutants also did not interfere with intermediate formation at thymidylate synthase. One mutant, K282E/R283E, was found to be thymidylate synthase-dead because of an impaired ability to form the covalent enzyme-methylene tetrahydrofolate-deoxyuridate complex prerequisite for chemical catalysis.
Collapse
Affiliation(s)
- Chloé E Atreya
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang TP, Quintanar L, Severance S, Solomon EI, Kosman DJ. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae. J Biol Inorg Chem 2003; 8:611-20. [PMID: 12684851 DOI: 10.1007/s00775-003-0456-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 03/10/2003] [Indexed: 11/25/2022]
Abstract
The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe(2+) to Fe(3+); this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues that contribute to the specificity that Fet3p has for Fe(2+), one of which is essential also to the coupling of the ferroxidase and uptake processes. The spectral and kinetic properties of the D278A, E185D and A, Y354F and A, and E185A/Y354A mutants of a soluble form of Fet3p showed that all of the mutants exhibited the normal absorbance at 330 nm and 608 nm due to the type 3 and type 1 copper sites in Fet3p, respectively. The EPR spectra of the mutants were also equivalent to wild-type, showing that the type 1 and type 2 Cu(II) sites in the proteins were not perturbed. The only marked kinetic defects measured in vitro were increases in K(M) for Fe(2+) exhibited by the D278A, E185A, Y354A, and E185A/Y354A mutants. These results suggest that these three residues contribute to the ferroxidase specificity site in Fet3p. In vivo analysis of these mutant proteins in their membrane-bound form showed that only E185 mutants exhibited kinetic defects in (59)Fe uptake. For the Fet3p(E185D) mutant, K(M) for iron was 300-fold greater than the wild-type K(M), while Fet3p(E185A) was completely inactive in support of iron uptake. In situ fluorescence demonstrated that all of the mutant Fet3 proteins, in complex with an Ftr1p:YFP fusion protein, were trafficked normally to the plasma membrane. These results suggest that E185 contributes to Fe(2+ )binding to Fet3p and to the subsequent trafficking of the Fe(3+) produced to Ftr1p.
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Tryptophan synthase is a classic enzyme that channels a metabolic intermediate, indole. The crystal structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium revealed for the first time the architecture of a multienzyme complex and the presence of an intramolecular tunnel. This remarkable hydrophobic tunnel provides a likely passageway for indole from the active site of the alpha subunit, where it is produced, to the active site of the beta subunit, where it reacts with L-serine to form L-tryptophan in a pyridoxal phosphate-dependent reaction. Rapid kinetic studies of the wild type enzyme and of channel-impaired mutant enzymes provide strong evidence for the proposed channeling mechanism. Structures of a series of enzyme-substrate intermediates at the alpha and beta active sites are elucidating enzyme mechanisms and dynamics. These structural results are providing a fascinating picture of loops opening and closing, of domain movements, and of conformational changes in the indole tunnel. Solution studies provide further evidence for ligand-induced conformational changes that send signals between the alpha and beta subunits. The combined results show that the switching of the enzyme between open and closed conformations couples the catalytic reactions at the alpha and beta active sites and prevents the escape of indole.
Collapse
Affiliation(s)
- E W Miles
- Section on Enzyme Structure and Function, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892-0830, USA.
| |
Collapse
|
42
|
Atreya CE, Johnson EF, Irwin JJ, Dow A, Massimine KM, Coppens I, Stempliuk V, Beverley S, Joiner KA, Shoichet BK, Anderson KS. A molecular docking strategy identifies Eosin B as a non-active site inhibitor of protozoal bifunctional thymidylate synthase-dihydrofolate reductase. J Biol Chem 2003; 278:14092-100. [PMID: 12556445 DOI: 10.1074/jbc.m212690200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protozoal parasites are unusual in that their thymidylate synthase (TS) and dihydrofolate reductase (DHFR) enzymes exist on a single polypeptide. In an effort to probe the possibility of substrate channeling between the TS and DHFR active sites and to identify inhibitors specific for bifunctional TS-DHFR, we used molecular docking to screen for inhibitors targeting the shallow groove connecting the two active sites. Eosin B is a 100 microm non-active site inhibitor of Leishmania major TS-DHFR identified by molecular docking. Eosin B slows both the TS and DHFR reaction rates. When Arg-283, a key residue to which eosin B is predicted to bind, is mutated to glutamate, however, eosin B only minimally inhibits the TS-DHFR reaction. Additionally, eosin B was found to be a 180 microm inhibitor of Toxoplasma gondii in both biochemical and cell culture assays.
Collapse
Affiliation(s)
- Chloé E Atreya
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Haggie PM, Verkman AS. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J Biol Chem 2002; 277:40782-8. [PMID: 12198136 DOI: 10.1074/jbc.m207456200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.
Collapse
Affiliation(s)
- Peter M Haggie
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California-San Francisco, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | |
Collapse
|
44
|
Thoden JB, Huang X, Raushel FM, Holden HM. Carbamoyl-phosphate synthetase. Creation of an escape route for ammonia. J Biol Chem 2002; 277:39722-7. [PMID: 12130656 DOI: 10.1074/jbc.m206915200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these belongs to the Class I amidotransferase superfamily and contains all of the necessary amino acid side chains required for the hydrolysis of glutamine to glutamate and ammonia. Two homologous domains from the larger subunit adopt conformations that are characteristic for members of the ATP-grasp superfamily. Each of these ATP-grasp domains contains an active site responsible for binding one molecule of MgATP. High resolution x-ray crystallographic analyses have shown that, remarkably, the three active sites in the E. coli enzyme are connected by a molecular tunnel of approximately 100 A in total length. Here we describe the high resolution x-ray crystallographic structure of the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase. This residue was initially targeted for study because it resides within the interior wall of the molecular tunnel leading from the active site of the small subunit to the first active site of the large subunit. It was anticipated that a mutation to the larger residue would "clog" the ammonia tunnel and impede the delivery of ammonia from its site of production to the site of utilization. In fact, the G359F substitution resulted in a complete change in the conformation of the loop delineated by Glu-355 to Ala-364, thereby providing an "escape" route for the ammonia intermediate directly to the bulk solvent. The substitution also effected the disposition of several key catalytic amino acid side chains in the small subunit active site.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706-1544, USA
| | | | | | | |
Collapse
|
45
|
Bulock KG, Beardsley GP, Anderson KS. The kinetic mechanism of the human bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase). A surprising lack of substrate channeling. J Biol Chem 2002; 277:22168-74. [PMID: 11948179 DOI: 10.1074/jbc.m111964200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC) is a bifunctional protein possessing two enzymatic activities that sequentially catalyze the last two steps in the pathway for de novo synthesis of inosine 5'-monophosphate. This bifunctional enzyme is of particular interest because of its potential as a chemotherapeutic target. Furthermore, these two catalytic activities reside on the same protein throughout all of nature, raising the question of whether there is some kinetic advantage to the bifunctionality. Rapid chemical quench, stopped-flow absorbance, and steady-state kinetic techniques were used to elucidate the complete kinetic mechanism of human ATIC. The kinetic simulation program KINSIM was used to model the kinetic data obtained in this study. The detailed kinetic analysis, in combination with kinetic simulations, provided the following key features of the enzyme reaction pathway. 1) The rate-limiting step in the overall reaction (2.9 +/- 0.4 s(-1)) is likely the release of tetrahydrofolate from the formyltransferase active site or a conformational change associated with tetrahydrofolate release. 2) The rate of the reverse transformylase reaction (6.7 s(-1)) is approximately 2-3-fold faster than the forward rate (2.9 s(-1)), whereas the cyclohydrolase reaction is essentially unidirectional in the forward sense. The cyclohydrolase reaction thus draws the overall bifunctional reaction toward the production of inosine monophosphate. 3) There was no kinetic evidence of substrate channeling of the intermediate, the formylaminoimidazole carboxamide ribonucleotide, between the formyltransferase and the cyclohydrolase active sites.
Collapse
Affiliation(s)
- Karen G Bulock
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
46
|
Kinosian HJ, Selden LA, Gershman LC, Estes JE. Actin filament barbed end elongation with nonmuscle MgATP-actin and MgADP-actin in the presence of profilin. Biochemistry 2002; 41:6734-43. [PMID: 12022877 DOI: 10.1021/bi016083t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.
Collapse
Affiliation(s)
- Henry J Kinosian
- Center for Cell Biology and Cancer Research, Department of Medicine, Albany Medical College, Albany, NY 12208. USA.
| | | | | | | |
Collapse
|
47
|
Massant J, Verstreken P, Durbecq V, Kholti A, Legrain C, Beeckmans S, Cornelis P, Glansdorff N. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 2002; 277:18517-22. [PMID: 11893735 DOI: 10.1074/jbc.m111481200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different approaches provided evidence for a physical interaction between the carbamate kinase-like carbamoyl-phosphate synthetase (CKase) and ornithine carbamoyltransferase (OTCase) from the hyperthermophilic archaeon Pyrococcus furiosus. Affinity electrophoresis indicated that CKase and OTCase associate into a multienzyme cluster. Further evidence for a biologically significant interaction between CKase and OTCase was obtained by co-immunoprecipitation combined with formaldehyde cross-linking experiments. These experiments support the hypothesis that CKase and OTCase form an efficient channeling cluster for carbamoyl phosphate, an extremely thermolabile and potentially toxic metabolic intermediate. Therefore, by physically interacting with each other, CKase and OTCase prevent the thermodenaturation of carbamoyl phosphate in the aqueous cytoplasmic environment.
Collapse
Affiliation(s)
- Jan Massant
- Department of Microbiology, Vrije Universiteit Brussel, Flanders Interuniversity Institute for Biotechnology, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Weyand M, Schlichting I, Marabotti A, Mozzarelli A. Crystal structures of a new class of allosteric effectors complexed to tryptophan synthase. J Biol Chem 2002; 277:10647-52. [PMID: 11756456 DOI: 10.1074/jbc.m111285200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan synthase is a bifunctional alpha(2)beta(2) complex catalyzing the last two steps of l-tryptophan biosynthesis. The natural substrates of the alpha-subunit indole- 3-glycerolphosphate and glyceraldehyde-3-phosphate, and the substrate analogs indole-3-propanolphosphate and dl-alpha-glycerol-3-phosphate are allosteric effectors of the beta-subunit activity. It has been shown recently, that the indole-3-acetyl amino acids indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid are both alpha-subunit inhibitors and beta-subunit allosteric effectors, whereas indole-3-acetyl-l-valine is only an alpha-subunit inhibitor (Marabotti, A., Cozzini, P., and Mozzarelli, A. (2000) Biochim. Biophys. Acta 1476, 287-299). The crystal structures of tryptophan synthase complexed with indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid show that both ligands bind to the active site such that the carboxylate moiety is positioned similarly as the phosphate group of the natural substrates. As a consequence, the residues of the alpha-active site that interact with the ligands are the same as observed in the indole 3-glycerolphosphate-enzyme complex. Ligand binding leads to closure of loop alphaL6 of the alpha-subunit, a key structural element of intersubunit communication. This is in keeping with the allosteric role played by these compounds. The structure of the enzyme complex with indole-3-acetyl-l-valine is quite different. Due to the hydrophobic lateral chain, this molecule adopts a new orientation in the alpha-active site. In this case, closure of loop alphaL6 is no longer observed, in agreement with its functioning only as an inhibitor of the alpha-subunit reaction.
Collapse
Affiliation(s)
- Michael Weyand
- Max-Planck-Institut für Molekulare Physiologie, Abteilung für Physikalische Biochemie, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
The three-dimensional structures of tryptophan synthase, carbamoyl phosphate synthetase, glutamine phosphoribosylpyrophosphate amidotransferase, and asparagine synthetase have revealed the relative locations of multiple active sites within these proteins. In all of these polyfunctional enzymes, a product formed from the catalytic reaction at one active site is a substrate for an enzymatic reaction at a distal active site. Reaction intermediates are translocated from one active site to the next through the participation of an intermolecular tunnel. The tunnel in tryptophan synthase is approximately 25 A in length, whereas the tunnel in carbamoyl phosphate synthetase is nearly 100 A long. Kinetic studies have demonstrated that the individual reactions are coordinated through allosteric coupling of one active site with another. The participation of these molecular tunnels is thought to protect reactive intermediates from coming in contact with the external medium.
Collapse
Affiliation(s)
- X Huang
- Wyeth-Ayerst Research, 401 North Middleton Road, Pearl River, New York 10965, USA. [corrected]
| | | | | |
Collapse
|
50
|
Abstract
In this introduction to the Proceedings of the Symposium on Glutamine, we consider various lines of evidence that might potentially lead to an answer to the question posed in the title. We begin with a short summary of the multiple functions of glutamine, which are extensive and, superficially at least, equally as impressive as those of glutamate. However, each of these amino acids may serve an equivalent role in some of these functions due to their ready metabolic interconversion. We raise the question whether glutamine is of primordial or rudimentary significance or whether it is a product of somebody else's existence. Thus, there is a short account of the prebiotic events of evolution that led to the appearance of glutamine and life on Earth. In doing this, it then appears that glutamine is a rather schizophrenic molecule, stable and thermodynamically reliable in biochemical environments, but labile in chemical ones. We then turn to the involvement of glutamine in mammalian N (nitrogen) commerce, with initial emphasis on the nitrogen cycle on Earth, then N transport and N excretion, before assessing its contribution to carbon/energy or C/E commerce. We hypothesize that, in addition to its utilization in immune cell function and in normal intestinal tissues, glutamine is a particularly key anapleurotic and energy-yielding substrate in conditions of hypoxia, anoxia and dysoxia. It also serves as a quantitatively important gluconeogenic metabolite under normal postabsorptive conditions. We postulate that in certain conditions, this carbon-energy econometric function might be by-passed with ornithine. In conclusion, the answer to the question above depends on the context, and this point will receive elaboration in many of the individual contributions that collaborate to form these Proceedings.
Collapse
Affiliation(s)
- V R Young
- Laboratory of Human Nutrition, School of Science and Clinical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|