1
|
Wang L, Kong Q, Leng X, Leung H, Li Y. The sphingosine-1-phosphate signaling pathway (sphingosine-1-phosphate and its receptor, sphingosine kinase) and epilepsy. Epilepsia Open 2025; 10:55-73. [PMID: 39727628 PMCID: PMC11803289 DOI: 10.1002/epi4.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc., which seriously affects the patient's quality of life. Although our understanding of epilepsy has advanced, the pathophysiological mechanisms leading to epileptogenesis, drug resistance, and associated comorbidities remain largely unknown. The use of newer antiepileptic drugs has increased, but this has not improved overall outcomes. We need to deeply study the pathogenesis of epilepsy and find drugs that can not only prevent the epileptogenesis and interfere with the process of epileptogenesis but also treat epilepsy comorbidities. Sphingosine-1-phosphate (S1P) is an important lipid molecule. It not only forms the basis of cell membranes but is also an important bioactive mediator. It can not only act as a second messenger in cells to activate downstream signaling pathways but can also exert biological effects by being secreted outside cells and binding to S1P receptors on the cell membrane. Fingolimod (FTY720) is the first S1P receptor modulator developed and approved for the treatment of multiple sclerosis. More and more studies have proven that the S1P signaling pathway is closely related to epilepsy, drug-resistant epilepsy, epilepsy comorbidities, or other epilepsy-causing diseases. However, there is much controversy over the role of certain natural molecules in the pathway and receptor modulators (such as FTY720) in epilepsy. Here, we summarize and analyze the role of the S1P signaling pathway in epilepsy, provide a basis for finding potential therapeutic targets and/or epileptogenic biomarkers, analyze the reasons for these controversies, and put forward our opinions. PLAIN LANGUAGE SUMMARY: This article combines the latest research literature at home and abroad to review the sphingosine 1-phosphate signaling pathway and epileptogenesis, drug-resistant epilepsy, epilepsy comorbidities, other diseases that can cause epilepsy, as well as the sphingosine-1-phosphate signaling pathway regulators and epilepsy, with the expectation of providing a certain theoretical basis for finding potential epilepsy treatment targets and/or epileptogenic biomarkers in the sphingosine-1-phosphate signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Qingxia Kong
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
| | - Xinyi Leng
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Howan Leung
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital7/F Clinical Science Building, Prince of Wales HospitalHong KongHong Kong
| | - Yang Li
- Department of OncologyAffiliated Hospital of Jining Medical UniversityJining CityChina
| |
Collapse
|
2
|
Cui Y, Luo S, Wu B, Li Q, Han F, Wang Z. Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ( Nibea albiflora). Int J Mol Sci 2024; 25:13641. [PMID: 39769404 PMCID: PMC11728317 DOI: 10.3390/ijms252413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the Ydsphk1 gene as closely associated with the resistance of yellow drum (Nibea albiflora) to Vibrio harveyi. Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa). By constructing and transfecting Ydsphk1 expression plasmids into yellow drum kidney cells, we found that YDSPHK1 is localized in the cytoplasm. Subsequent RNA-Seq analysis of an overexpression plasmid identified 25 differentially expressed genes (DEGs), including 13 upregulated and 12 downregulated. Notably, nsun5 and hsp90aa1 were significantly upregulated, while Nfkbia and hmox1 were downregulated. Promoter analysis indicated that the core regulatory regions of Ydsphk1 are located between -1931~-1679 bp and -419~+92 bp, with two predicted TFAP2A binding sites in the -419~+92 bp region. Further studies demonstrated that varying concentrations of TFAP2A significantly reduced Ydsphk1 promoter activity. These findings underscore the pivotal role of Ydsphk1 in regulating immune responses in yellow drum, particularly through its impact on key immune-related genes and pathways such as NF-κB signaling and ferroptosis. The identification of Ydsphk1 as a mediator of immune regulation provides valuable insights into the molecular mechanisms of immune defense and highlights its potential as a target for enhancing pathogen resistance in aquaculture practices. This study lays a strong foundation for future research aimed at developing innovative strategies for disease management in aquaculture species.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Shuai Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Baolan Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Zhiyong Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Kang Y, Sundaramoorthy P, Gasparetto C, Feinberg D, Fan S, Long G, Sellars E, Garrett A, Tuchman SA, Reeves BN, Li Z, Liu B, Ogretmen B, Maines L, Ben-Yair VK, Smith C, Plasse T. Phase I study of opaganib, an oral sphingosine kinase 2-specific inhibitor, in relapsed and/or refractory multiple myeloma. Ann Hematol 2023; 102:369-383. [PMID: 36460794 DOI: 10.1007/s00277-022-05056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.
Collapse
Affiliation(s)
- Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Sellars
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Anderson Garrett
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sascha A Tuchman
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi N Reeves
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lynn Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | - Charles Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | |
Collapse
|
6
|
A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses 2022; 14:v14061123. [PMID: 35746595 PMCID: PMC9229564 DOI: 10.3390/v14061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arbovirus in the alphavirus genus. Upon infection, it can cause severe joint pain that can last years in some patients, significantly affecting their quality of life. Currently, there are no vaccines or anti-viral therapies available against CHIKV. Its spread to the Americas from the eastern continents has substantially increased the count of the infected by millions. Thus, there is an urgent need to identify therapeutic targets for CHIKV treatment. A potential point of intervention is the sphingosine-1-phosphate (S1P) pathway. Conversion of sphingosine to S1P is catalyzed by Sphingosine kinases (SKs), which we previously showed to be crucial pro-viral host factor during CHIKV infection. In this study, we screened inhibitors of SKs and identified a novel potent inhibitor of CHIKV infection—SLL3071511. We showed that the pre-treatment of cells with SLL3071511 in vitro effectively inhibited CHIKV infection with an EC50 value of 2.91 µM under both prophylactic and therapeutic modes, significantly decreasing the viral gene expression and release of viral particles. Our studies suggest that targeting SKs is a viable approach for controlling CHIKV replication.
Collapse
|
7
|
Abstract
ABC transporters are a large family of membrane proteins that transport chemically diverse substrates across the cell membrane. Disruption of transport mechanisms mediated by ABC transporters causes the development of various diseases, including atherosclerosis. Methods: A bioinformatic analysis of a dataset from Gene Expression Omnibus (GEO) was performed. A GEO dataset containing data on gene expression levels in samples of atherosclerotic lesions and control arteries without atherosclerotic lesions from carotid, femoral, and infrapopliteal arteries was used for analysis. To evaluate differentially expressed genes, a bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2) and the GEO2R and Phantasus tools (v. 1.11.0). Results: The obtained data indicate the differential expression of many ABC transporters belonging to different subfamilies. The differential expressions of ABC transporter genes involved in lipid transport, mechanisms of multidrug resistance, and mechanisms of ion exchange are shown. Differences in the expression of transporters in tissue samples from different arteries are established. Conclusions: The expression of ABC transporter genes demonstrates differences in atherosclerotic samples and normal arteries, which may indicate the involvement of transporters in the pathogenesis of atherosclerosis.
Collapse
|
8
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
9
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI, Sata M. Inhibition of S1P Receptor 2 Attenuates Endothelial Dysfunction and Inhibits Atherogenesis in Apolipoprotein E-Deficient Mice. J Atheroscler Thromb 2020; 28:630-642. [PMID: 32879149 PMCID: PMC8219539 DOI: 10.5551/jat.54916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim:
The bioactive lipid, sphingosine-1-phosphate (S1P), has various roles in the physiology and pathophysiology of many diseases. There are five S1P receptors; however, the role of each S1P receptor in atherogenesis is still obscure. Here we investigated the contribution of S1P receptor 2 (S1P2) to atherogenesis by using a specific S1P2 antagonist, ONO-5430514, in apolipoprotein E-deficient (
Apoe−/−
) mice.
Methods:Apoe−/−
mice fed with a western-type diet (WTD) received ONO-5430514 (30 mg/kg/day) or vehicle. To examine the effect on atherogenesis, Sudan IV staining, histological analysis, qPCR, and vascular reactivity assay was performed. Human umbilical vein endothelial cells (HUVEC) were used for
in vitro
experiments.
Results:
WTD-fed
Apoe−/−
mice had significantly higher S1P2 expression in the aorta compared with wild-type mice. S1P2 antagonist treatment for 20 weeks reduced atherosclerotic lesion development (
p
<0.05). S1P2 antagonist treatment for 8 weeks ameliorated endothelial dysfunction (
p
<0.05) accompanied with significant reduction of lipid deposition, macrophage accumulation, and inflammatory molecule expression in the aorta compared with vehicle. S1P2 antagonist attenuated the phosphorylation of JNK in the abdominal aorta compared with vehicle (
p
<0.05). In HUVEC, S1P promoted inflammatory molecule expression such as MCP-1 and VCAM-1 (
p
<0.001), which was attenuated by S1P2 antagonist or a JNK inhibitor (
p
<0.01). S1P2 antagonist also inhibited S1P-induced JNK phosphorylation in HUVEC (
p
<0.05).
Conclusions:
Our results suggested that an S1P2 antagonist attenuates endothelial dysfunction and prevents atherogenesis. S1P2, which promotes inflammatory activation of endothelial cells, might be a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine.,Division of Epidemiology, Kobe University Graduate School of Medicine
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences.,Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
11
|
de Dios R, Rivas-Marin E, Santero E, Reyes-Ramírez F. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Sci Rep 2020; 10:5177. [PMID: 32198475 PMCID: PMC7083833 DOI: 10.1038/s41598-020-62101-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Under ever-changing environmental conditions, the General Stress Response (GSR) represents a lifesaver for bacteria in order to withstand hostile situations. In α-proteobacteria, the EcfG-type extracytoplasmic function (ECF) σ factors are the key activators of this response at the transcriptional level. In this work, we address the hierarchical function of the ECF σ factor paralogs EcfG1 and EcfG2 in triggering the GSR in Sphingopyxis granuli TFA and describe the role of EcfG2 as global switch of this response. In addition, we define a GSR regulon for TFA and use in vitro transcription analysis to study the relative contribution of each EcfG paralog to the expression of selected genes. We show that the features of each promoter ultimately dictate this contribution, though EcfG2 always produced more transcripts than EcfG1 regardless of the promoter. These first steps in the characterisation of the GSR in TFA suggest a tight regulation to orchestrate an adequate protective response in order to survive in conditions otherwise lethal.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| |
Collapse
|
12
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
13
|
Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci 2019; 20:ijms20235937. [PMID: 31779102 PMCID: PMC6928853 DOI: 10.3390/ijms20235937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine cycle is reported in animal models of WD, though not verified in humans. Choline is essential for lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines are reported in WD; however, less is known about their circulating precursors. We aimed to study choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels of genes related to choline and methionine metabolism were verified in the Jackson Laboratory toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine, proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins, and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth further investigation.
Collapse
|
14
|
Lu P, Ding Q, Li X, Ji X, Li L, Fan Y, Xia Y, Tian D, Liu M. SWELL1 promotes cell growth and metastasis of hepatocellular carcinoma in vitro and in vivo. EBioMedicine 2019; 48:100-116. [PMID: 31597595 PMCID: PMC6838441 DOI: 10.1016/j.ebiom.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background SWELL1 was recently demonstrated to be an indispensable part of the volume-regulated anion channel (VRAC). VRAC is reported to participate in cell proliferation, survival, and migration. However, the correlation between SWELL1 and hepatocellular carcinoma (HCC) remains poorly-understood. In this study, we tried to explore the role of SWELL1 in HCC. Methods Immunohistochemistry and quantitative real-time-PCR (qRT-PCR) was used to measure SWELL1 expression in HCC samples obtained from patients with HCC. The effects of SWELL1 on HCC cell proliferation, apoptosis, and metastasis were analysed by corresponding cytological experiments including Cell Counting Kit-8 (CCK8), colony-forming, 5-ethynyl-2′-deoxyuridine (EdU), cell cycle analysis, TUNEL, Annexin V and PI staining, wound healing, transwell, and so on. BALB/c nude mice were used for the in vivo assays. qRT-PCR and western blotting was performed for molecular mechanisms. Findings SWELL1 was highly expressed in HCC tissues, and related to the poor prognosis. In vitro, the over-expression of SWELL1 significantly induced cell proliferation and migration, and inhibited apoptosis, whereas suppressing SWELL1 had the opposite effects. Moreover, knockdown of SWELL1 suppressed the growth and metastasis of HCC in vivo. Further experiments revealed that SWELL1 induced cell growth by activating the cyclinD1/CDK2 pathway via the connection with PKCa at the signalling level, and regulated cell migration through the JNK pathway in HCC. Interpretation SWELL1 acts as a promoter in the growth and metastasis of HCC cells and may be a potential intervention target for HCC. Fund This work is supported by the National Natural Science Foundation of China (No. 81572422, 81700515).
Collapse
Affiliation(s)
- Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lili Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuhui Fan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Gastroenterology, Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
15
|
Abstract
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Speirs MMP, Swensen AC, Chan TY, Jones PM, Holman JC, Harris MB, Maschek JA, Cox JE, Carson RH, Hill JT, Andersen JL, Prince JT, Price JC. Imbalanced sphingolipid signaling is maintained as a core proponent of a cancerous phenotype in spite of metabolic pressure and epigenetic drift. Oncotarget 2019; 10:449-479. [PMID: 30728898 PMCID: PMC6355186 DOI: 10.18632/oncotarget.26533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Tumor heterogeneity may arise through genetic drift and environmentally driven clonal selection for metabolic fitness. This would promote subpopulations derived from single cancer cells that exhibit distinct phenotypes while conserving vital pro-survival pathways. We aimed to identify significant drivers of cell fitness in pancreatic adenocarcinoma (PDAC) creating subclones in different nutrient formulations to encourage differential metabolic reprogramming. The genetic and phenotypic expression profiles of each subclone were analyzed relative to a healthy control cell line (hTert-HPNE). The subclones exhibited distinct variations in protein expression and lipid metabolism. Relative to hTert-HPNE, PSN-1 subclones uniformly maintained modified sphingolipid signaling and specifically retained elevated sphingosine-1-phosphate (S1P) relative to C16 ceramide (C16 Cer) ratios. Each clone utilized a different perturbation to this pathway, but maintained this modified signaling to preserve cancerous phenotypes, such as rapid proliferation and defense against mitochondria-mediated apoptosis. Although the subclones were unique in their sensitivity, inhibition of S1P synthesis significantly reduced the ratio of S1P/C16 Cer, slowed cell proliferation, and enhanced sensitivity to apoptotic signals. This reliance on S1P signaling identifies this pathway as a promising drug-sensitizing target that may be used to eliminate cancerous cells consistently across uniquely reprogrammed PDAC clones.
Collapse
Affiliation(s)
- Monique M P Speirs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Adam C Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Tsz Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Peter M Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Holman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - McCall B Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John A Maschek
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - James E Cox
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - Richard H Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John T Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
17
|
Li G, Zhang Q, Hong J, Ritter JK, Li PL. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1246-1256. [PMID: 30077007 DOI: 10.1016/j.bbalip.2018.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022]
Abstract
The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Jinni Hong
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America.
| |
Collapse
|
18
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of liver disorders encompassing simple hepatic steatosis and its more aggressive forms of nonalcoholic steatohepatitis and cirrhosis. It is a rapidly growing health concern and the major cause for the increasing incidence of primary liver tumors. Unequivocal evidence shows that sphingolipid metabolism is altered in the course of the disease and these changes might contribute to NAFLD progression. Recent data provide solid support to the notion that deregulated ceramide and sphingosine-1-phosphate metabolism are present at all stages of NAFLD, i.e., steatosis, nonalcoholic steatohepatitis, advanced fibrosis, and hepatocellular carcinoma (HCC). Insulin sensitivity, de novo lipogenesis, and the resulting lipotoxicity, fibrosis, and angiogenesis are all seemingly regulated in a manner that involves either ceramide and/or sphingosine-1-phosphate. Sphingolipids might also participate in the onset of hepatocellular senescence. The latter has been shown to contribute to the advancement of cirrhosis to HCC in the classical cases of end-stage liver disease, i.e., viral- or alcohol-induced; however, emerging evidence suggests that senescence is also involved in the pathogenicity of NAFLD possibly via changes in ceramide metabolism.
Collapse
|
19
|
Sundaramoorthy P, Gasparetto C, Kang Y. The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation. Cancer Med 2018; 7:3257-3268. [PMID: 29761903 PMCID: PMC6051232 DOI: 10.1002/cam4.1543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease in need of the development of novel therapeutic agents and drug combinations. ABT‐199 is a specific Bcl‐2 inhibitor in clinical trials for MM; however, its activity as a single agent was limited to myeloma patients with the t(11;14) translocation who acquire resistance due to co‐expression of Mcl‐1 and Bcl‐xL. These limitations preclude its use in a broader patient population. We have recently found that a sphingosine kinase 2‐specific inhibitor (ABC294640) induces apoptosis in primary human CD138+ cells and MM cell lines. ABC294640 is currently in phase I/II clinical trials for myeloma (clinicaltrials.gov: #NCT01410981). Interestingly, ABC294640 down‐regulates c‐Myc and Mcl‐1, but does not have any effects on Bcl‐2. We first evaluated the combinatorial anti‐myeloma effect of ABC294640 and ABT‐199 in vitro in 7 MM cell lines, all of which harbor no t(11;14) translocation. Combination index calculation demonstrated a synergistic anti‐myeloma effect of the combination of ABC294640 and ABT‐199. This synergistic anti‐myeloma effect was maintained even in the presence of bone marrow (BM) stromal cells. The combination of ABC294640 and ABT‐199 led to enhanced cleavage of PARP and caspase‐3/9 and increased Annexin‐V expression, consistent with the induction of apoptosis by the combination treatment. In addition, the combination of ABC294640 and ABT‐199 resulted in the down‐regulation of the anti‐apoptotic proteins Mcl‐1, Bcl‐2, and Bcl‐xL and the cleavage of Bax and Bid. The combination induced both the mitochondrial mediated‐ and caspase‐mediated apoptosis pathways. Finally, the combination of ABC294640 and ABT‐199 resulted in augmented anti‐myeloma effect in vivo in a mouse xenograft model. These findings demonstrate that the co‐administration of ABC294640 and ABT‐199 exhibits synergistic anti‐myeloma activity in vitro and in vivo, providing justification for a clinical study of this novel combination in patients with relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Cristina Gasparetto
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Bandara G, Muñoz-Cano R, Tobío A, Yin Y, Komarow HD, Desai A, Metcalfe DD, Olivera A. Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT. Front Immunol 2018; 9:631. [PMID: 29643855 PMCID: PMC5883065 DOI: 10.3389/fimmu.2018.00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation.
Collapse
Affiliation(s)
- Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rosa Muñoz-Cano
- Allergy Section, Pneumology Department, Hospital Clinic, ARADyAL, Instituto de Salud Carlos III, Barcelona, Spain
| | - Araceli Tobío
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Avanti Desai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Kitchen SA, Poole AZ, Weis VM. Sphingolipid Metabolism of a Sea Anemone Is Altered by the Presence of Dinoflagellate Symbionts. THE BIOLOGICAL BULLETIN 2017; 233:242-254. [PMID: 29553817 DOI: 10.1086/695846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In host-microbe interactions, signaling lipids function in interpartner communication during both the establishment and maintenance of associations. Previous evidence suggests that sphingolipids play a role in the mutualistic cnidarian-Symbiodinium symbiosis. Exogenously applied sphingolipids have been shown to alter this partnership, though endogenous host regulation of sphingolipids by the sphingosine rheostat under different symbiotic conditions has not been characterized. The rheostat regulates levels of pro-survival sphingosine-1-phosphate (S1P) and pro-apoptotic sphingosine (Sph) through catalytic activities of sphingosine kinase (SPHK) and S1P phosphatase (SGPP). The role of the rheostat in recognition and establishment of cnidarian-Symbiodinium symbiosis was investigated in the sea anemone Aiptasia pallida by measuring gene expression, protein levels, and sphingolipid metabolites in symbiotic, aposymbiotic, and newly recolonized anemones. Comparison of two host populations showed that symbiotic animals from one population had lower SGPP gene expression and Sph lipid concentrations compared to aposymbiotic animals, while the other population had higher S1P concentrations than their aposymbiotic counterparts. In both populations, the host rheostat trended toward host cell survival in the presence of symbionts. Furthermore, upregulation of both rheostat enzymes on the first day of host recolonization by symbionts suggests a role for the rheostat in host-symbiont recognition during symbiosis onset. Collectively, these data suggest a regulatory role of sphingolipid signaling in cnidarian-Symbiodinium symbiosis and symbiont uptake.
Collapse
Key Words
- Ct, cycle threshold
- GMP, Gisele Muller-Parker population
- LPS, lipopolysaccharide
- MAMP, microbe-associated molecular pattern
- NSL, no symbionts + light treatment group
- S1P, sphingosine-1-phosphate
- SD, symbionts + dark treatment group
- SGPP, sphingosine-1-phosphate phosphatase
- SL, symbionts + light treatment group
- SPHK, sphingosine kinase
- Sph, sphingosine
- VWA, Weis Lab population A
- qPCR, quantitative polymerase chain reaction
- rt, room temperature
Collapse
|
22
|
Qin X, Zhang RX, Ge S, Zhou T, Liang YK. Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:70-80. [PMID: 28846870 DOI: 10.1016/j.plaphy.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 05/12/2023]
Abstract
The fungal toxin Fumonisin B1 (FB1) is a strong inducer to trigger plant hypersensitive responses (HR) along with increased long chain bases (LCB) and long chain base phosphates (LCBP) contents, though the regulatory mechanism of FB1 action and how the LCB/LCBP signalling cassette functions during the process is still not fully understood. Here, we report sphingosine kinase 1 (SPHK1) as a key factor in FB1-induced HR by modulating the salicylic acid (SA) pathway and reactive oxygen species (ROS) accumulation in Arabidopsis thaliana. Overexpression of SPHK1 increases the FB1-induced accumulations of ROS and SA. The double mutant that simultaneously overexpresses SPHK1 and suppresses the SPPASE or DPL1, two enzymes are mainly responsible for Phyto-sphingosine-1-phosphate (Phyto-S1P) removal, showed enhanced susceptibility to FB1 killing and FB1-induced SA activation than the plants overexpress SPHK1 alone. Exogenous sphingosine-1-phosphate (S1P) can modulate the transcription of the SA-responsive marker gene PR1 in a concentration-dependent biphasic manner. Suppression of SPHK1 decreases SA production whereas promotes jasmonic acid (JA) biosynthesis in response to FB1 applications. Our findings indicate a role of SPHK1 in modulating FB1-triggered cell death via SA and JA pathway interactions.
Collapse
Affiliation(s)
- Xiaoya Qin
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zhou
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
The expanding role of sphingolipids in lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1155-1165. [PMID: 28743537 DOI: 10.1016/j.bbalip.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023]
Abstract
Sphingolipids are a diverse class of lipids that have regulatory, structural, and metabolic functions. Although chemically distinct from the neutral lipids and the glycerophospholipids, which are the main lipid components of the lipid droplets, sphingolipids have nonetheless been shown to influence lipid droplet formation. The goal of this article is to review the available information and provide a cohesive picture of the role sphingolipids play in lipid droplet biogenesis. The following topics are discussed: (i) the abundance of sphingolipids in lipid droplets and their functional significance; (ii) cross-talk between the synthetic pathways of sphingolipids, glycerophospholipids, and neutral lipids; (iii) the impact of bioactive sphingolipids on TAG synthesis and degradation; (iv) interactions between sphingolipids and other lipid droplet components, like cholesterol esters and proteins; (v) inhibition/genetic deletion of specific sphingolipid metabolic enzymes and the resulting effects on lipid droplet formation in mouse models. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
24
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
25
|
Kitchen SA, Weis VM. The sphingosine rheostat is involved in the cnidarian heat stress response but not necessarily in bleaching. J Exp Biol 2017; 220:1709-1720. [DOI: 10.1242/jeb.153858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Sphingolipids play important roles in mitigating cellular heat and oxidative stress by altering membrane fluidity, receptor clustering and gene expression. Accumulation of signaling sphingolipids that comprise the sphingosine rheostat, pro-apoptotic sphingosine (Sph) and pro-survival sphingosine-1-phosphate (S1P), is key to determining cell fate. Reef-building corals and other symbiotic cnidarians living in shallow tropical waters can experience elevated seawater temperature and high UV irradiance, two stressors that are increasing in frequency and severity with climate change. In symbiotic cnidarians, these stressors disrupt the photosynthetic machinery of the endosymbiont and ultimately result in the collapse of the partnership (dysbiosis), known as cnidarian bleaching. In a previous study, exogenously applied sphingolipids altered heat-induced bleaching in the symbiotic anemone Aiptasia pallida, but endogenous regulation of these lipids is unknown. Here, we characterized the role of the rheostat in the cnidarian heat stress response (HSR) and in dysbiosis. Gene expression of rheostat enzymes sphingosine kinase (AP-SPHK) and S1P phosphatase (AP-SGPP), and concentrations of sphingolipids were quantified from anemones incubated at elevated temperatures. We observed a biphasic HSR in A. pallida. At early exposure, rheostat gene expression and lipid levels were suppressed while gene expression of a heat stress biomarker increased and 40% of symbionts were lost. After longer incubations at the highest temperature, AP-SGPP and then Sph levels both increased. These results indicate that the sphingosine rheostat in A. pallida does not participate in initiation of dysbiosis, but instead functions in the chronic response to prolonged heat stress that promotes host survival.
Collapse
Affiliation(s)
- Sheila A. Kitchen
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
26
|
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:1947157. [PMID: 27579043 PMCID: PMC4989088 DOI: 10.1155/2016/1947157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Collapse
|
27
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
28
|
Jiang L, Wang Y, Pan F, Zhao X, Zhang H, Lei M, Liu T, Lu JR. Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochem Funct 2016; 34:163-72. [PMID: 26990081 PMCID: PMC5031220 DOI: 10.1002/cbf.3175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-β.
Collapse
Affiliation(s)
- Lili Jiang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Yanwen Wang
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Fang Pan
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Xiubo Zhao
- Department of Chemical & Biological EngineeringUniversity of SheffieldMappin Street, Sheffield, S1 3JDUK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Ming Lei
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Jian R. Lu
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
29
|
Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 2015; 124:1915-25. [PMID: 25122609 DOI: 10.1182/blood-2014-03-559385] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sphingolipid metabolism is being increasingly recognized as a key pathway in regulating cancer cell survival and proliferation. However, very little is known about its role in multiple myeloma (MM). We investigated the potential of targeting sphingosine kinase 2 (SK2) for the treatment of MM. We found that SK2 was overexpressed in MM cell lines and in primary human bone marrow (BM) CD1381 myeloma cells. Inhibition of SK2 by SK2- specific short hairpin RNA or ABC294640 (a SK2 specific inhibitor) effectively inhibited myeloma cell proliferation and induced caspase 3–mediated apoptosis. ABC294640 inhibited primary human CD1381 myeloma cells with the same efficacy as with MM cell lines. ABC294640 effectively induced apoptosis of myeloma cells, even in the presence of BM stromal cells. Furthermore, we found that ABC294640 downregulated the expression of pS6 and directed c-Myc and myeloid cell leukemia 1 (Mcl-1) for proteasome degradation. In addition, ABC294640 increased Noxa gene transcription and protein expression. ABC294640, per se, did not affect the expression of B-cell lymphoma 2 (Bcl-2), but acted synergistically with ABT-737 (a Bcl-2 inhibitor) in inducing myeloma cell death. ABC294640 suppressed myeloma tumor growth in vivo in mouse myeloma xenograft models. Our data demonstrated that SK2 provides a novel therapeutic target for the treatment of MM.This trial was registered at www.clinicaltrials.gov as #NCT01410981.
Collapse
|
30
|
Urtz N, Gaertner F, von Bruehl ML, Chandraratne S, Rahimi F, Zhang L, Orban M, Barocke V, Beil J, Schubert I, Lorenz M, Legate KR, Huwiler A, Pfeilschifter JM, Beerli C, Ledieu D, Persohn E, Billich A, Baumruker T, Mederos y Schnitzler M, Massberg S. Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. Circ Res 2015; 117:376-87. [PMID: 26129975 DOI: 10.1161/circresaha.115.306901] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022]
Abstract
RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.
Collapse
Affiliation(s)
- Nicole Urtz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florian Gaertner
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marie-Luise von Bruehl
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sue Chandraratne
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Faridun Rahimi
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Lin Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mathias Orban
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Verena Barocke
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Beil
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Irene Schubert
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael Lorenz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kyle R Legate
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Huwiler
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Josef M Pfeilschifter
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Beerli
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Ledieu
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Elke Persohn
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andreas Billich
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Baumruker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael Mederos y Schnitzler
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Steffen Massberg
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
31
|
Zhong Y, Wang K, Zhang X, Cai X, Chen Y, Deng Y. Nephrokeli, a Chinese herbal formula, may improve IgA nephropathy through regulation of the sphingosine-1-phosphate pathway. PLoS One 2015; 10:e0116873. [PMID: 25633986 PMCID: PMC4310606 DOI: 10.1371/journal.pone.0116873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023] Open
Abstract
Nephrokeli (NPKL) is a Chinese herbal formula that has been used to treat patients with IgA nephropathy (IgAN) for improvement of proteinuria and kidney injury. However, the mechanism remains unclear. Sphingosine-1-phosphate (S1P) and its receptors S1PR2 and S1PR3 are known to play an important role in kidney disease. Here, we tested whether NPKL is able to regulate the S1P pathway in the kidney of IgAN rats. Four groups of rats were included in the study: Control, IgAN, IgAN treated with losartan, and IgAN treated with NPKL. The IgAN model was generated by injection of bovine serum albumin and staphylococcus enterotoxin B. We found that IgAN rats had increased staining for proliferating cell nuclear antigen (PCNA) in the mesangial area and increased mRNA and protein levels of S1PR2 and S1PR3 in the kidney compared to control rats. Connective tissue growth factor (CTGF), a downstream growth factor in the S1P pathway, was also elevated in the kidney of IgAN rats. Treatment with either NPKL or losartan was able to reduce PCNA staining and the expression of both S1PR2 and S1PR3 in the kidney of IgAN rats. However, NPKL (but not losartan treatment) reduced the expression of CTGF in the kidney of IgAN rats. In addition, we treated rat mesangial cells with sera collected from either NPKL-treated rats or control rats and found that NPKL-serum was able to reduce S1P-induced mesangial cell proliferation and the expression of S1PR2/S1PR3 and CTGF. NPKL also attenuates expression of fibrosis, inflammation, and oxidative stress markers in the kidney of IgAN rats. Our studies provide the mechanism by which NPKL attenuates kidney injury in IgAN rats.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YZ); (YD)
| | - Ke Wang
- Surgical Research Institute of Traditional Chinese Medicine Combined with Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwen Zhang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofan Cai
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YZ); (YD)
| |
Collapse
|
32
|
Pogson JH, Ivatt RM, Sanchez-Martinez A, Tufi R, Wilson E, Mortiboys H, Whitworth AJ. The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy. PLoS Genet 2014; 10:e1004815. [PMID: 25412178 PMCID: PMC4238976 DOI: 10.1371/journal.pgen.1004815] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 10/11/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in PINK1, a mitochondrially targeted serine/threonine kinase, cause autosomal recessive Parkinson's disease (PD). Substantial evidence indicates that PINK1 acts with another PD gene, parkin, to regulate mitochondrial morphology and mitophagy. However, loss of PINK1 also causes complex I (CI) deficiency, and has recently been suggested to regulate CI through phosphorylation of NDUFA10/ND42 subunit. To further explore the mechanisms by which PINK1 and Parkin influence mitochondrial integrity, we conducted a screen in Drosophila cells for genes that either phenocopy or suppress mitochondrial hyperfusion caused by pink1 RNAi. Among the genes recovered from this screen was ND42. In Drosophila pink1 mutants, transgenic overexpression of ND42 or its co-chaperone sicily was sufficient to restore CI activity and partially rescue several phenotypes including flight and climbing deficits and mitochondrial disruption in flight muscles. Here, the restoration of CI activity and partial rescue of locomotion does not appear to have a specific requirement for phosphorylation of ND42 at Ser-250. In contrast to pink1 mutants, overexpression of ND42 or sicily failed to rescue any Drosophila parkin mutant phenotypes. We also find that knockdown of the human homologue, NDUFA10, only minimally affecting CCCP-induced mitophagy, and overexpression of NDUFA10 fails to restore Parkin mitochondrial-translocation upon PINK1 loss. These results indicate that the in vivo rescue is due to restoring CI activity rather than promoting mitophagy. Our findings support the emerging view that PINK1 plays a role in regulating CI activity separate from its role with Parkin in mitophagy. Two genes linked to heritable forms of the neurodegenerative movement disorder Parkinson's disease (PD), PINK1 and parkin, play important roles in mitochondrial homeostasis through mechanisms which include the degradation of dysfunctional mitochondria, termed mitophagy, and the maintenance of complex I (CI) activity. Here we report the findings of an RNAi based screen in Drosophila cells for genes that may regulate the PINK1-Parkin pathway which identified NDUFA10 (ND42 in Drosophila), a subunit of CI. Using a well-established cellular system and in vivo Drosophila genetics, we demonstrate that while NDUFA10/ND42 only plays a minimal role in mitophagy, restoration of CI activity through overexpression of either ND42 or its co-chaperone sicily is able to substantially rescue behavioral deficits in pink1 mutants but not parkin mutants. Moreover, while parkin overexpression is known to rescue pink1 mutants, it apparently achieves this without restoring CI activity. These results suggest that increasing CI activity or promoting mitophagy can be beneficial in pink1 mutants, and further highlights separable functions of PINK1 and Parkin.
Collapse
Affiliation(s)
- Joe H. Pogson
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rachael M. Ivatt
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Alvaro Sanchez-Martinez
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Roberta Tufi
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Emma Wilson
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Alexander J. Whitworth
- MRC Centre for Developmental and Biomedical Genetics, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Mahajan-Thakur S, Sostmann BD, Fender AC, Behrendt D, Felix SB, Schrör K, Rauch BH. Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. J Leukoc Biol 2014; 96:611-8. [PMID: 24990321 DOI: 10.1189/jlb.3ab1013-567r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thrombin is not only a central factor in blood coagulation but also stimulates inflammatory processes, including monocyte responses, via activation of PARs. The signaling lipid S1P is a major determinant of monocyte function. Here, we established an interaction between S1P and human monocyte responses to thrombin. S1P induced PAR-1 and PAR-4 mRNA and total protein expression in human monocytes and U937 cells in a concentration (0.1-10 μM)- and time (1-24 h)-dependent manner, respectively. However, only PAR-4 cell-surface expression was increased significantly by S1P, whereas PAR-1 remained unaffected. This response was associated with activation of the Akt, Erk, and p38 pathway and induction of COX-2 but not COX-1. PAR-4-mediated induction of COX-2 was prevented by the PI3K inhibitor LY (10 μM). Preincubation of human monocytes with S1P (1 μM; 16 h) resulted in an enhanced chemotaxis toward thrombin or to selective AP for PAR-4 but not PAR-1. Furthermore, down-regulation of PAR-4 transcription with siRNA attenuated the chemotactic response to thrombin and AP4. In conclusion, S1P enhances monocyte responses to thrombin via up-regulation of PAR-4 expression, which promotes cell migration and COX-2 abundance. This mechanism may facilitate monocyte recruitment to sites of vessel injury and inflammation.
Collapse
Affiliation(s)
| | - Björn D Sostmann
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Anke C Fender
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Daniel Behrendt
- Klinik und Poliklinik für Chirurgie, Abteilung für Allgemeine Chirurgie, Viszeral-, Thorax- und Gefässchirurgie, and
| | - Stephan B Felix
- Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany; and
| | - Karsten Schrör
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Bernhard H Rauch
- Institut für Pharmakologie, Center of Drug Absorption and Transport,
| |
Collapse
|
34
|
Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. Injury 2014; 45:1054-8. [PMID: 24685054 DOI: 10.1016/j.injury.2014.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/28/2014] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Diabetes is one of the most prevalent human metabolic diseases. Wound healing in diabetes is frequently impaired and treatment remains challenging. Sphingolipid metabolites play important roles in the regulation of glucose metabolism. SPK1 is the key enzyme in the sphingolipid metabolic pathway. S1P/SPK plays a pivotal role in the signalling pathways of diverse cellular processes including proliferation, differentiation, migration, apoptosis in diverse cell types. METHODS To investigate the role of sphingosine kinase 1 (SPK1) in skin injury, plasmids containing the SPK1 gene (pcDNA3-FLAG-SPK1) were applied to cutaneous wounds on a streptozotocin-induced diabetic rat model over a 21-day period. The wound area and rate of wound healing were determined. The histopathological features of the healed wounds were also observed, and SPK1 expression in the skin was detected by immunohistochemistry. RESULTS There was a significant decrease in wound area in diabetic rats treated with 125 and 60μg/wound pcDNA3-FLAG-SPK1 (P<0.001-0.01). The mean sizes of the wounds were 0.67±0.15cm(2), 0.83±0.18cm(2), and 1.09±0.23cm(2) in both treated and diabetic control group at the 7th day post-treatment respectively. In addition, wound healing in diabetic rats of test group was accelerated. At the 7th day, the mean rates of healing were 73.2±5.7% and 66±7.3% in test group of 125 and 60μg/wound respectively, and 55.4±9.9% in diabetic control group (P<0.001-0.01). Histology revealed that tissue sections from the treated diabetic rats contained more granulation tissue and capillaries than that of the control rats. There was high SPK1 expression in the skin of the treated diabetic rats. CONCLUSIONS SPK1 gene therapy may represent a novel approach to cutaneous wound healing.
Collapse
|
35
|
Gassowska M, Cieslik M, Wilkaniec A, Strosznajder JB. Sphingosine kinases/sphingosine-1-phosphate and death Signalling in APP-transfected cells. Neurochem Res 2014; 39:645-52. [PMID: 24452756 PMCID: PMC3962740 DOI: 10.1007/s11064-014-1240-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/07/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
Abstract
It has been postulated that disturbances in the sphingolipid metabolism play a key role in the pathogenesis of Alzheimer’s disease (AD). An alteration in sphingosine kinases 1, 2 (SphK1/2) and sphingosine-1-phosphate (S1P) was recently reported in AD. However, the effect of AD-related amyloid beta (Aβ) peptides on SphK1/2 and the role of S1P in Aβ toxicity have not been fully elucidated. In this study the relationship between the Aβ concentration and SphK1/2 expression/activity was analysed in PC12 cells transfected with the Aβ precursor protein, wild-type (APPwt) or bearing a double Swedish mutation (APPsw). The role of SphK(s)/S1P in cell survival and death was also investigated. Our results indicated that endogenously liberated Aβ significantly decreases expression and activity of SphK1/2. The SphK(s) inhibitor (SKI II, 10 μM) decreased the viability of APPwt, APPsw as well as empty vector-transfected PC12 control cells. Our data demonstrated that expression of S1P receptor-1 (S1P1) was significantly reduced in APP-transfected cells. The effect of S1P applied exogenously was cell type-dependent. In control and APPwt cells S1P reduced the effect of the SphK1 inhibitor on death signalling. Conversely, it decreased the survival of APPsw cells and had no protective effect on cells treated with SKI II. Using the S1P1 agonist (SEW2871, 5 μM) and antagonist (W123, 20 μM), we demonstrated that the cytoprotective effect of S1P was receptor-independent. Summarising, we showed that Aβ peptides evoke down-regulation of gene expression and activity for SphK(s) and S1P1. Inhibition of SphK(s) significantly decreased cell survival. The effect of exogenous S1P depended on the concentration of Aβ peptides.
Collapse
Affiliation(s)
- Magdalena Gassowska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | | | | | | |
Collapse
|
36
|
Pyszko J, Strosznajder JB. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol 2014; 50:38-48. [PMID: 24399507 DOI: 10.1007/s12035-013-8622-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer's disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson's disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death.
Collapse
Affiliation(s)
- Joanna Pyszko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
37
|
Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q, Xiao J. Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumour Biol 2013; 35:2075-80. [PMID: 24092575 DOI: 10.1007/s13277-013-1275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 12/25/2022] Open
Abstract
Upregulation of sphingosine kinase 1 (SPHK1) protein has been reported to be associated with a poor prognosis in a variety of malignant tumors. However, the role of SPHK1 in bladder cancer (BC) has not been thoroughly elucidated. The purpose of this study was to assess SPHK1 expression and to explore its contribution to BC. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was conducted to detect SPHK1 mRNA expression in 37 pairs of fresh-frozen BC tissues and corresponding noncancerous tissues. Results showed that SPHK1 mRNA expression level in BC tissues was significantly higher than that in corresponding noncancerous tissues. To investigate the association between SPHK1 protein expression and clinicopathological characteristics of BC, immunohistochemistry (IHC) was performed in 153 archived paraffin-embedded BC samples. Interestingly, high SPHK1 expression was significantly associated with histologic grade (P = 0.045) and tumor stage (P < 0.001) of patients with BC. The Kaplan-Meier survival curve showed that patients with high SPHK1 expression had significantly reduced overall 5-year survival rates (P < 0.001). Multivariate Cox regression analysis further suggested that the increased expression of SPHK1 was an independent poor prognostic factor for this disease. In conclusion, our data offer the convincing evidence for the first time that the increased expression of SPHK1 may be involved in the pathogenesis and progression of BC. SPHK1 might be a potential marker to predict the prognosis in BC.
Collapse
Affiliation(s)
- Xiao-Dong Meng
- Department of Urology, Southwest Hospital, The Third Military Medical University, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 40038, China,
| | | | | | | | | | | |
Collapse
|
38
|
Yangyuoru PM, Hammonds-Odie L, Mwongela SM. Fluorescent lipids as probes for sphingosine kinase activity by capillary electrophoresis. Methods Mol Biol 2013; 984:329-40. [PMID: 23386355 DOI: 10.1007/978-1-62703-296-4_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Capillary electrophoresis (CE) is one among a number of highly sensitive chemical separation techniques used to characterize single or a small number of cells and to develop assays of enzymatic activity. Other commonly used techniques include mass spectrometry and electrochemistry; however, CE using laser-induced fluorescence detection (LIF) is the most sensitive of these techniques. In CE-LIF, fluorescently labeled proteins or lipids are normally separated based on their size to charge ratio in the interior of a small capillary filled with an electrolyte upon the application of an electric field. In this chapter, we describe the application of CE-LIF for the determination of the bioactivity of fluorescently lipids and sphingosine kinase activity.
Collapse
|
39
|
Post-translational regulation of sphingosine kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:147-56. [DOI: 10.1016/j.bbalip.2012.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
|
40
|
Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012; 3:119. [PMID: 22654878 PMCID: PMC3360162 DOI: 10.3389/fimmu.2012.00119] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023] Open
Abstract
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | |
Collapse
|
41
|
Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 2012; 403:1897-905. [PMID: 22538778 DOI: 10.1007/s00216-012-6004-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/24/2012] [Accepted: 03/30/2012] [Indexed: 01/24/2023]
Abstract
We developed a liquid chromatography/electrospray ionization tandem mass spectrometry method for the simultaneous quantitative determination of C18 sphingosine (Sph), C18 dihydrosphingosine (dhSph), C18 phytosphingosine (pSph), C18 sphingosine-1-phosphate (S1P), C18 dihydrosphingosine-1-phosphate (dhS1P), and C18 phytosphingosine-1-phosphate (pS1P). Samples were prepared by simple methanol deproteinization and analyzed in selected reaction monitoring modes. No peak tailing was observed on the chromatograms using a Capcell Pak ACR column (1.5 mm i.d. × 250 mm, 3 μm, Shiseido). The calibration curves of the sphingoids showed good linearity (r > 0.996) over the range of 0.050-5.00 pmol per injection. The accuracy and precision of this method were demonstrated using four representative biological samples (serum, brain, liver, and spleen) from mice that contained known amounts of the sphingoids. Samples of mice tissue such as plasma, brain, eye, testis, liver, kidney, lung, spleen, lymph node, and thymus were examined for their Sph, dhSph, pSph, S1P, dhS1P, and pS1P composition. The results confirmed the usefulness of this method for the physiological and pathological analysis of the composition of important sphingoids.
Collapse
|
42
|
Sun WY, Abeynaike LD, Escarbe S, Smith CD, Pitson SM, Hickey MJ, Bonder CS. Rapid histamine-induced neutrophil recruitment is sphingosine kinase-1 dependent. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1740-50. [PMID: 22322303 DOI: 10.1016/j.ajpath.2011.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/09/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Leukocyte recruitment to sites of inflammation is critical for the development of acute allergic responses. Rapid P-selectin up-regulation by endothelial cells is a key promoter of leukocyte infiltration in response to mediators such as histamine. However, the mechanisms underpinning this process are still incompletely understood. We examined the role of the sphingosine kinase/sphingosine-1-phosphate (SK/S1P) pathway and showed that in human umbilical vein endothelial cells, histamine rapidly activates SK in an extracellular signal-regulated kinase (ERK) 1/2-dependent manner, concurrent with the induction of P-selectin expression. Histamine activated both SK-1 and SK-2 isoforms; inhibition of SK-1, but not SK-2, attenuated histamine-induced P-selectin up-regulation and neutrophil rolling in vitro. S1P receptor antagonists failed to prevent histamine-induced P-selectin expression, and exogenous S1P did not increase P-selectin expression, suggesting that S1P cell surface receptors are not involved in this process. Finally, the role of both SK-1 and SK-2 in histamine-induced leukocyte rolling in vivo was assessed using pharmacological and genetic methods. Consistent with the in vitro findings, mice pretreated with either sphingosine kinase inhibitor or fingolimod (FTY720) significantly attenuated histamine-induced leukocyte rolling in the cremaster muscle. Similarly, Sphk1(-/-) but not Sphk2(-/-) mice exhibited reduced histamine-induced leukocyte rolling. These findings demonstrate a key role for SK-1 in histamine-induced rapid P-selectin up-regulation and associated leukocyte rolling, and suggest that endothelial SK-1 is an important contributor to allergic inflammation.
Collapse
Affiliation(s)
- Wai Y Sun
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
ATX and LPA receptor 3 are coordinately up-regulated in lipopolysaccharide-stimulated THP-1 cells through PKR and SPK1-mediated pathways. FEBS Lett 2012; 586:792-7. [DOI: 10.1016/j.febslet.2012.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/30/2011] [Accepted: 01/20/2012] [Indexed: 02/07/2023]
|
44
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|
45
|
Hasan NM, Longacre MJ, Stoker SW, Kendrick MA, Druckenbrod NR, Laychock SG, Mastrandrea LD, MacDonald MJ. Sphingosine kinase 1 knockdown reduces insulin synthesis and secretion in a rat insulinoma cell line. Arch Biochem Biophys 2011; 518:23-30. [PMID: 22155656 DOI: 10.1016/j.abb.2011.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
To evaluate the role of sphingosine kinase 1 (SphK1) in insulin secretion, we used stable transfection to knock down the expression of the Sphk1 gene in the rat insulinoma INS-1 832/13 cell line. Cell lines with lowered Sphk1 mRNA expression and SphK1 enzyme activity (SK11 and SK14) exhibited lowered glucose- and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine-stimulated insulin release and low insulin content associated with decreases in the mRNA of the insulin 1 gene. Overexpression of the rat or human Sphk1 cDNA restored insulin secretion and total insulin content in the SK11 cell line, but not in the SK14 cell line. The Sphk1 cDNA-transfected SK14 cell line expressed significantly less SphK1 activity than the Sphk1 cDNA-transfected SK11 cells suggesting that the shRNA targeting SK14 was more effective in silencing the exogenous rat Sphk1 mRNA. The results indicate that SphK1 activity is important for insulin synthesis and secretion.
Collapse
Affiliation(s)
- N M Hasan
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yangyuoru PM, Otieno AC, Mwongela SM. Determination of sphingosine kinase 2 activity using fluorescent sphingosine by capillary electrophoresis. Electrophoresis 2011; 32:1742-9. [PMID: 21706498 DOI: 10.1002/elps.201000495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of sphingosine and sphingosine-1-phosphate is now widespread due to their immense role as intra- and extracellular messenger molecules. The balance and interplay of these ceramide metabolites is dependent on the activities of kinase and phosphatase enzymes. Sphingosine and sphingosine-1-phosphate are found in very minute quantities in cells; thus, they require highly sensitive techniques for quantitative analysis. In this study, we developed a quantitative assay for the determination of sphingosine kinase 2 (SphK2) activity both in vitro and with cell lysates, using CE-LIF. Sphingosine fluorescein was used as the substrate. The K(M) of SphK2 for sphingosine fluorescein was 2.8 ± 0.8 μM with a V(max) of 2490 ± 520 μM/min and a k(cat) of 1920 ± 402/s. The inhibition of SphK2 was also investigated using four different inhibitors for which 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole inhibitor was the most potent for the in vitro inhibition of SphK2 while N,N-dimethylsphingosine (DMS) did not inhibit but rather increased SphK2 activity. The fluorescence-based approach for the determination of the enzymatic activity of SphK2 proves to be useful for the quantitative determination of SphK2 activity in vitro and in cell lysates, and could be extended to single-cell analysis or applied in drug screening.
Collapse
|
47
|
Draper JM, Xia Z, Smith RA, Zhuang Y, Wang W, Smith CD. Discovery and evaluation of inhibitors of human ceramidase. Mol Cancer Ther 2011; 10:2052-61. [PMID: 21885864 DOI: 10.1158/1535-7163.mct-11-0365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ceramide/sphingosine-1-phosphate (S1P) rheostat has been hypothesized to play a critical role in regulating tumor cell fate, with elevated levels of ceramide inducing death and elevated levels of S1P leading to survival and proliferation. Ceramidases are key enzymes that control this rheostat by hydrolyzing ceramide to produce sphingosine and may also confer resistance to drugs and radiation. Therefore, ceramidase inhibitors have excellent potential for development as new anticancer drugs. In this study, we identify a novel ceramidase inhibitor (Ceranib-1) by screening a small molecule library and describe the synthesis of a more potent analogue (Ceranib-2). In a cell-based assay, both compounds were found to inhibit cellular ceramidase activity toward an exogenous ceramide analogue, induce the accumulation of multiple ceramide species, decrease levels of sphingosine and S1P, inhibit the proliferation of cells alone and in combination with paclitaxel, and induce cell-cycle arrest and cell death. In vivo, Ceranib-2 was found to delay tumor growth in a syngeneic tumor model without hematologic suppression or overt signs of toxicity. These data support the selection of ceramidases as suitable targets for anticancer drug development and provide the first nonlipid inhibitors of human ceramidase activity.
Collapse
Affiliation(s)
- Jeremiah M Draper
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T. The impact of bioactive lipids on cardiovascular development. Stem Cells Int 2011; 2011:916180. [PMID: 21876704 PMCID: PMC3159013 DOI: 10.4061/2011/916180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/05/2011] [Indexed: 12/30/2022] Open
Abstract
Lysophospholipids comprise a group of bioactive molecules with multiple biological functions. The cardinal members of this signalling molecule group are sphingosylphosphorylcholine (SPC), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) which are, at least in part, homologous to each other. Bioactive lipids usually act via G-protein coupled receptors (GPCRs), but can also function as direct intracellular messengers. Recently, it became evident that bioactive lipids play a role during cellular differentiation development. SPC induces mesodermal differentiation of mouse ES cells and differentiation of promyelocytic leukemia cells, by a mechanism being critically dependent on MEK-ERK signalling. LPA stimulates the clonal expansion of neurospheres from neural stem/progenitor cells and induces c-fos via activation of mitogen- and stress-activated protein kinase 1 (MSK1) in ES cells. S1P acts on hematopoietic progenitor cells as a chemotactic factor and has also been found to be critical for cardiac and skeletal muscle regeneration. Furthermore, S1P promotes cardiogenesis and similarly activates Erk signalling in mouse ES cells. Interestingly, S1P may also act to maintain human stem cell pluripotency. Both LPA and S1P positively regulate the proliferative capacity of murine ES cells. In this paper we will focus on the differential and developmental impact of lysophospholipids on cardiovascular development.
Collapse
Affiliation(s)
- Alexander Kleger
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
49
|
Usatyuk PV, He D, Bindokas V, Gorshkova IA, Berdyshev EV, Garcia JGN, Natarajan V. Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol 2011; 300:L840-50. [PMID: 21478254 DOI: 10.1152/ajplung.00404.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung endothelial cells (ECs). In the present study, we examined the role of intracellular S1P generated by photolysis of caged S1P on EC barrier regulation and signal transduction. Intracellular S1P released from caged S1P caused mobilization of intracellular calcium, induced activation of MAPKs, redistributed cortactin, vascular endothelial cadherin, and β-catenin to cell periphery, and tightened endothelial barrier in human pulmonary artery ECs. Treatment of cells with pertussis toxin (PTx) had no effect on caged S1P-mediated effects on Ca(2+) mobilization, reorganization of cytoskeleton, cell adherens junction proteins, and barrier enhancement; however, extracellular S1P effects were significantly attenuated by PTx. Additionally, intracellular S1P also activated small GTPase Rac1 and its effector Ras GTPase-activating-like protein IQGAP1, suggesting involvement of these proteins in the S1P-mediated changes in cell-to-cell adhesion contacts. Downregulation of sphingosine kinase 1 (SphK1), but not SphK2, with siRNA or inhibition of SphK activity with an inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (CII) attenuated exogenously administrated S1P-induced EC permeability. Furthermore, S1P1 receptor inhibitor SB649164 abolished exogenous S1P-induced transendothelial resistance changes but had no effect on intracellular S1P generated by photolysis of caged S1P. These results provide evidence that intracellular S1P modulates signal transduction in lung ECs via signaling pathway(s) independent of S1P receptors.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Berdyshev EV, Gorshkova I, Usatyuk P, Kalari S, Zhao Y, Pyne NJ, Pyne S, Sabbadini RA, Garcia JGN, Natarajan V. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. PLoS One 2011; 6:e16571. [PMID: 21304987 PMCID: PMC3031585 DOI: 10.1371/journal.pone.0016571] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/27/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P(1) receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility. METHODOLOGY/PRINCIPAL FINDINGS Inhibition of SphK activity with a SphK inhibitor 2-(p-Hydroxyanilino)-4-(p-Chlorophenyl) Thiazole or down-regulation of Sphk1, but not SphK2, with siRNA decreased S1P(int), and attenuated S1P(ext) or serum-induced motility of HPAECs. On the contrary, inhibition of S1PL with 4-deoxypyridoxine or knockdown of S1PL with siRNA increased S1P(int) and potentiated motility of HPAECs to S1P(ext) or serum. S1P(ext) mediates cell motility through activation of Rac1 and IQGAP1 signal transduction in HPAECs. Silencing of SphK1 by siRNA attenuated Rac1 and IQGAP1 translocation to the cell periphery; however, knockdown of S1PL with siRNA or 4-deoxypyridoxine augmented activated Rac1 and stimulated Rac1 and IQGAP1 translocation to cell periphery. The increased cell motility mediated by down-regulation was S1PL was pertussis toxin sensitive suggesting "inside-out" signaling of intracellularly generated S1P. Although S1P did not accumulate significantly in media under basal or S1PL knockdown conditions, addition of sodium vanadate increased S1P levels in the medium and inside the cells most likely by blocking phosphatases including lipid phosphate phosphatases (LPPs). Furthermore, addition of anti-S1P mAb to the incubation medium blocked S1P(ext) or 4-deoxypyridoxine-dependent endothelial cell motility. CONCLUSIONS/SIGNIFICANCE These results suggest S1P(ext) mediated endothelial cell motility is dependent on intracellular S1P production, which is regulated, in part, by SphK1 and S1PL.
Collapse
Affiliation(s)
- Evgeny V. Berdyshev
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Irina Gorshkova
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Peter Usatyuk
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Satish Kalari
- Department of Cancer Biology, Beckman Research Institute, Duarte, California, United States of America
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburg, Pennsylvania, United States of America
| | - Nigel J. Pyne
- Cell Biology Group, University of Strathclyde, Glasgow, United Kingdom
| | - Susan Pyne
- Cell Biology Group, University of Strathclyde, Glasgow, United Kingdom
| | - Roger A. Sabbadini
- Department of Biology, San Diego State University, and Lpath Inc., San Diego, California, United States of America
| | - Joe G. N. Garcia
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|