1
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Thew HY, Boon Keat K, Tan YC, Ong YS, Parat MO, Murugaiyah V, Goh BH, Khaw KY. Probing the anti-Aβ42 aggregation and protective effects of prenylated xanthone against Aβ42-induced toxicity in transgenic Caenorhabditis elegans model. Chem Biol Interact 2024; 394:110978. [PMID: 38552766 DOI: 10.1016/j.cbi.2024.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) protein aggregates, leading to synaptic dysfunction and neuronal cell death. In this study, we used a comprehensive approach encompassing in vitro assays, computational analyses, and an in vivo Caenorhabditis elegans model to evaluate the inhibitory effects of various xanthones, focusing on Garcinone D (GD), on Aβ42 oligomer formation. Dot blot analysis revealed concentration-dependent responses among xanthones, with GD consistently inhibiting Aβ42 oligomer formation at low concentrations (0.1 and 0.5 μM, inhibitions of 84.66 ± 2.25% and 85.06 ± 6.57%, respectively). Molecular docking and dynamics simulations provided insights into the molecular interactions between xanthones and Aβ42, highlighting the disruption of key residues involved in Aβ42 aggregation. The neuroprotective potential of GD was established using transgenic C. elegans GMC101, with substantial delays in paralysis reported at higher concentrations. Our findings show that GD is a potent suppressor of Aβ42 oligomer formation, suggesting its potential as a therapeutic candidate for AD. The concentration-dependent effects observed in both in vitro and in vivo models underscore the need for nuanced dose-response assessments. These findings contribute novel insights into the therapeutic landscape of xanthones against AD, emphasizing the multifaceted potential of GD for further translational endeavors in neurodegenerative disorder research.
Collapse
Affiliation(s)
- Hin Yee Thew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khor Boon Keat
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yong Chiang Tan
- International Medical University, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Marie-Odile Parat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Rahman MM, Islam MR, Alam Tumpa MA, Shohag S, Shakil Khan Shuvo, Ferdous J, Kajol SA, Aljohani ASM, Al Abdulmonem W, Rauf A, Thiruvengadam M. Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chem Biol Interact 2023; 373:110375. [PMID: 36739931 DOI: 10.1016/j.cbi.2023.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Medicinal chemistry is an interdisciplinary field that incorporates organic chemistry, biochemistry, physical chemistry, pharmacology, informatics, molecular biology, structural biology, cell biology, and other disciplines. Additionally, it considers molecular factors such as the mode of action of the drugs, their chemical structure-activity relationship (SAR), and pharmacokinetic aspects like absorption, distribution, metabolism, elimination, and toxicity. Neurodegenerative disorders (NDs), which are defined by the breakdown of neurons over time, are affecting an increasing number of people. Oxidative stress, particularly the increased production of Reactive Oxygen Species (ROS), plays a crucial role in the growth of various disorders, as indicated by the identification of protein, lipid, and Deoxyribonucleic acid (DNA) oxidation products in vivo. Because of their inherent nature, most biological molecules are vulnerable to ROS, even if they play a role in metabolic parameters and cell signaling. Due to their high polyunsaturated fatty acid content, low antioxidant barrier, and high oxygen uptake, neurons are particularly vulnerable to oxidation by nature. As a result, excessive ROS generation in neurons looks especially harmful, and the mechanisms associated with biomolecule oxidative destruction are several and complex. This review focuses on the formation and management of ROS, as well as their chemical characteristics (both thermodynamic and kinetic), interactions, and implications in NDs.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mst Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saima Akter Kajol
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Waiwut P, Kengkoom K, Pannangrong W, Musigavong N, Chheng C, Plekratoke K, Taklomthong P, Nillert N, Pitiporn S, Kwankhao P, Daodee S, Chulikhit Y, Montakantirat O, Boonyarat C. Toxicity Profiles of Kleeb Bua Daeng Formula, a Traditional Thai Medicine, and Its Protective Effects on Memory Impairment in Animals. Pharmaceuticals (Basel) 2022; 15:ph15080988. [PMID: 36015135 PMCID: PMC9414439 DOI: 10.3390/ph15080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Kleeb Bua Daeng (KBD) formula has long been used in Thailand as a traditional herbal medicine for promoting brain health. Our recent reports illustrated that KBD demonstrates multiple modes of action against several targets in the pathological cascade of Alzheimer’s disease (AD). The main purpose of the present study was to determine the protective effect and mechanism of KBD in amyloid beta (Aβ)-induced AD rats and its toxicity profiles. Pretreatment with the KBD formula for 14 days significantly improved the short- and long-term memory performance of Aβ-induced AD rats as assessed by the Morris Water Maze (MWM) and object-recognition tests. KBD treatment increased the activities of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase; reduced the malondialdehyde content, and; decreased the acetylcholinesterase activity in the rat brain. An acute toxicity test revealed that the maximum dose of 2000 mg/kg did not cause any mortality or symptoms of toxicity. An oral, subchronic toxicity assessment of KBD at doses of 125, 250, and 500 mg/kg body weight/day for 90 days showed no adverse effects on behavior, mortality, hematology, or serum biochemistry. Our investigations indicate that KBD is a nontoxic traditional medicine with good potential for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kanchana Kengkoom
- National Laboratory Animal Centre, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natdanai Musigavong
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Chantha Chheng
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Kusawadee Plekratoke
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | | | - Nutchareeporn Nillert
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Pitiporn
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Pakakrong Kwankhao
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Orawan Montakantirat
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
- Correspondence: ; Tel.: +66-81-3073313 or +66-43-202305
| |
Collapse
|
6
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Butterfield DA. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 2021; 177:278-286. [PMID: 34737037 PMCID: PMC8684818 DOI: 10.1016/j.freeradbiomed.2021.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Neurons must remove aggregated, damaged proteins in order to survive. Among the ways of facilitating this protein quality control is the ubiquitin-proteasomal system (UPS). Aggregated, damaged proteins are targeted for destruction by the UPS by acquiring a polymer of ubiquitin residues that serves as a signal for transport to the UPS. However, before this protein degradation can occur, the polyubiquitin chain must be removed, one residue at a time, a reaction facilitated by the enzyme, ubiquitin C-terminal hydrolase (UCH-L1). In Alzheimer disease brain, this normally abundant protein is both of lower levels and oxidatively and nitrosatively modified than in control brain. This causes diminished function of the pleiotropic UCH-L1 enzyme with consequent pathological alterations in AD brain, and the author asserts the oxidative and nitrosative alterations of UCH-L1 are major contributors to mechanisms of neuronal death in this devastating dementing disorder and its earlier stage, mild cognitive impairment (MCI). This review paper outlines these findings in AD and MCI brain.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
8
|
Zhang Y, Wang L, Li G, Gao J. Berberine-Albumin Nanoparticles: Preparation, Thermodynamic Study and Evaluation Their Protective Effects Against Oxidative Stress in Primary Neuronal Cells as a Model of Alzheimer's Disease. J Biomed Nanotechnol 2021; 17:1088-1097. [PMID: 34167623 DOI: 10.1166/jbn.2021.2995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine has shown an outstanding antioxidant activity, however the low bioavailability limits its applications in pharmaceutical platforms. Therefore, in this paper, after fabrication of the berberine-HSA nanoparticles by desolvation method, they were well characterized by TEM, SEM, DLS, and FTIR techniques. Afterwards the interaction of HSA and the berberine was evaluated by molecular docking analysis. Finally, the antioxidant activity of the berberine-HSA nanoparticles against H₂O₂-induced oxidative stress in cultured neurons as a model of AD was evaluated by cellular assays. The results showed that the prepared berberine-HSA nanoparticles have a spherical-shaped morphology with a size of around 100 nm and zeta potential value of -31.84 mV. The solubility value of nanoparticles was calculated to be 40.27%, with a berberine loading of 19.37%, berberine entrapment efficiency of 70.34%, and nanoparticles yield of 88.91%. Also, it was shown that the berberine is not significantly released from HSA nanoparticles within 24 hours. Afterwards, molecular docking investigation revealed that berberine spontaneously interacts with HSA through electrostatic interaction. Finally, cellular assays disclosed that the pretreatment of neuronal cultures with berberine-HSA nanoparticles decreased the H₂O₂-stimulated cytotoxicity and relevant morphological changes and enhanced the CAT activity. In conclusion, it can be indicated that the nanoformulation of the berberine can be used as a promising platform for inhibition of oxidative damage-induced Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yaohui Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, P. R. China
| | - Lixiang Wang
- Department of Neurology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan 271126, China
| | - Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center Clinical Psychology, 266034, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
9
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|
10
|
Karri V, Schuhmacher M, Kumar V. A systems toxicology approach to compare the heavy metal mixtures (Pb, As, MeHg) impact in neurodegenerative diseases. Food Chem Toxicol 2020; 139:111257. [PMID: 32179164 DOI: 10.1016/j.fct.2020.111257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Conventional toxicological risk assessment methods mainly working on single chemicals that fail to adequately address the simultaneous exposure and their potential toxicity in humans. We herein investigated the toxic heavy metals lead (Pb), arsenic (As), and methylmercury (MeHg) and their binary mixtures role in neurodegenerative diseases. To characterize the toxicity of metal mixtures at the molecular level, we established a non-animal omics-based organ relevant cell model system. The obtained experimental data was refined by using the statistical and downstream functional analysis. The protein expression information substantiates the previous findings of single metal (Pb, As, and MeHg) induced alterations to mitochondrial dysfunction, oxidative stress, mRNA splicing, and ubiquitin system dysfunction relation to neurodegenerative diseases. The functional downstream analysis of single and binary mixtures protein data is presented in a comparative manner. The heavy metals mixtures' outcome showed significant differences in the protein expression compared to single metals that indicate metal mixtures exposure is more hazardous than single metal exposure. These results suggest that more comprehensive strategies are needed to improve the mixtures risk assessment in the future.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Unit of Biochemical Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
11
|
One- and Two-Electron Oxidations of β-Amyloid 25-35 by Carbonate Radical Anion (CO 3•-) and Peroxymonocarbonate (HCO 4-): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules 2020; 25:molecules25040961. [PMID: 32093407 PMCID: PMC7070857 DOI: 10.3390/molecules25040961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
The β-amyloid (Aβ) peptide plays a key role in the pathogenesis of Alzheimer’s disease. The methionine (Met) residue at position 35 in Aβ C-terminal domain is critical for neurotoxicity, aggregation, and free radical formation initiated by the peptide. The role of Met in modulating toxicological properties of Aβ most likely involves an oxidative event at the sulfur atom. We therefore investigated the one- or two-electron oxidation of the Met residue of Aβ25-35 fragment and the effect of such oxidation on the behavior of the peptide. Bicarbonate promotes two-electron oxidations mediated by hydrogen peroxide after generation of peroxymonocarbonate (HCO4−, PMC). The bicarbonate/carbon dioxide pair stimulates one-electron oxidations mediated by carbonate radical anion (CO3•−). PMC efficiently oxidizes thioether sulfur of the Met residue to sulfoxide. Interestingly, such oxidation hampers the tendency of Aβ to aggregate. Conversely, CO3•− causes the one-electron oxidation of methionine residue to sulfur radical cation (MetS•+). The formation of this transient reactive intermediate during Aβ oxidation may play an important role in the process underlying amyloid neurotoxicity and free radical generation.
Collapse
|
12
|
Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20102407. [PMID: 31096608 PMCID: PMC6566277 DOI: 10.3390/ijms20102407] [Citation(s) in RCA: 463] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases.
Collapse
|
13
|
Exploring Novel Functions of the Small GTPase Ypt1p under Heat-Shock by Characterizing a Temperature-Sensitive Mutant Yeast Strain, ypt1-G80D. Int J Mol Sci 2019; 20:ijms20010132. [PMID: 30609659 PMCID: PMC6337079 DOI: 10.3390/ijms20010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 02/06/2023] Open
Abstract
In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone.
Collapse
|
14
|
Lim HS, Kim YJ, Sohn E, Yoon J, Kim BY, Jeong SJ. Bojungikgi-Tang, a Traditional Herbal Formula, Exerts Neuroprotective Effects and Ameliorates Memory Impairments in Alzheimer's Disease-Like Experimental Models. Nutrients 2018; 10:nu10121952. [PMID: 30544702 PMCID: PMC6316759 DOI: 10.3390/nu10121952] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Bojungikgi-tang (BJIGT; Bu Zhong Yi Qi Tang in China, Hochuekkito in Japan) is a traditional Oriental herbal formula comprised of eight medicinal herbs that has long been used for the treatment of digestive disorders. A recent clinical study from South Korea reported that BJIGT-gamibang administration may be effective in treating dementia. We aimed to establish scientific evidence for the anti-dementia effects of BJIGT using in vitro and in vivo experimental models. We measured amyloid- β (Aβ) aggregation, β-secretase (BACE), and antioxidant activity in a cell free system. Neuroprotective effects were assessed using CCK-8. Imprinting control region (ICR) mice were divided into the following six groups: Normal control, Aβ-injected, Aβ-injection + oral BJIGT gavage (200, 400, or 800 mg/kg/day), and Aβ-injection + oral morin administration (10 mg/kg/day). Subsequently, behavioral evaluations were conducted and brain samples were collected from all the animals and assessed. BJIGT enhanced inhibition of Aβ aggregation and BACE activity in vivo, as well as antioxidant activity in in vitro, cell-free systems. BJIGT also exerted neuroprotective effects in a hydroperoxide (H₂O₂)-induced damaged HT22 hippocampal cell line model. In addition, BJIGT administration significantly ameliorated cognitive impairments in Aβ-injected mice, as assessed by the passive avoidance and Y-maze tests. Furthermore, BJIGT treatment suppressed Aβ aggregation and expression, as well as expression of Aβ, NeuN, and brain-derived neurotrophic factor (BDNF) in the hippocampi of Aβ-injected mice. Overall, our results demonstrate that, with further testing in clinical populations, BJIGT may have great utility for the treatment of dementia and especially Alzheimer's disease.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do 58245, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Jiyeon Yoon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
15
|
Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics 2018; 187:106-125. [PMID: 30017948 DOI: 10.1016/j.jprot.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Julia Bauzá Martinez
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Susan L Coort
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
16
|
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2018; 14:450-464. [PMID: 29080524 PMCID: PMC5680523 DOI: 10.1016/j.redox.2017.10.014] [Citation(s) in RCA: 1465] [Impact Index Per Article: 209.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.
Collapse
Affiliation(s)
- C Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - M Tomas
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - D Bonnefont-Rousselot
- Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - P Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France
| | - C Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - F Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
| |
Collapse
|
17
|
Kumar A, Aggrawal A, Pottabathini R, Singh A. Possible neuroprotective mechanisms of clove oil against icv-colchicine induced cognitive dysfunction. Pharmacol Rep 2016; 68:764-72. [PMID: 27209363 DOI: 10.1016/j.pharep.2016.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), a common neurodegenerative disorder, recognized to be a major cause of dementia. The aim of the present study was to investigate the neuroprotective mechanisms of clove oil in intracerebroventricular (icv)-colchicine induced cognitive dysfunction in rats. METHODS Single bilateral icv-colchicine (15μg/5μl) was administered, followed by drug treatment with clove oil (0.05ml/kg and 0.1ml/kg, ip), minocycline (25 and 50mg/kg, ip) and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE) level and mitochondrial respiratory enzyme complexes (I-IV) were assessed. RESULTS Colchicine icv administration significantly impaired cognitive performance in Morris water maze (MWM) causes oxidative stress, raised AChE level, caused neuroinflammation and mitochondrial dysfunction as compared to sham treatment. Treatment with clove oil (0.05ml/kg and 0.1ml/kg) and minocycline (25 and 50mg/kg) alone significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ) in MWM task, reduced AChE activity, oxidative damage (reduced lipid peroxidation levels, nitrite level and restored glutathione levels) and restored mitochondrial respiratory enzyme complex (I-IV) activities as compared to icv-colchicine treatment. Further, combinations of clove oil (0.1ml/kg) with minocycline (50mg/kg) significantly modulate the neuroprotective effect of clove oil as compared to their effect alone. CONCLUSION The present study highlights that the major neuroprotective effect of clove oil due to its mitochondrial restoring and anti-oxidant properties along with a microglial inhibitory mechanism.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Archi Aggrawal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Raghavender Pottabathini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Arti Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
18
|
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015; 10:4981-5003. [PMID: 26345528 PMCID: PMC4531021 DOI: 10.2147/ijn.s87148] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Kang CH, Lee SY, Park JH, Lee Y, Jung HS, Chi YH, Jung YJ, Chae HB, Shin MR, Kim WY, Yun D, Lee SY. Stress‐driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo tolerance in
Saccharomyces cerevisiae. FASEB J 2015; 29:4424-34. [DOI: 10.1096/fj.15-270140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Chang Ho Kang
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Sun Yong Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Joung Hun Park
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Yuno Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic ResearchKorea Basic Science InstituteDaejeonSouth Korea
- Department of BiochemistryCollege of Natural Sciences, Kangwon National UniversityChuncheonSouth Korea
| | - Yong Hun Chi
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Young Jun Jung
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Ho Byoung Chae
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Mi Rim Shin
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Woe Yeon Kim
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Dae‐Jin Yun
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| | - Sang Yeol Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
| |
Collapse
|
20
|
Giraldo E, Lloret A, Fuchsberger T, Viña J. Aβ and tau toxicities in Alzheimer's are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2014; 2:873-7. [PMID: 25061569 PMCID: PMC4099506 DOI: 10.1016/j.redox.2014.03.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress is a hallmark of Alzheimer's disease (AD). We propose that rather than causing damage because of the action of free radicals, oxidative stress deranges signaling pathways leading to tau hyperphosphorylation, a hallmark of the disease. Indeed, incubation of neurons in culture with 5 µM beta-amyloid peptide (Aβ) causes an activation of p38 MAPK (p38) that leads to tau hyperphosphorylation. Inhibition of p38 prevents Aβ-induced tau phosphorylation. Aβ-induced effects are prevented when neurons are co-incubated with trolox (the water-soluble analog of vitamin E). We have confirmed these results in vivo, in APP/PS1 double transgenic mice of AD. We have found that APP/PS1 transgenic mice exhibit a high level of P-p38 in the hippocampus but not in cortex and this is prevented by feeding animals with a diet supplemented with vitamin E. Our results underpin the role of oxidative stress in the altered cell signaling in AD pathology and suggest that antioxidant prevention may be useful in AD therapeutics.
Collapse
Affiliation(s)
- E Giraldo
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Avda. Blasco Ibañez, 15, Valencia 46010, Spain
| | - A Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Avda. Blasco Ibañez, 15, Valencia 46010, Spain
| | - T Fuchsberger
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Avda. Blasco Ibañez, 15, Valencia 46010, Spain
| | - J Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Avda. Blasco Ibañez, 15, Valencia 46010, Spain
| |
Collapse
|
21
|
Drolle E, Hane F, Lee B, Leonenko Z. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease. Drug Metab Rev 2014; 46:207-23. [PMID: 24495298 DOI: 10.3109/03602532.2014.882354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer's patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers - insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo , Waterloo, ON , Canada
| | | | | | | |
Collapse
|
22
|
Staurosporine-induced apoptosis presents with unexpected cholinergic effects in a differentiated neuroblastoma cell line. Neurochem Int 2012; 61:1011-20. [DOI: 10.1016/j.neuint.2012.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 11/20/2022]
|
23
|
Rafatian G, Khodagholi F, Farimani MM, Abraki SB, Gardaneh M. Increase of autophagy and attenuation of apoptosis by Salvigenin promote survival of SH-SY5Y cells following treatment with H2O2. Mol Cell Biochem 2012; 371:9-22. [DOI: 10.1007/s11010-012-1416-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
|
24
|
Khodagholi F, Ansari N, Amini M, Tusi SK. Involvement of molecular chaperones and the transcription factor Nrf2 in neuroprotection mediated by para-substituted-4,5-diaryl-3-thiomethyl-1,2,4-triazines. Cell Stress Chaperones 2012; 17:409-22. [PMID: 22212523 PMCID: PMC3368030 DOI: 10.1007/s12192-011-0316-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 01/24/2023] Open
Abstract
Much evidence supports that oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. Herein, we studied the compensatory/adaptive mechanisms involved in 3-thiomethyl-5,6-(diphenyl)-1,2,4-triazine and 3-thiomethyl-5,6-(dichlorophenyl)-1,2,4-triazine neuroprotection. We found that these compounds could counteract H(2)O(2)-induced rupture of neurite outgrowth in differentiated PC12 cells. In addition, we found that pretreatment of cells with triazine derivatives could modulate the expression of heat shock proteins Hsp70, Hsp90, and Hsp32 in H(2)O(2)-treated PC12 cells. These compounds could also increase nuclear level of stress sensing transcription factor, NF-E2 related factor 2, which contributes to redox homeostasis and cell survival following stress. As a result, the elevated levels of glutamylcysteine synthetase, glutathione peroxidase-1, and glutathione, as well as superoxide dismutase and catalase, increased cellular antioxidant capacity. Studying the relation between structure and activity of these compounds will pave the way for exploiting preventive and/or therapeutic strategies for the management of oxidative stress-mediated disorders.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
25
|
Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 2011; 51:1000-13. [PMID: 21664268 PMCID: PMC3156342 DOI: 10.1016/j.freeradbiomed.2011.05.017] [Citation(s) in RCA: 583] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
The mechanistic properties of two dietary antioxidants that are required by humans, vitamins C and E, are discussed relative to their biological effects. Vitamin C (ascorbic acid) is an essential cofactor for α-ketoglutarate-dependent dioxygenases. Examples are prolyl hydroxylases, which play a role in the biosynthesis of collagen and in down-regulation of hypoxia-inducible factor (HIF)-1, a transcription factor that regulates many genes responsible for tumor growth, energy metabolism, and neutrophil function and apoptosis. Vitamin C-dependent inhibition of the HIF pathway may provide alternative or additional approaches for controlling tumor progression, infections, and inflammation. Vitamin E (α-tocopherol) functions as an essential lipid-soluble antioxidant, scavenging hydroperoxyl radicals in a lipid milieu. Human symptoms of vitamin E deficiency suggest that its antioxidant properties play a major role in protecting erythrocyte membranes and nervous tissues. As an antioxidant, vitamin C provides protection against oxidative stress-induced cellular damage by scavenging of reactive oxygen species, by vitamin E-dependent neutralization of lipid hydroperoxyl radicals, and by protecting proteins from alkylation by electrophilic lipid peroxidation products. These bioactivities bear relevance to inflammatory disorders. Vitamin C also plays a role in the function of endothelial nitric oxide synthase (eNOS) by recycling the eNOS cofactor, tetrahydrobiopterin, which is relevant to arterial elasticity and blood pressure regulation. Evidence from plants supports a role for vitamin C in the formation of covalent adducts with electrophilic secondary metabolites. Mechanism-based effects of vitamin C and E supplementation on biomarkers and on clinical outcomes from randomized, placebo-controlled trials are emphasized in this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
26
|
Bertrand SJ, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci 2011; 12:38. [PMID: 21569253 PMCID: PMC3112111 DOI: 10.1186/1471-2202-12-38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-term primary neuronal cultures are a useful tool for the investigation of biochemical processes associated with neuronal senescence. Improvements in available technology make it possible to observe maturation of neural cells isolated from different regions of the rodent brain over a prolonged period in vitro. Existing experimental evidence suggests that cellular aging occurs in mature, long-term, primary neuronal cell cultures. However, detailed studies of neuronal development in vitro are needed to demonstrate the validity of long-term cell culture-based models for investigation of the biochemical mechanisms of in vitro neuronal development and senescence. RESULTS In the current study, neuron-enriched hippocampal cell cultures were used to analyze the differentiation and degeneration of hippocampal neurons over a two month time period. The expression of different neuronal and astroglial biomarkers was used to determine the cytochemical characteristics of hippocampal cells in long-term cultures of varying ages. It was observed that the expression of the intermediate filament nestin was absent from cultures older than 21 days in vitro (DIV), and the expression of neuronal or astrocytic markers appeared to replace nestin. Additionally, morphological evaluations of neuronal integrity and Hoescht staining were used to assess the cellular conditions in the process of hippocampal culture development and aging. It was found that there was an increase in endogenous production of Aβ(1-42) and an increase in the accumulation of Congo Red-binding amyloidal aggregates associated with the aging of neurons in primary culture. In vitro changes in the morphology of co-existing astrocytes and cell culture age-dependent degeneration of neurodendritic network resemble features of in vivo brain aging at the cellular level. CONCLUSION In conclusion, this study suggests that long-term primary CNS culture is a viable model for the study of basic mechanisms and effective methods to decelerate the process of neuronal senescence.
Collapse
Affiliation(s)
- Sarah J Bertrand
- University of South Carolina, Program in Behavioral Neuroscience, Department of Psychology, Columbia, SC 29208, USA
| | - Marina V Aksenova
- University of South Carolina, Program in Behavioral Neuroscience, Department of Psychology, Columbia, SC 29208, USA
| | - Micheal Y Aksenov
- University of South Carolina, Program in Behavioral Neuroscience, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Program in Behavioral Neuroscience, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Program in Behavioral Neuroscience, Department of Psychology, Columbia, SC 29208, USA
| |
Collapse
|
27
|
An BC, Lee SS, Lee EM, Lee JT, Wi SG, Jung HS, Park W, Lee SY, Chung BY. Functional switching of a novel prokaryotic 2-Cys peroxiredoxin (PpPrx) under oxidative stress. Cell Stress Chaperones 2011; 16:317-28. [PMID: 21104173 PMCID: PMC3077232 DOI: 10.1007/s12192-010-0243-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/21/2010] [Accepted: 11/04/2010] [Indexed: 11/25/2022] Open
Abstract
Many proteins have been isolated from eukaryotes as redox-sensitive proteins, but whether these proteins are present in prokaryotes is not clear. Redox-sensitive proteins contain disulfide bonds, and their enzymatic activity is modulated by redox in vivo. In the present study, we used thiol affinity purification and mass spectrometry to isolate and identify 19 disulfide-bond-containing proteins in Pseudomonas putida exposed to potential oxidative damages. Among these proteins, we found that a typical 2-Cys Prx-like protein (designated PpPrx) displays diversity in structure and apparent molecular weight (MW) and can act as both a peroxidase and a molecular chaperone. We also identified a regulatory factor involved in this structural and functional switching. Exposure of pseudomonads to hydrogen peroxide (H(2)O(2)) caused the protein structures of PpPrx to convert from high MW complexes to low MW forms, triggering a chaperone-to-peroxidase functional switch. This structural switching was primarily guided by the thioredoxin system. Thus, the peroxidase efficiency of PpPrx is clearly associated with its ability to form distinct protein structures in response to stress.
Collapse
Affiliation(s)
- Byung Chull An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Eun Mi Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Jae Taek Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| | - Seung Gon Wi
- Bio-Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 500-757 South Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research, Korea Basic Science Institute, Eoeun-dong, Daejeon, 305-333 South Korea
| | - Woojun Park
- Division of Environmental Sciences and Ecological Engineering, Korea University, Anam dong, Seongbuk-Gu, Seoul, 136-701 South Korea
| | - Sang Yeol Lee
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701 South Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup, Jeollabuk-do 580-185 South Korea
| |
Collapse
|
28
|
Kuiper HC, Bruno RS, Traber MG, Stevens JF. Vitamin C supplementation lowers urinary levels of 4-hydroperoxy-2-nonenal metabolites in humans. Free Radic Biol Med 2011; 50:848-53. [PMID: 21236333 PMCID: PMC3046321 DOI: 10.1016/j.freeradbiomed.2011.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023]
Abstract
The lack of suitable biomarkers of oxidative stress is a common problem for antioxidant intervention studies in humans. We evaluated the efficacy of vitamin C supplementation in decreasing biomarkers of lipid peroxidation in nonsmokers and in cigarette smokers, a commonly studied, free-living human model of chronic oxidative stress. Participants received ascorbic acid (500mg twice per day) or placebo for 17 days in a double-blind, placebo-controlled, randomized crossover design study. The urinary biomarkers assessed and reported herein are derived from 4-hydroperoxy-2-nonenal (HPNE) and include the mercapturic acid (MA) conjugates of 4-hydroxy-2(E)-nonenal (HNE), 1,4-dihydroxy-2(E)-nonene (DHN), and 4-oxo-2(E)-nonenol(ONO). Vitamin C supplementation decreased the urinary concentrations of both ONO-MA (p=0.0013) and HNE-MA (p=0.0213) by ~30%; however, neither cigarette smoking nor sex affected these biomarkers. In contrast, vitamin C supplementation decreased urinary concentrations of DHN-MA (three-way interaction p=0.0304) in nonsmoking men compared with nonsmoking women (p<0.05), as well as in nonsmoking men compared with smoking men (p<0.05). Vitamin C supplementation also decreased (p=0.0092) urinary total of metabolites by ~20%. Thus, HPNE metabolites can be reduced favorably in response to improved plasma ascorbic acid concentrations, an effect due to ascorbic acid antioxidant function.
Collapse
Affiliation(s)
- Heather C. Kuiper
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University
| | - Richard S. Bruno
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Nutrition and Exercise Sciences, Oregon State University
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University
| |
Collapse
|
29
|
Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain. Free Radic Biol Med 2010; 49:1798-803. [PMID: 20869432 PMCID: PMC2970765 DOI: 10.1016/j.freeradbiomed.2010.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/01/2010] [Accepted: 09/15/2010] [Indexed: 11/25/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized histopathologically by the presence of senile plaques (SPs), neurofibrillary tangles, and synapse loss. The main component of SPs is amyloid-β peptide (Aβ), which has been associated with increased oxidative stress, leading to oxidative modification of proteins and consequently to neurotoxicity and neurodegeneration. Low-density lipoprotein receptor-related protein 1 (LRP1) is the primary moiety responsible for the efflux of Aβ from the brain to the blood across the blood-brain barrier. Impaired brain-to-blood transport of Aβ by LRP1 has been hypothesized to contribute to increased levels of Aβ in AD brain. The cause of LRP1 dysfunction is unknown, but we have hypothesized that Aβ oxidizes LRP1, thus damaging its own transporter. Consistent with this notion, we report in this study a significant increase in the levels of the lipid peroxidation product 4-hydroxy-2-nonenal bound to transmembrane LRP1 in AD hippocampus. In contrast, the levels of LRP1-resident 3-nitrotyrosine did not show a significant increase in AD hippocampus compared to age-matched controls. Based on this study, we propose that Aβ impairs its own efflux from the brain by oxidation of its transporter LRP1, leading to increased Aβ deposition in brain, thereby contributing to subsequent cognitive impairment in AD.
Collapse
Affiliation(s)
- Joshua B. Owen
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Christopher D. Aluise
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
| | - Michelle A. Erickson
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, St. Louis University, St. Louis, MO 63104, USA
| | - Tulin O. Price
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, St. Louis University, St. Louis, MO 63104, USA
| | - Guojun Bu
- Departments of Pediatrics and of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William A. Banks
- GRECC- VA Puget Sound Health Care System, Seattle, WA and Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington KY 40506-0055
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0059, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Sultana R, Newman S, Mohmmad-Abdul H, Keller JN, Butterfield DA. Protective Effect of the Xanthate, D609, on Alzheimer's Amyloid β-peptide (1–42)-induced Oxidative Stress in Primary Neuronal Cells. Free Radic Res 2009; 38:449-58. [PMID: 15293552 DOI: 10.1080/1071576042000206478] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Abeta(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
31
|
Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer's disease. J Nutr Biochem 2009; 20:269-75. [PMID: 18602817 PMCID: PMC2737260 DOI: 10.1016/j.jnutbio.2008.03.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/22/2008] [Accepted: 03/24/2008] [Indexed: 10/21/2022]
Abstract
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Mubeen Ahmad Ansari
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Hafiz Mohammad Abdul
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Gururaj Joshi
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Wycliffe O. Opii
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
32
|
Marcourakis T, Bahia VS, Kawamoto EM, Munhoz CD, Gorjão R, Artes R, Kok F, Caramelli P, Nitrini R, Curi R, Scavone C. Apolipoprotein E genotype is related to nitric oxide production in platelets. Cell Biochem Funct 2009; 26:852-8. [PMID: 18846579 DOI: 10.1002/cbf.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presence of the epsilon4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer's disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Tania Marcourakis
- Department of Clinical Chemistry and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Activation of phosphatidylcholine signalling during oxidative stress in synaptic endings. Neurochem Int 2008; 53:199-206. [DOI: 10.1016/j.neuint.2008.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/10/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|
34
|
Jayaraman M, Kannayiram G, Rajadas J. Amyloid toxicity in skeletal myoblasts: Implications for inclusion-body myositis. Arch Biochem Biophys 2008; 474:15-21. [PMID: 18397759 DOI: 10.1016/j.abb.2008.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Skeletal muscle disorder, inclusion-body myositis (IBM) has been known for accumulation of amyloid characteristic proteins in muscle. To understand the biophysical basis of IBM, the interaction of amyloid fibrils with skeletal myoblast cells (SMC) has been studied in vitro. Synthetic insulin fibrils and Abeta(25-35) fibrils were used for this investigation. From the saturation binding analysis, the calculated dissociation constant (K(d)) for insulin fibril and Abeta(25-35) fibrils were 69.37+/-11.17nM and 115.60+/-12.17nM, respectively. The fibrillar insulin comparatively has higher affinity binding to SMC than Abeta fibrils. The competitive binding studies with native insulin showed that the amount of bound insulin fibril was significantly decreased due to displacement of native insulin. However, the presence of native insulin is not altered the binding of beta-amyloid fibril. The cytotoxicity of insulin amyloid intermediates was measured. The pre-fibrillar intermediates of insulin showed significant toxicity (35%) as compared to matured fibrils. Myoblast treated with beta-amyloid fibrils showed more oxidative damage than the insulin fibril. Cell differentiating action of amyloidic insulin was assayed by creatine kinase activity. The insulin fibril treated cells differentiated more slowly compared to native insulin. However, beta-amyloid fibrils do not show cell differentiation property. These findings reinforce the hypothesis that accumulation of amyloid related proteins is significant for the pathological events that could lead to muscle degeneration and weakness in IBM.
Collapse
Affiliation(s)
- Murali Jayaraman
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
35
|
Marcourakis T, Camarini R, Kawamoto EM, Scorsi LR, Scavone C. Peripheral biomarkers of oxidative stress in aging and Alzheimer's disease. Dement Neuropsychol 2008; 2:2-8. [PMID: 29213532 PMCID: PMC5619146 DOI: 10.1590/s1980-57642009dn20100002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aging is associated with a greatly increased incidence of a number of
neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s
disease (PD) and amyotrophic lateral sclerosis (ALS). These conditions are
associated with chronic inflammation, which generates oxygen reactive species,
ultimately responsible for a process known as oxidative stress. It is well
established that this process is the culprit of neurodegeneration, and there are
also mounting evidences that it is not restricted to the central nervous system.
Indeed, several studies, including some by our group, have demonstrated that
increased peripheral oxidative stress markers are associated to aging and, more
specifically, to AD. Therefore, it is very instigating to regard aging and AD as
systemic conditions that might be determined by studying peripheral markers of
oxidative stress.
Collapse
Affiliation(s)
- Tania Marcourakis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences and Neurology Investigation Center, School of Medicine (LIM-15)
| | - Rosana Camarini
- Department of Pharmacology, Biomedical Sciences Institute. University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Biomedical Sciences Institute. University of São Paulo, São Paulo, Brazil
| | - Leandro Rodrigues Scorsi
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences and Neurology Investigation Center, School of Medicine (LIM-15)
| | - Cristoforo Scavone
- Department of Pharmacology, Biomedical Sciences Institute. University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Ban JY, Nguyen HTT, Lee HJ, Cho SO, Ju HS, Kim JY, Bae K, Song KS, Seong YH. Neuroprotective Properties of Gallic Acid from Sanguisorbae Radix on Amyloid .BETA. Protein (25-35)-Induced Toxicity in Cultured Rat Cortical Neurons. Biol Pharm Bull 2008; 31:149-53. [DOI: 10.1248/bpb.31.149] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine, Chungbuk National University
- Department of Pharmacology, College of Medicine, Kyung Hee University
| | | | - Hee-Ju Lee
- College of Agriculture and Life-Sciences, Kyungpook National University
| | - Soon Ock Cho
- College of Veterinary Medicine, Chungbuk National University
| | - Hyun Soo Ju
- College of Veterinary Medicine, Chungbuk National University
| | - Ju Yeon Kim
- College of Veterinary Medicine, Chungbuk National University
| | - KiHwan Bae
- College of Pharmacy, Chungnam National University
| | - Kyung-Sik Song
- College of Agriculture and Life-Sciences, Kyungpook National University
| | - Yeon Hee Seong
- College of Veterinary Medicine, Chungbuk National University
| |
Collapse
|
38
|
Li Y, Wang JJ, Cai JX. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes. J Neural Transm (Vienna) 2007; 114:1407-11. [PMID: 17557127 DOI: 10.1007/s00702-007-0760-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations ([Ca(2+)]i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (Abeta) Membrane fluidity was measured by using fluorescence anisotropy of the lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). [Ca(2+)]i was measured by using Fura 2-AM fluorescent spectrophotometry. We found that membrane fluidity of the FC and HP synaptosomes was decreased in 14 months old mice compared with that in 3 months old mice. Similarly, Abeta25-35 (1 microM) decreased the membrane fluidity in 3 months old mice. These effects of ageing and Abeta25-35 on membrane fluidity were restored by aniracetam in a concentration-dependent manner. Furthermore, Abeta25-35 (1 microM) largely increased [Ca(2+)]i in FC and HP synaptosomes in 3 months old mice, but this effect on HP synaptosomes was effectively reversed by aniracetam (1-4 mM). The present findings suggest that aniracetam restores age- and Abeta-induced alterations in membrane fluidity or Abeta-induced increase in [Ca(2+)]i, demonstrating a possible beneficial role of aniracetam in the clinic treatment for senile dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Y Li
- College of Life Sciences, Qufu Normal University, Qufu, PR China
| | | | | |
Collapse
|
39
|
Shan X, Chang Y, Lin CLG. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 2007; 21:2753-64. [PMID: 17496160 DOI: 10.1096/fj.07-8200com] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that up to 50% of messenger RNAs (mRNA) are oxidatively damaged in the affected area of Alzheimer's disease (AD) brains. The role of RNA oxidation in the cell death process is unknown. In the present study, we used cortical primary dissociated cultures to investigate the relationship between RNA oxidation and neuron degeneration induced by various insults, including hydrogen peroxide, glutamate, and amyloid beta peptide. These insults mediate the production of reactive oxygen species and thus induce oxidative stress. The results showed that RNA oxidation was an early event far preceding cell death, not merely a consequence of dying cells. RNA oxidation occurred primarily in a distinct group of neurons that died later. Identification of oxidized RNA species revealed that significant amounts of mRNAs were oxidized and that some mRNA species were more susceptible to oxidative damage, consistent with findings in the AD brain. The level of protein corresponding to the oxidized mRNA species was significantly decreased. Polyribosome analysis indicated that oxidized bases in mRNAs caused ribosome stalling on the transcripts, which led to a decrease of protein expression. These results suggest that RNA oxidation may be directly associated with neuronal deterioration, rather than harmless epiphenomena, during the process of neurodegeneration.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Brain Chemistry/physiology
- Cell Death
- Cells, Cultured
- Cerebral Cortex/cytology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Fluorescent Antibody Technique
- Free Radical Scavengers/pharmacology
- Hydrogen Peroxide/pharmacology
- Immunoprecipitation
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Oxidants/pharmacology
- Oxidation-Reduction
- Oxidative Stress
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxide Dismutase/antagonists & inhibitors
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Superoxide Dismutase-1
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiu Shan
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA
| | | | | |
Collapse
|
40
|
Opii WO, Sultana R, Abdul HM, Ansari MA, Nath A, Butterfield DA. Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)--2',3'-dideoxycytidine (ddC): relevance to HIV-dementia. Exp Neurol 2007; 204:29-38. [PMID: 17069802 PMCID: PMC1857338 DOI: 10.1016/j.expneurol.2006.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 09/01/2006] [Accepted: 09/21/2006] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus dementia (HIVD) is the most common form of dementia occurring among young adults. In HIVD, neuronal cell loss occurs in the absence of neuronal infection. With the advent of highly active anti-retroviral therapy (HAART), the incidence of HIVD has drastically reduced, though prevalence of milder forms of HIVD continues to rise. Though these agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. Here we examine the possible role of NRTIs, in particular 2',3'-dideoxycytidine (ddC), in the neuropathology of HIVD. Synaptosomes and isolated mitochondria treated and incubated for 6 h with CSF-achievable concentrations of ddC, i.e., 6-11 ng/ml, were found to show a significant increase in oxidative stress with 40 nM ddC as measured by protein carbonyls and 3-nitrotyrosine (3NT), effects that were not observed in the more tolerable NRTI, 3TC. Protection against protein oxidation induced by ddC was observed when brain mitochondria were isolated from gerbils 1 h after injection i.p. with the brain accessible antioxidant and glutathione mimetic, tricyclodecan-9-yl-xanthogenate (D609). In addition, there is a significant reduction in the levels of anti-apoptotic protein Bcl-2 and a significant increase in cytochrome c release and also a significant increase in the expression of pro-apoptotic protein caspase-3 after mitochondria were treated with 40 nM ddC. The results reported here show that ddC at 40 nM can induce oxidative stress, cause the release of cytochrome c, and in addition, reduce the levels of anti-apoptotic proteins, increase the levels of pro-apoptotic proteins, thereby increasing the possibility for induction of apoptosis. These findings are consistent with the notion of a possible role of the NRTIs, and in particular, ddC, in the mechanisms involved in HIVD.
Collapse
Affiliation(s)
- Wycliffe. O. Opii
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Rukhsana Sultana
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Hafiz Mohmmad Abdul
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Mubeen-Ahmad Ansari
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Avindra Nath
- Dept of Neurology, Johns Hopkins University, School of Medicine, Baltimore Maryland, 21287 - USA
| | - D. Allan Butterfield
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| |
Collapse
|
41
|
Zhang S, Zhang Z, Sandhu G, Ma X, Yang X, Geiger JD, Kong J. Evidence of oxidative stress-induced BNIP3 expression in amyloid beta neurotoxicity. Brain Res 2007; 1138:221-30. [PMID: 17274962 DOI: 10.1016/j.brainres.2006.12.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 12/25/2006] [Accepted: 12/27/2006] [Indexed: 11/16/2022]
Abstract
The formation of Abeta and its subsequent deposition in senile plaques are considered to be initial events that lead to a cascade of pathological changes in AD. Mediators of Abeta-induced oxidative stress are known to cause oxidative damage to macromolecules. However, the molecular mechanisms by which Abeta-induced oxidative stress leads to neuronal cell death are not fully understood. Here we show that Abeta-induced oxidative stress activates the pro-death gene BNIP3. Abeta treatment results in mitochondrial dysfunction, accumulation of reactive oxygen species, and subsequent expression of BNIP3 in rat primary cortical neurons. Pretreatment with antioxidants abolished Abeta-induced BNIP3 expression and attenuated cell death, demonstrating the role of oxidative stress in BNIP3 induction. Abeta-induced BNIP3 expression may be mediated by hypoxia-inducible factor-1 (HIF-1) because Abeta-treatment induced accumulation and nuclear translocation of HIF-1 and knock-down of HIF-1 by RNAi inhibited BNIP3 expression. Finally, knockdown of BNIP3 reduced Abeta-induced neuronal death. Together, these results suggest a potential pathological role of BNIP3 in the etiology of AD.
Collapse
Affiliation(s)
- Surong Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba Faculty of Medicine, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 0W3
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The interaction of Abeta with synaptosomal plasma membranes decreases membrane fluidity. Using model membrane/liposome systems the interaction of Abeta with specific lipids (e.g. phospholipids, gangliosides, cholesterol) has been defined. The formation of the beta-sheet structure of Abeta when undergoing peptide aggregation is important for Abeta's membrane perturbing properties. This effect can be correlated with the peptide length of Abeta, the longer Abeta1-42 having the greatest effect on membrane fluidity and on neurotoxicity.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, ZAFES, Biocenter University of Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Characterization of Interactions Between Misfolding Proteins and Molecular Chaperones by NMR Spectroscopy. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Narayanan S, Kamps B, Boelens WC, Reif B. αB-crystallin competes with Alzheimer's disease β-amyloid peptide for peptide-peptide interactions and induces oxidation of Abeta-Met35. FEBS Lett 2006; 580:5941-6. [PMID: 17046756 DOI: 10.1016/j.febslet.2006.09.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/17/2006] [Accepted: 09/22/2006] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is associated with plaque deposition in the brain of AD patients. The major component of the aggregate is a 39-42 long peptide termed beta-amyloid (Abeta). Except for Abeta, plaques contain several other components which co-precipitate together with Abeta. One such component is the small heat shock protein (sHSP) alphaB-crystallin. Instead of preventing the cell from the neurotoxicity of Abeta, alphaB-crystallin induces an increased neurotoxicity. We find - using solution state NMR spectroscopy - that alphaB-crystallin competes efficiently for Abeta monomer-monomer interactions. Interactions between Abeta and alphaB-crystallin involve the hydrophobic core residues 17-21 as well as residues 31-32 of Abeta, and thus the same chemical groups which are important for Abeta aggregation. In the presence of alphaB-crystallin, Met35 in Abeta becomes efficiently oxidized. In order to quantify the redox properties of the different complexes consisting of Abeta/alphaB-crystallin/copper, we suggest an NMR assay which allows to estimate the electrochemical properties indirectly by monitoring the rate of glutathion (GSH) auto-oxidation. The oxidation of the side chain Met35 in Abeta might account for the increased neurotoxicity and the inability of Abeta to form fibrillar structures, which has been observed previously in the presence of alphaB-crystallin [Stege, G.J. et al. (1999) The molecular chaperone alphaB-crystallin enhances amyloid-beta neurotoxicity. Biochem. Biophys. Res. Commun. 262, 152-156.].
Collapse
Affiliation(s)
- Saravanakumar Narayanan
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse, 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
Oxidative damage is a major feature in the pathophysiology of Alzheimer's disease (AD). In this review, we discuss free radical-mediated damage to the biochemical components involved in the pathology and clinical symptoms of AD. We explain how amyloid beta-protein (Abeta), microtubule-associated protein tau, presenilins, apolipoprotein E, mitochondria and proteases play a role in increasing oxidative stress in AD. Abeta not only can induce oxidative stress, but its generation is also increased as a result of oxidative stress. Finally, a hypothetical model linking oxidative stress with beta-amyloid and neurofibrillary tangle pathology in AD is proposed.
Collapse
Affiliation(s)
- Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
46
|
Mas E, Dupuy AM, Artero S, Portet F, Cristol JP, Ritchie K, Touchon J. Functional Vitamin E deficiency in ApoE4 patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2006; 21:198-204. [PMID: 16407653 DOI: 10.1159/000090868] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2005] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress has been implicated in the development of Alzheimer's disease (AD). Consequently, antioxidant therapies including Vitamin E (VitE) supplementation for both prevention and treatment of neurodegenerative diseases currently appears to be a promising avenue of research. The aim of the present study was to examine the relationship between AD and the ApoE phenotype, lipid parameters and VitE levels in a large cohort of elderly subjects. No absolute deficit was observed in plasma VitE levels. However in AD, ApoE4 is not associated with an increase in total cholesterol (TC) and VitE levels. Moreover, our results suggest that oxidative stress-induced injury and protection by VitE in AD are related to the ApoE phenotype. Our study strongly supports the hypothesis of an impairment of lipophilic antioxidant delivery to neuronal cells in AD leading to a tissular antioxidant deficiency which could facilitate oxidative stress.
Collapse
Affiliation(s)
- Emilie Mas
- Department of Biochemistry, Lapeyronie Hospital, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells. ACTA ACUST UNITED AC 2006. [DOI: 10.5010/jpb.2006.33.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Bartov O, Sultana R, Butterfield DA, Atlas D. Low molecular weight thiol amides attenuate MAPK activity and protect primary neurons from Abeta(1-42) toxicity. Brain Res 2006; 1069:198-206. [PMID: 16386719 DOI: 10.1016/j.brainres.2005.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/27/2005] [Accepted: 10/31/2005] [Indexed: 02/07/2023]
Abstract
Oxidative stress caused by various stimuli lead to oxidation of glutathione (GSH), the major redox power of the cell. Amyloid beta [Abeta(1-42)] is one of the key components of senile plaques and is involved in the progress initiation and triggers of Alzheimer's disease (AD). Lower GSH levels correlated with the activation of mitogen-activated proteins kinases (MAPK) have been demonstrated in AD, Parkinson's disease (PD) and other neurodegenerative disorders and have been proposed to play a central role in the deterioration of the aging and neurodegenerative brain. In this study, we evaluated the ability of low molecular weight thiol amides, N-acetyl cysteine amide (AD4) that replenishes GSH levels, N-acetyl glycine cysteine amide (AD7) and N-acetyl-Cys-Gly-Pro-Cys-amide (CB4) to protect primary neuronal culture against the oxidative and neurotoxic effects of Abeta(1-42) and to inhibit cisplatin- and hydrogen-peroxide-induced phosphorylation of two MAP kinases (MAPK), p38 and ERK1/2, in NIH3T3 cells. Cell death induced by Abeta(1-42) in primary neuronal cells was reversed by the thiol amides. Likewise, protein oxidation, loss of mitochondrial function and DNA fragmentation all returned to control levels by pretreatment with the three thiol amides. Elevated phosphorylation of ERK1/2 and p38 induced by cisplatin or H2O2 in NIH3T3 cells was lowered by AD4, AD7 and CB4 in a dose-dependent manner. Taken together, these results suggest that the thiol amides AD4, AD7 and CB4 protect neuronal cells against Abeta(1-42) toxicity by attenuating oxidative stress in correlation with inhibiting the MAPK phosphorylation cascade. These results are consistent with the notion that these small molecular thiol amides may play a viable protective role in the oxidative and neurotoxicity induced by Abeta(1-42) in AD brain.
Collapse
Affiliation(s)
- Orit Bartov
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
49
|
Greenrod W, Stockley CS, Burcham P, Abbey M, Fenech M. Moderate acute intake of de-alcoholized red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo -- results of a comparative in vivo intervention study in younger men. Mutat Res 2005; 591:290-301. [PMID: 16083915 DOI: 10.1016/j.mrfmmm.2005.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 05/03/2023]
Abstract
Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, de-alcoholized red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of de-alcoholized red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R=-0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin.
Collapse
Affiliation(s)
- W Greenrod
- CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000, Australia
| | | | | | | | | |
Collapse
|
50
|
Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem 2005; 93:953-62. [PMID: 15857398 DOI: 10.1111/j.1471-4159.2005.03053.x] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence suggests that oxidative stress is associated with normal aging and several neurodegenerative diseases, including Alzheimer's disease (AD). Here we quantified multiple oxidized bases in nuclear and mitochondrial DNA of frontal, parietal, and temporal lobes and cerebellum from short postmortem interval AD brain and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM) and stable labeled internal standards. Nuclear and mitochondrial DNA were extracted from eight AD and eight age-matched control subjects. We found that levels of multiple oxidized bases in AD brain specimens were significantly (p < 0.05) higher in frontal, parietal, and temporal lobes compared to control subjects and that mitochondrial DNA had approximately 10-fold higher levels of oxidized bases than nuclear DNA. These data are consistent with higher levels of oxidative stress in mitochondria. Eight-hydroxyguanine, a widely studied biomarker of DNA damage, was approximately 10-fold higher than other oxidized base adducts in both AD and control subjects. DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only slightly affected in AD brains. These results suggest that oxidative damage to mitochondrial DNA may contribute to the neurodegeneration of AD.
Collapse
Affiliation(s)
- J Wang
- Department of Chemistry, University of Kentucky, Lexington, 40536, USA
| | | | | | | | | |
Collapse
|