1
|
Kižys K, Pirštelis D, Morkvėnaitė-Vilkončienė I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. BIOSENSORS 2024; 14:572. [PMID: 39727837 DOI: 10.3390/bios14120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials. We created an MFC with a graphite anode, covering it with 9,10-phenatrenequinone and polypyrrole-modified Saccharomyces cerevisiae with and without 10 nm sphere gold nanoparticles. The MFC was evaluated using cyclic voltammetry and power density measurements. The peak current from cyclic voltammetry measurements increased from 3.76 mA/cm2 to 5.01 mA/cm2 with bare and polypyrrole-modified yeast, respectively. The MFC with polypyrrole- and nanoparticle-modified yeast reached a maximum power density of 150 mW/m2 in PBS with 20 mM Fe(III) and 20 mM glucose, using a load of 10 kΩ. The same MFC with the same load in wastewater reached 179.2 mW/m2. These results suggest that this MFC configuration can be used to improve charge transfer.
Collapse
Affiliation(s)
- Kasparas Kižys
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Domas Pirštelis
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| |
Collapse
|
2
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
3
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
Birtwistle MR. Modeling the Dynamics of Eukaryotic DNA Synthesis in Remembrance of Tunde Ogunnaike. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29631, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina29631, United States
| |
Collapse
|
6
|
Barchanska H, Płonka J, Nowak P, Kostina-Bednarz M. Metabolic profiles and fingerprints for the investigation of the influence of nitisinone on the metabolism of the yeast Saccharomyces cerevisiae. Sci Rep 2023; 13:1473. [PMID: 36702867 PMCID: PMC9879944 DOI: 10.1038/s41598-023-28335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Nitisinone (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione, NTBC) is considered a potentially effective drug for the treatment of various metabolic diseases associated with disorders of L-tyrosine metabolism however, side-effects impede its widespread use. This work aimed to broaden the knowledge of the influence of NTBC and its metabolites 2-amino-4-(trifluoromethyl)benzoic acid (ATFA), 2-nitro-4-(trifluoromethyl)benzoic acid (NTFA), and cyclohexane-1,3-dione (CHD) on the catabolism of L-tyrosine and other endogenous compounds in Saccharomyces cerevisiae. Based on a targeted analysis performed by LC-ESI-MS/MS, based on multiple reaction monitoring, it was found that the dissipation kinetics of the parent compound and its metabolites are compatible with a first-order reaction mechanism. Moreover, it has been proven that formed NTBC metabolites, such as CHD, cause a decrease in L-tyrosine, L-tryptophan, and L-phenylalanine concentrations by about 34%, 59% and 51%, respectively, compared to the untreated model organism. The overall changes in the metabolism of yeast exposed to NTBC or its derivatives were evaluated by non-targeted analysis via LC-ESI-MS/MS in the ion trap scanning mode. Based on principal components analysis, a statistically significant similarity between metabolic responses of yeast treated with ATFA or NTFA was observed. These findings facilitate further studies investigating the influence of NTBC on the human body and the mechanism of its action.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Paulina Nowak
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Marianna Kostina-Bednarz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
7
|
Todorova A, Todorova T. Apricot kernels' extract and amygdalin alter bleomycin-induced Ty1 retrotransposition, mitotic gene conversion in the trp-5 locus and reverse point mutations in ilv1-92 allele in Saccharomyces cerevisiae. Arch Microbiol 2022; 204:542. [PMID: 35932430 DOI: 10.1007/s00203-022-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
The present study aims to analyze the effect of apricot kernels' extract (AKE) and amygdalin (AMY) on bleomycin-induced genetic alternations. Five endpoints were analyzed: cell survival, Ty1 retrotransposition, mitotic gene conversion in the trp-5 locus, reverse point mutations in ilv1-92 allele, and mitotic crossing-over in the ade2 locus. The present work provides the first experimental evidence that bleomycin induces Ty1 retrotransposition in Saccharomyces cerevisiae. New data is obtained that the degree of DNA protection of AMY and AKE depends on the studied genetic event. AKE has been found to provide significant protection against bleomycin-induced Ty1 retrotransposition due to better-expressed antioxidant potential. On the other side, AMY better-expressed protection against bleomycin-induced mitotic gene conversion and reverse mutations may be attributed to the activation of the repair enzymes.
Collapse
Affiliation(s)
- Atanaska Todorova
- Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd, 1164, Sofia, Bulgaria
| | - Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
8
|
Yun HJ, Jeoung DJ, Jin S, Park JH, Lee EW, Lee HT, Choi YH, Kim BW, Kwon HJ. Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis. J Microbiol Biotechnol 2022; 32:918-926. [PMID: 35880481 PMCID: PMC9628924 DOI: 10.4014/jmb.2205.05012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Proteins related to DNA replication have been proposed as cancer biomarkers and targets for anticancer agents. Among them, minichromosome maintenance (MCM) proteins, often overexpressed in various cancer cells, are recognized both as notable biomarkers for cancer diagnosis and as targets for cancer treatment. Here, we investigated the activity of cedrol, a single compound isolated from Juniperus chinensis, in reducing the expression of MCM proteins in human lung carcinoma A549 cells. Remarkably, cedrol also strongly inhibited the expression of all other MCM protein family members in A549 cells. Moreover, cedrol treatment reduced cell viability in A549 cells, accompanied by cell cycle arrest at the G1 phase, and enhanced apoptosis. Taken together, this study broadens our understanding of how cedrol executes its anticancer activity while demonstrating that cedrol has potential application in the treatment of human lung cancer as an inhibitor of MCM proteins.
Collapse
Affiliation(s)
- Hee Jung Yun
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea
| | - Da Jeoung Jeoung
- Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Jung-ha Park
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun-Tai Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-eui University, Busan 47340, Republic of Korea,Corresponding authors B.W. Kim Phone: +82-51-890-2900 E-mail:
| | - Hyun Ju Kwon
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea,
H.J. Kwon Phone: +82-51-890-1519 Fax: +82-505-182-6871 E-mail:
| |
Collapse
|
9
|
Onwubiko NO, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen helicase domain regions responsible for oligomerisation regulate Okazaki fragment synthesis initiation. FEBS Open Bio 2022; 12:649-663. [PMID: 35073603 PMCID: PMC8886539 DOI: 10.1002/2211-5463.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Heinz Peter Nasheuer
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| |
Collapse
|
10
|
Zinovicius A, Rozene J, Merkelis T, Bruzaite I, Ramanavicius A, Morkvenaite-Vilkonciene I. Evaluation of a Yeast-Polypyrrole Biocomposite Used in Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22010327. [PMID: 35009869 PMCID: PMC8749611 DOI: 10.3390/s22010327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 05/31/2023]
Abstract
Electrically conductive polymers are promising materials for charge transfer from living cells to the anodes of electrochemical biosensors and biofuel cells. The modification of living cells by polypyrrole (PPy) causes shortened cell lifespan, burdens the replication process, and diminishes renewability in the long term. In this paper, the viability and morphology non-modified, inactivated, and PPy-modified yeasts were evaluated. The results displayed a reduction in cell size, an incremental increase in roughness parameters, and the formation of small structural clusters of polymers on the yeast cells with the increase in the pyrrole concentration used for modification. Yeast modified with the lowest pyrrole concentration showed minimal change; thus, a microbial fuel cell (MFC) was designed using yeast modified by a solution containing 0.05 M pyrrole and compared with the characteristics of an MFC based on non-modified yeast. The maximal generated power of the modified system was 47.12 mW/m2, which is 8.32 mW/m2 higher than that of the system based on non-modified yeast. The open-circuit potentials of the non-modified and PPy-modified yeast-based cells were 335 mV and 390 mV, respectively. Even though applying a PPy layer to yeast increases the charge-transfer efficiency towards the electrode, the damage done to the cells due to modification with a higher concentration of PPy diminishes the amount of charge transferred, as the current density drops by 846 μA/cm2. This decrease suggests that modification by PPy may have a cytotoxic effect that greatly hinders the metabolic activity of yeast.
Collapse
Affiliation(s)
- Antanas Zinovicius
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Juste Rozene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Timas Merkelis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvenaite-Vilkonciene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, 10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Fan Y, Wang W. Using multi-layer perceptron to identify origins of replication in eukaryotes via informative features. BMC Bioinformatics 2021; 22:516. [PMID: 34688247 PMCID: PMC8542328 DOI: 10.1186/s12859-021-04431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origin is the starting site of DNA replication, an extremely vital part of the informational inheritance between parents and children. More importantly, accurately identifying the origin of replication has great application value in the diagnosis and treatment of diseases related to genetic information errors, while the traditional biological experimental methods are time-consuming and laborious. RESULTS We carried out research on the origin of replication in a variety of eukaryotes and proposed a unique prediction method for each species. Throughout the experiment, we collected data from 7 species, including Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, Kluyveromyces lactis, Pichia pastoris and Schizosaccharomyces pombe. In addition to the commonly used sequence feature extraction methods PseKNC-II and Base-content, we designed a feature extraction method based on TF-IDF. Then the two-step method was utilized for feature selection. After comparing a variety of traditional machine learning classification models, the multi-layer perceptron was employed as the classification algorithm. Ultimately, the data and codes involved in the experiment are available at https://github.com/Sarahyouzi/EukOriginPredict . CONCLUSIONS The prediction accuracy of the training set of the above-mentioned seven species after 100 times fivefold cross validation reach 92.60%, 90.80%, 91.22%, 96.15%, 96.72%, 99.86%, 96.72%, respectively. It denotes that compared with other methods, the methods we designed could accomplish superior performance. In addition, our experiments reveals that the models of multiple species could predict each other with high accuracy, and the results of STREME shows that they have a certain common motif.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Wanru Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
12
|
Yang S, Ren X, Liang Y, Yan Y, Zhou Y, Hu J, Wang Z, Song F, Wang F, Liao W, Liao W, Ding Y, Liang L. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 2020; 39:249-261. [PMID: 31477839 DOI: 10.1038/s41388-019-0978-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
As an inhibitor of heat shock proteins (HSPs), KNK437 has been reported to play an anti-tumor role in several cancers. But its therapeutic effect and mechanisms in colorectal cancer (CRC) remain unclear. Here, KNK437 sharply inhibited the level of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1), followed by DNAJB1, but had little effect on the levels of HSP27, HSP105, HSP90, and HSP70 in CRC cells. DNAJA1 promoted CRC cell proliferation in vitro and tumor growth and metastasis in vivo. Mechanistically, DNAJA1 was activated by E2F transcription factor 1 (E2F1) and then promoted cell cycle by stabilizing cell division cycle protein 45 (CDC45), which could be reversed by KNK437. DNAJA1 was significantly upregulated in CRC tissues and positively correlated with serosa invasion, lymph node metastasis. High level of DNAJA1 predicted poor prognosis for CRC patients. Its expression was highly linked with E2F1 and CDC45 in CRC tissues. More importantly, KNK437 significantly suppressed the growth of DNAJA1 expressing tumor in vivo. The combined treatment of KNK437 with 5-FU/L-OHP chemotherapy reduced liver metastasis of CRC. These data reveal a novel mechanism of KNK437 in anti-tumor therapy of CRC and provides a newly therapeutic strategy with potential translation to the CRC patients.
Collapse
Affiliation(s)
- Shaoshan Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yongrong Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinlong Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
13
|
Zang YQ, Feng YY, Luo YH, Zhai YQ, Ju XY, Feng YC, Sheng YN, Wang JR, Yu CQ, Jin CH. Quinalizarin induces ROS‑mediated apoptosis via the MAPK, STAT3 and NF‑κB signaling pathways in human breast cancer cells. Mol Med Rep 2019; 20:4576-4586. [PMID: 31702038 PMCID: PMC6798002 DOI: 10.3892/mmr.2019.10725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Quinalizarin has been demonstrated to exhibit potent antitumor activities in lung cancer and gastric cancer cells, but currently, little is known regarding its anticancer mechanisms in human breast cancer cells. The aim of the present study was to investigate the apoptotic effects of quinalizarin in MCF-7 cells and to analyze its molecular mechanisms. The MTT assay was used to evaluate the viability of human breast cancer cells that had been treated with quinalizarin and 5-fluorouracil. Flow cytometric analyses and western blotting were used to investigate the effects of quinalizarin on apoptosis and cycle arrest in MCF-7 cells with focus on reactive oxygen species (ROS) production. The results demonstrated that quinalizarin exhibited significant cytotoxic effects on human breast cancer cells in a dose-dependent manner. Accompanying ROS, quinalizarin induced MCF-7 cell mitochondrial-associated apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G2/M phase in a time-dependent manner. Furthermore, quinalizarin can activate p38 kinase and JNK, and inhibit the extracellular signal-regulated kinase, signal transducer and activator of transcription 3 (STAT3) and NF-κB signaling pathways. These effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and N-acetyl-L-cysteine. The results from the present study suggested that quinalizarin induced G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through ROS-mediated MAPK, STAT3 and NF-κB signaling pathways. Thus, quinalizarin may be useful for human breast cancer treatment, as well as the treatment of other cancer types.
Collapse
Affiliation(s)
- Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Yu Feng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu-Qing Zhai
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xue-Ying Ju
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ya-Nan Sheng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chang-Qing Yu
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
14
|
Sun M, Zhang J. Chromosome-wide co-fluctuation of stochastic gene expression in mammalian cells. PLoS Genet 2019; 15:e1008389. [PMID: 31525198 PMCID: PMC6762216 DOI: 10.1371/journal.pgen.1008389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/26/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Gene expression is subject to stochastic noise, but to what extent and by which means such stochastic variations are coordinated among different genes are unclear. We hypothesize that neighboring genes on the same chromosome co-fluctuate in expression because of their common chromatin dynamics, and verify it at the genomic scale using allele-specific single-cell RNA-sequencing data of mouse cells. Unexpectedly, the co-fluctuation extends to genes that are over 60 million bases apart. We provide evidence that this long-range effect arises in part from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, which is much closer intra-chromosomally than inter-chromosomally. We further show that genes encoding components of the same protein complex tend to be chromosomally linked, likely resulting from natural selection for intracellular among-component dosage balance. These findings have implications for both the evolution of genome organization and optimal design of synthetic genomes in the face of gene expression noise.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
15
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
16
|
Dao FY, Lv H, Wang F, Ding H. Recent Advances on the Machine Learning Methods in Identifying DNA Replication Origins in Eukaryotic Genomics. Front Genet 2018; 9:613. [PMID: 30619452 PMCID: PMC6295579 DOI: 10.3389/fgene.2018.00613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
The initiate site of DNA replication is called origins of replication (ORI) which is regulated by a set of regulatory proteins and plays important roles in the basic biochemical process during cell growth and division in all living organisms. Therefore, the study of ORIs is essential for understanding the cell-division cycle and gene expression regulation so that scholars can develop a new strategy against genetic diseases by using the knowledge of DNA replication. Thus, the accurate identification of ORIs will provide key clues for DNA replication research and clinical medicine. Although, the conventional experiments could provide accurate results, they are time-consuming and cost ineffective. On the contrary, bioinformatics-based methods can overcome these shortcomings. Especially, with the emergence of DNA sequences in the post-genomic era, it is highly expected to develop high throughput tools to identify ORIs based on sequence information. In this review, we will summarize the current progress in computational prediction of eukaryotic ORIs including the collection of benchmark dataset, the application of machine learning-based techniques, the results obtained by these methods, and the construction of web servers. Finally, we gave the future perspectives on ORIs prediction. The review provided readers with a whole background of ORIs prediction based on machine learning methods, which will be helpful for researchers to study DNA replication in-depth and drug therapy of genetic defect.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Appl Biochem Biotechnol 2016; 179:1336-45. [DOI: 10.1007/s12010-016-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
18
|
Rattan R, Bielinska AU, Banaszak Holl MM. Quantification of cytosolic plasmid DNA degradation using high-throughput sequencing: implications for gene delivery. J Gene Med 2015; 16:75-83. [PMID: 24700644 DOI: 10.1002/jgm.2761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/06/2014] [Accepted: 03/31/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although cytosolic DNA degradation plays an important role in decreasing transgene expression, the plasmid degradation pattern remains largely unexplored. METHODS Illumina dye sequencing was employed to provide degradation site information for S1 and cytosolic nucleases. S1 nuclease provided a positive control for a comparison between the agarose gel method and sequencing approaches. RESULTS The poly(A) region between the β-lactamase gene and the cytomegalovirus (CMV) promoter was identified as the most likely cut site for polyplex-treated cytosol. The second most likely site, at the 5' end of the β-lactamase gene, was identified by gel electrophoresis and sequencing. Additional sites were detected in the OriC region, the SV40/poly(A) region, the luciferase gene and the CMV promoter. Sequence analysis of plasmid treated with cytosol from control cells showed the greatest cut activity in the OriC region, the β-lactamase gene and the poly(A) region following the luciferase gene. Additional regions of cut activity include the SV40 promoter and the β-lactamase poly(A) termination sequence. Both cytosolic nucleases and the S1 nuclease showed substantial activity at the bacterial origin of replication (OriC). CONCLUSIONS High-throughput plasmid sequencing revealed regions of the luciferase plasmid DNA sequence that are sensitive to cytosolic nuclease degradation. This provides new targets for improving plasmid and/or polymer design to optimize the likelihood of protein expression.
Collapse
Affiliation(s)
- Rahul Rattan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
19
|
Broderick R, Rainey MD, Santocanale C, Nasheuer HP. Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. FEBS J 2013; 280:4888-902. [PMID: 23910567 DOI: 10.1111/febs.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin. The interactions of human Cdc45 with the three replication factors Claspin, replication protein A and DNA polymerase δ are maximal during the S phase. Following UVC-induced DNA damage, Cdc45-Claspin complex formation is reduced, whereas the binding of Cdc45 to replication protein A is not affected. We also show that treatment of cells with UCN-01 and phosphatidylinositol 3-kinase-like kinase inhibitors does not rescue the UV-induced destabilization of Cdc45-Claspin interactions, suggesting that the loss of the interaction between Cdc45 and Claspin occurs upstream of ataxia telangiectasia and Rad 3-related activation in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Ronan Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | | | | | | |
Collapse
|
20
|
Vaara M, Itkonen H, Hillukkala T, Liu Z, Nasheuer HP, Schaarschmidt D, Pospiech H, Syväoja JE. Segregation of replicative DNA polymerases during S phase: DNA polymerase ε, but not DNA polymerases α/δ, are associated with lamins throughout S phase in human cells. J Biol Chem 2012; 287:33327-38. [PMID: 22887995 DOI: 10.1074/jbc.m112.357996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA polymerases (Pol) α, δ, and ε replicate the bulk of chromosomal DNA in eukaryotic cells, Pol ε being the main leading strand and Pol δ the lagging strand DNA polymerase. By applying chromatin immunoprecipitation (ChIP) and quantitative PCR we found that at G(1)/S arrest, all three DNA polymerases were enriched with DNA containing the early firing lamin B2 origin of replication and, 2 h after release from the block, with DNA containing the origin at the upstream promoter region of the MCM4 gene. Pol α, δ, and ε were released from these origins upon firing. All three DNA polymerases, Mcm3 and Cdc45, but not Orc2, still formed complexes in late S phase. Reciprocal ChIP of the three DNA polymerases revealed that at G(1)/S arrest and early in S phase, Pol α, δ, and ε were associated with the same nucleoprotein complexes, whereas in late S phase Pol ε and Pol α/δ were largely associated with distinct complexes. At G(1)/S arrest, the replicative DNA polymerases were associated with lamins, but in late S phase only Pol ε, not Pol α/δ, remained associated with lamins. Consistently, Pol ε, but not Pol δ, was found in nuclear matrix fraction throughout the cell cycle. Therefore, Pol ε and Pol α/δ seem to pursue their functions at least in part independently in late S phase, either by physical uncoupling of lagging strand maturation from the fork progression, or by recruitment of Pol δ, but not Pol ε, to post-replicative processes such as translesion synthesis or post-replicative repair.
Collapse
Affiliation(s)
- Markku Vaara
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Broderick R, Ramadurai S, Tóth K, Togashi DM, Ryder AG, Langowski J, Nasheuer HP. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy. PLoS One 2012; 7:e35537. [PMID: 22536402 PMCID: PMC3334904 DOI: 10.1371/journal.pone.0035537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/17/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS) in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.
Collapse
Affiliation(s)
- Ronan Broderick
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sivaramakrishnan Ramadurai
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katalin Tóth
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denisio M. Togashi
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Alan G. Ryder
- Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Jörg Langowski
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heinz Peter Nasheuer
- Systems Biology Ireland and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
22
|
Liang B, Tikhanovich I, Nasheuer HP, Folk WR. Stimulation of BK virus DNA replication by NFI family transcription factors. J Virol 2012; 86:3264-75. [PMID: 22205750 PMCID: PMC3302295 DOI: 10.1128/jvi.06369-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.
Collapse
Affiliation(s)
- Bo Liang
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Irina Tikhanovich
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - William R. Folk
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| |
Collapse
|
23
|
Abstract
Small noncoding RNAs regulate a variety of cellular processes, including genomic imprinting, chromatin remodeling, replication, transcription, and translation. Here, we report small replication-regulating RNAs (srRNAs) that specifically inhibit DNA replication of the human BK polyomavirus (BKV) in vitro and in vivo. srRNAs from FM3A murine mammary tumor cells were enriched by DNA replication assay-guided fractionation and hybridization to the BKV noncoding control region (NCCR) and synthesized as cDNAs. Selective mutagenesis of the cDNA sequences and their putative targets suggests that the inhibition of BKV DNA replication is mediated by srRNAs binding to the viral NCCR, hindering early steps in the initiation of DNA replication. Ectopic expression of srRNAs in human cells inhibited BKV DNA replication in vivo. Additional srRNAs were designed and synthesized that specifically inhibit simian virus 40 (SV40) DNA replication in vitro. These observations point to novel mechanisms for regulating DNA replication and suggest the design of synthetic agents for inhibiting replication of polyomaviruses and possibly other viruses.
Collapse
|
24
|
Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 2011; 6:e16015. [PMID: 21311596 PMCID: PMC3032731 DOI: 10.1371/journal.pone.0016015] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/03/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.
Collapse
Affiliation(s)
- Hiren Karathia
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Ester Vilaprinyo
- Evaluation and Clinical Epidemiology Department, Hospital del Mar-IMIM, Barcelona, Spain
| | - Albert Sorribas
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Rui Alves
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
25
|
Machwe A, Lozada E, Wold MS, Li GM, Orren DK. Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J Biol Chem 2010; 286:3497-508. [PMID: 21107010 PMCID: PMC3030355 DOI: 10.1074/jbc.m110.105411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures. After certain DNA-damaging treatments, WRN is recruited to sites of blocked replication and co-localizes with the human single-stranded DNA-binding protein replication protein A (RPA). In this study we examined the physical and functional interaction between WRN and RPA specifically in relation to replication fork blockage. Co-immunoprecipitation experiments demonstrated that damaging treatments that block DNA replication substantially increased association between WRN and RPA in vivo, and a direct interaction between purified WRN and RPA was confirmed. Furthermore, we examined the combined action of RPA (unmodified and hyperphosphorylation mimetic) and WRN on model replication fork and gapped duplex substrates designed to bind RPA. Even with RPA bound stoichiometrically to this gap, WRN efficiently catalyzed regression of the fork substrate. Further analysis showed that RPA could be displaced from both substrates by WRN. RPA displacement by WRN was independent of its ATPase- and helicase-dependent remodeling of the fork. Taken together, our results suggest that, upon replication blockage, WRN and RPA functionally interact and cooperate to help properly resolve replication forks and maintain genome stability.
Collapse
Affiliation(s)
- Amrita Machwe
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
26
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
27
|
Broderick S, Rehmet K, Concannon C, Nasheuer HP. Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 2010; 50:143-163. [PMID: 20012581 DOI: 10.1007/978-90-481-3471-7_8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The single-stranded DNA binding proteins (SSBs) are required to maintain the integrity of the genome in all organisms. Replication protein A (RPA) is a nuclear SSB protein found in all eukaryotes and is required for multiple processes in DNA metabolism such as DNA replication, DNA repair, DNA recombination, telomere maintenance and DNA damage signalling. RPA is a heterotrimeric complex, binds ssDNA with high affinity, and interacts specifically with multiple proteins to fulfil its function in eukaryotes. RPA is phosphorylated in a cell cycle and DNA damage-dependent manner with evidence suggesting that phosphorylation has an important function in modulating the cellular DNA damage response. Considering the DNA-binding properties of RPA a mechanism of "molecular counting" to initiate DNA damage-dependent signalling is discussed. Recently a human homologue to the RPA2 subunit, called RPA4, was discovered and RPA4 can substitute for RPA2 in the RPA complex resulting in an "alternative" RPA (aRPA), which can bind to ssDNA with similar affinity as canonical RPA. Additional human SSBs, hSSB1 and hSSB2, were recently identified, with hSSB1 being localized in the nucleus and having implications in DNA repair. Mitochondrial SSBs (mtSSBs) have been found in all eukaryotes studied. mtSSBs are related to prokaryotic SSBs and essential to main the genome stability in eukaryotic mitochondria. Recently human mtSSB was identified as a novel binding partner of p53 and that it is able to stimulate the intrinsic exonuclease activity of p53. These findings and recent results associated with mutations in RPA suggest a link of SSBs to cancer.
Collapse
Affiliation(s)
- Sandra Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
28
|
Abstract
Human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and its orthologues in other organisms are proteins consisting of multiple BRCT modules that have acquired several functions during evolution. These proteins execute their tasks by interacting with a great variety of proteins involved in nuclear processes. TopBP1 is an essential protein that has numerous roles in the maintenance of the genomic integrity. In particular, it is required for the activation of ATM and Rad3-related (ATR), a vital regulator of DNA replication and replication stress response. The orthologues from yeast to human are involved in DNA replication and DNA damage response, while only proteins from higher eukaryotes are also involved in complex regulation of transcription, which is related to cell proliferation, damage response and apoptosis. We review here the recent progress in research aimed at elucidating the multiple cellular functions of TopBP1, focusing on metazoan systems.
Collapse
|
29
|
Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem 2010; 50:251-277. [PMID: 20012586 DOI: 10.1007/978-90-481-3471-7_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | |
Collapse
|
30
|
Abstract
Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.
Collapse
Affiliation(s)
- Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | |
Collapse
|
31
|
Abstract
DNA polymerases (Pols) act as key players in DNA metabolism. These enzymes are the only biological macromolecules able to duplicate the genetic information stored in the DNA and are absolutely required every time this information has to be copied, as during DNA replication or during DNA repair, when lost or damaged DNA sequences have to be replaced with "original" or "correct" copies. In each DNA repair pathway one or more specific Pols are required. A feature of mammalian DNA repair pathways is their redundancy. The failure of one of these pathways can be compensated by another one. However, several DNA lesions require a specific repair pathway for error free repair. In many tumors one or more DNA repair pathways are affected, leading to error prone repair of some kind of lesions by alternatives routes, thus leading to accumulation of mutations and contributing to genomic instability, a common feature of cancer cell. In this chapter, we present the role of each Pol in genome maintenance and highlight the connections between the malfunctioning of these enzymes and cancer progress.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | |
Collapse
|
32
|
Stephan H, Concannon C, Kremmer E, Carty MP, Nasheuer HP. Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis. Nucleic Acids Res 2009; 37:6028-41. [PMID: 19671522 PMCID: PMC2764457 DOI: 10.1093/nar/gkp605] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human single-stranded DNA-binding protein, replication protein A (RPA), is regulated by the N-terminal phosphorylation of its 32-kDa subunit, RPA2. RPA2 is hyperphosphorylated in response to various DNA-damaging agents and also phosphorylated in a cell-cycle-dependent manner during S- and M-phase, primarily at two CDK consensus sites, S23 and S29. Here we generated two monoclonal phospho-specific antibodies directed against these CDK sites. These phospho-specific RPA2-(P)-S23 and RPA2-(P)-S29 antibodies recognized mitotically phosphorylated RPA2 with high specificity. In addition, the RPA2-(P)-S23 antibody recognized the S-phase-specific phosphorylation of RPA2, suggesting that during S-phase only S23 is phosphorylated, whereas during M-phase both CDK sites, S23 and S29, are phosphorylated. Immunofluorescence microscopy revealed that the mitotic phosphorylation of RPA2 starts at the onset of mitosis, and dephosphorylation occurs during late cytokinesis. In mitotic cells treated with ionizing radiation (IR), we observed a rapid hyperphosphorylation of RPA2 in addition to its mitotic phosphorylation at S23 and S29, associated with a significant change in the subcellular localization of RPA. Our data also indicate that the RPA2 hyperphosphorylation in response to IR is facilitated by the activity of both ATM and DNA-PK, and is associated with activation of the Chk2 pathway.
Collapse
Affiliation(s)
- Holger Stephan
- Cell Cycle Control Laboratory, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
33
|
Abstract
The Cdc (cell division cycle) 45 protein has a central role in the regulation of the initiation and elongation stages of eukaryotic chromosomal DNA replication. In addition, it is the main target for a Chk1 (checkpoint kinase 1)-dependent Cdc25/CDK2 (cyclin-dependent kinase 2)-independent DNA damage checkpoint signal transduction pathway following low doses of BPDE (benzo[a]pyrene dihydrodiol epoxide) treatment, which causes DNA damage similar to UV-induced adducts. Cdc45 interacts physically and functionally with the putative eukaryotic replicative DNA helicase, the MCM (mini-chromosome maintenance) complex, and forms a helicase active ‘supercomplex’, the CMG [Cdc45–MCM2–7–GINS (go-ichi-ni-san)] complex. These known protein–protein interactions, as well as unknown interactions and post-translational modifications, may be important for the regulation of Cdc45 and the initiation of DNA replication following DNA damage. Future studies will help to elucidate the molecular basis of this newly identified S-phase checkpoint pathway which has Cdc45 as a target.
Collapse
|
34
|
Bauerschmidt C, Pollok S, Kremmer E, Nasheuer HP, Grosse F. Interactions of human Cdc45 with the Mcm2-7 complex, the GINS complex, and DNA polymerases delta and epsilon during S phase. Genes Cells 2007; 12:745-58. [PMID: 17573775 DOI: 10.1111/j.1365-2443.2007.01090.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cdc45 is an essential cellular protein that functions in both the initiation and elongation of DNA replication. Here, we analyzed the localization of human Cdc45 and its interactions with other proteins during the cell cycle. Human Cdc45 showed a diffuse distribution in G1 phase, a spot-like pattern in S and G2, and again a diffuse distribution in M phase of the cell cycle. The co-localization of Cdc45 with active replication sites during S phase suggested that the human Cdc45 protein was part of the elongation complex. This view was corroborated by findings that Cdc45 interacted with the elongating DNA polymerases delta and epsilon, with Psf2, which is a component of the GINS complex as well as with Mcm5 and 7, subunits of the putative replicative DNA helicase complex. Hence, Cdc45 may play an important role in elongation of DNA replication by bridging the processive DNA polymerases delta and epsilon with the replicative helicase in the elongating machinery.
Collapse
Affiliation(s)
- Christina Bauerschmidt
- Biochemistry Group, Leibniz Institute for Age Research-Fritz-Lipmann-Institute e. V., Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
35
|
Braet C, Stephan H, Dobbie IM, Togashi DM, Ryder AG, Földes-Papp Z, Lowndes N, Nasheuer HP. Mobility and distribution of replication protein A in living cells using fluorescence correlation spectroscopy. Exp Mol Pathol 2007; 82:156-62. [PMID: 17303118 DOI: 10.1016/j.yexmp.2006.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 11/28/2022]
Abstract
Replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for all pathways of DNA metabolism. To study the function of RPA in living cells the second largest RPA subunit and an N-terminal deletion mutant thereof were fused to green fluorescent protein (GFP; GFP-RPA2 and GFP-RPA2deltaN, respectively) in a controlled, molecular biological way. These proteins were expressed in HeLa cells under the control of the inducible tetracycline expression system. GFP-RPA2 and GFP-RPA2deltaN are predominately nuclear proteins as determined by confocal laser scanning microscopy. Low basal expression of GFP-RPA2deltaN allowed the measurement of kinetic parameters of RPA. Using fluorescence correlation spectroscopy (FCS) two populations--a fast and a slow moving species--were detected in the nucleus and the cytosol of human cells. The translational diffusion rates of these two RPA populations were approximately 15 microm2/s and 1.8 microm2/s. This new finding reveals the existence of different multiprotein and ssDNA-protein complexes of RPA in both cellular compartments and opens the possibility for their analyses.
Collapse
Affiliation(s)
- Christophe Braet
- National University of Ireland, Galway, Department of Biochemistry, Cell Cycle Control Laboratory, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Callejo M, Sibani S, Di Paola D, Price GG, Zannis-Hadjopoulos M. Identification and functional analysis of a human homologue of the monkey replication origin ors8. J Cell Biochem 2007; 99:1606-15. [PMID: 16823771 DOI: 10.1002/jcb.20868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously isolated from African green monkey (CV-1) cells a replication origin, ors8, that is active at the onset of S-phase. Here, its homologous sequence (hors8, accession number: DQ230978) was amplified from human cells, using the monkey-ors8-specific primers. Sequence alignment between the monkey and the human fragment revealed a 92% identity. Nascent DNA abundance analysis, involving quantification by real-time PCR, indicated that hors8 is an active replication origin, as the abundance of nascent DNA from a genomic region containing it was 97-fold higher relative to a non-origin region in the same locus. Furthermore, the data showed that the hors8 fragment is capable of supporting the episomal replication of its plasmid, when cloned into pBlueScript (pBS), as assayed by the DpnI resistance assay after transfection of HeLa cells. A quantitative chromatin immunoprecipitation (ChIP) assay, using antibodies against Ku, Orc2, and Cdc6, showed that these DNA replication initiator proteins were associated in vivo with the human ors8 (hors8). Finally, nascent DNA abundance experiments from human cells synchronized at different phases of the cell cycle revealed that hors8 is a late-firing origin of DNA replication, having the highest activity 8 h after release from late G(1).
Collapse
Affiliation(s)
- Mario Callejo
- McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
37
|
Nasheuer HP, Pospiech H, Syväoja J. Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork. Genome Integr 2006. [DOI: 10.1007/7050_016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
38
|
Prevedello DM, Jagannathan J, Jane JA, Lopes MBS, Laws ER. Relevance of high Ki-67 in pituitary adenomas. Neurosurg Focus 2005; 19:E11. [PMID: 16398461 DOI: 10.3171/foc.2005.19.5.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pituitary adenomas are heterogeneous in growth rate, invasiveness, and recurrence. To understand the biological behavior of the individual adenoma more fully, cell proliferation markers such as monoclonal antibodies targeted against the Ki-67 antigen have been applied. The Ki-67 antigen is a protein related to cell proliferation and is expressed in cell nuclei throughout the entire cell cycle. The authors report the case of an extremely rapidly growing pituitary adenoma with cavernous sinus invasion. The lesion, which displayed a high Ki-67 labeling index (LI; 22%), was found in a 54-year-old woman who presented with diplopia and headaches. The patient underwent three transsphenoidal operations in less than 6 months and, ultimately, was treated with fractionated intensity-modulated radiation therapy. The relationships between high Ki-67 LIs and tumor recurrence, invasiveness, and growth velocity in pituitary adenomas are reviewed.
Collapse
Affiliation(s)
- Daniel M Prevedello
- Department of Neurological Surgery and Neuropathology, University of Virginia Health System, Charlottesville, Virginia 22908-00212, USA
| | | | | | | | | |
Collapse
|
39
|
Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 2005; 24:1406-17. [PMID: 15775975 PMCID: PMC1142536 DOI: 10.1038/sj.emboj.7600609] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 02/08/2005] [Indexed: 01/01/2023] Open
Abstract
Selection and licensing of mammalian DNA replication origins may be regulated by epigenetic changes in chromatin structure. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) uses the cellular licensing machinery to regulate replication during latent infection of human cells. We found that the minimal replicator sequence of OriP, referred to as the dyad symmetry (DS), is flanked by nucleosomes. These nucleosomes were subject to cell cycle-dependent chromatin remodeling and histone modifications. Restriction enzyme accessibility assay indicated that the DS-bounded nucleosomes were remodeled in late G1. Remarkably, histone H3 acetylation of DS-bounded nucleosomes decreased during late G1, coinciding with nucleosome remodeling and MCM3 loading, and preceding the onset of DNA replication. The ATP-dependent chromatin-remodeling factor SNF2h was also recruited to DS in late G1, and formed a stable complex with HDAC2 at DS. siRNA depletion of SNF2h reduced G1-specific nucleosome remodeling, histone deacetylation, and MCM3 loading at DS. We conclude that an SNF2h-HDAC1/2 complex coordinates G1-specific chromatin remodeling and histone deacetylation with the DNA replication initiation process at OriP.
Collapse
Affiliation(s)
- Jing Zhou
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Mark-Peter Spindler
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Paul M Lieberman
- The Wistar Institute, Philadelphia, PA, USA
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. Tel.: +1 215 898 9491; Fax: +1 215 898 0663; E-mail:
| |
Collapse
|
40
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair. Genetics 2005; 166:1673-86. [PMID: 15126389 PMCID: PMC1470801 DOI: 10.1534/genetics.166.4.1673] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Mitkova AV, Biswas-Fiss EE, Biswas SB. Modulation of DNA synthesis in Saccharomyces cerevisiae nuclear extract by DNA polymerases and the origin recognition complex. J Biol Chem 2004; 280:6285-92. [PMID: 15590683 DOI: 10.1074/jbc.m410129200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the modulation of DNA synthesis on a supercoiled plasmid DNA template by DNA polymerases (pol), minichromosome maintenance protein complex (Mcm), topoisomerases, and the origin recognition complex (ORC) using an in vitro assay system. Antisera specific against the four-subunit pol alpha, the catalytic subunit of pol delta, and the Mcm467 complex each inhibited DNA synthesis. However, DNA synthesis in this system appeared to be independent of polepsilon. Consequently, DNA synthesis in the in vitro system appeared to depend only on two polymerases, alpha and delta, as well as the Mcm467 DNA helicase. This system requires supercoiled plasmid DNA template and DNA synthesis absolutely required DNA topoisomerase I. In addition, we also report here a novel finding that purified recombinant six subunit ORC significantly stimulated the DNA synthesis on a supercoiled plasmid DNA template containing an autonomously replicating sequence, ARS1.
Collapse
Affiliation(s)
- Atanaska V Mitkova
- Department of Molecular Biology, GSBS & SOM, University of Medicine & Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
42
|
Weisshart K, Pestryakov P, Smith RWP, Hartmann H, Kremmer E, Lavrik O, Nasheuer HP. Coordinated regulation of replication protein A activities by its subunits p14 and p32. J Biol Chem 2004; 279:35368-76. [PMID: 15205463 DOI: 10.1074/jbc.m403825200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric replication protein A (RPA) has multiple essential activities in eukaryotic DNA metabolism and in signaling pathways. Despite extensive analyses, the functions of the smallest RPA subunit p14 are still unknown. To solve this issue we produced and characterized a dimeric RPA complex lacking p14, RPADeltap14, consisting of p70 and p32. RPADeltap14 was able to bind single-stranded DNA, but its binding mode and affinity differed from those of the heterotrimeric complex. Moreover, in the RPADeltap14 complex p32 only minimally recognized the 3'-end of a primer in a primer-template junction. Partial proteolytic digests revealed that p14 and p32 together stabilize the C terminus of p70 against degradation. Although RPADeltap14 efficiently supported bidirectional unwinding of double-stranded DNA and interacted with both the simian virus 40 (SV40) large T antigen and cellular DNA polymerase alpha-primase, it did not support cell-free SV40 DNA replication. This inability manifested itself in a failure to support both the primer synthesis and primer elongation reactions. These data reveal that efficient binding and correct positioning of the RPA complex on single-stranded DNA requires all three subunits to support DNA replication.
Collapse
Affiliation(s)
- Klaus Weisshart
- Institute of Molecular Biotechnology, Beutenbergstrasse 11, Jena 07745, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 Gene Functions in an Error-Free DNA Damage Bypass Pathway That Requires Genes From Homologous Recombination, but Not From Postreplicative Repair. Genetics 2004. [DOI: 10.1093/genetics/166.4.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Christian Rudolph
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Helle D Ulrich
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Wilfried Kramer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Pestryakov PE, Weisshart K, Schlott B, Khodyreva SN, Kremmer E, Grosse F, Lavrik OI, Nasheuer HP. Human replication protein A. The C-terminal RPA70 and the central RPA32 domains are involved in the interactions with the 3'-end of a primer-template DNA. J Biol Chem 2003; 278:17515-24. [PMID: 12600993 DOI: 10.1074/jbc.m301265200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.
Collapse
Affiliation(s)
- Pavel E Pestryakov
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith RWP, Nasheuer HP. Initiation of JC virus DNA replication in vitro by human and mouse DNA polymerase alpha-primase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2030-7. [PMID: 12709063 DOI: 10.1046/j.1432-1033.2003.03579.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host species specificity of the polyomaviruses simian virus 40 (SV40) and mouse polyomavirus (PyV) has been shown to be determined by the host DNA polymerase alpha-primase complex involved in the initiation of both viral and host DNA replication. Here we demonstrate that DNA replication of the related human pathogenic polyomavirus JC virus (JCV) can be supported in vitro by DNA polymerase alpha-primase of either human or murine origin indicating that the mechanism of its strict species specificity differs from that of SV40 and PyV. Our results indicate that this may be due to differences in the interaction of JCV and SV40 large T antigens with the DNA replication initiation complex.
Collapse
Affiliation(s)
- Richard W P Smith
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, Jena, Germany
| | | |
Collapse
|
46
|
Smith RWP, Nasheuer HP. Control of complex formation of DNA polymerase alpha-primase and cell-free DNA replication by the C-terminal amino acids of the largest subunit p180. FEBS Lett 2002; 527:143-6. [PMID: 12220650 DOI: 10.1016/s0014-5793(02)03197-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA polymerase alpha-primase is a heterotetrameric complex essential for simian vacuolating virus 40 (SV40) DNA replication. We show that the C-terminal 67 amino acid residues of the human p180 subunit are essential for SV40 DNA replication as they are required for binding of the p68 subunit and play a role in the interaction with the primase subunits, p48 and p58. Furthermore, we demonstrate that exchanging these residues to those of mouse origin can only partially rescue the SV40 DNA replication activity of DNA polymerase alpha-primase.
Collapse
Affiliation(s)
- R W P Smith
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, Abteilung Biochemie, Beutenbergstr. 11, D-07745, Jena, Germany
| | | |
Collapse
|