1
|
Al-Habib OAM, Issa HY, Dastan T, Dastan SD, Ramadhan AA, Selamoglu Z. Inflammatory protein levels in asthmatic bronchitis: A study in the Duhok population, Iraq. Prostaglandins Other Lipid Mediat 2025; 176:106942. [PMID: 39701410 DOI: 10.1016/j.prostaglandins.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES This study aims to determine the levels of TNF-α, IGF-1, IL-6, and IL-10 protein in blood samples and their potential link to bronchitis-asthma diseases in the Iraq Duhok population, highlighting the prevalence of these long-term inflammatory diseases. METHODS Sixty blood samples were used and separated into patients (n = 43) and control (n = 17) groups. Serum samples were separated for each individual. Elisa method was used in terms of 4 different proteins investigated in blood samples with the manufacturer's instruction brand kits. RESULTS This study evaluated TNF-α, IGF-1, IL-6, and IL-10 protein levels in blood samples from asthmatic bronchitis patients in Duhok. Although these levels were elevated compared to controls, the differences were not statistically significant. CONCLUSION The differences thought to be related to the bronchitis-asthma diseases could not be demonstrated between the patient and control groups in Iraq Duhok population. Future research should explore larger sample sizes and stratified patient groups to identify potential biomarkers.
Collapse
Affiliation(s)
- Omar A M Al-Habib
- College of Science, Nawroz University, Duhok, Iraq; Department of Biology, College of Science, University of Zakho, Duhok, Iraq.
| | - Hamdia Yousif Issa
- Department of Biology, College of Science, University of Zakho, Duhok, Iraq
| | - Taner Dastan
- Department of Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Sevgi Durna Dastan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ali A Ramadhan
- Department of Medicine, College of Medicine, University of Duhok, Duhok, Iraq
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Türkiye; Western Caspian University, Baku, Azerbaijan; Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Sciences, Department of Biology, Central Campus, Turkestan, Kazakhstan
| |
Collapse
|
2
|
Mažerik J, Gondáš E, Dohál M, Smieško L, Jošková M, Fraňová S, Šutovská M. Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model. J Pharmacol Sci 2024; 156:239-246. [PMID: 39608849 DOI: 10.1016/j.jphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Calcium (Ca2+)-activated chloride (Cl-) channels, such as TMEM16A, are inferred to be involved in asthma. Therefore, the present study investigated the therapeutic potential of TMEM16A inhibition in a guinea pig model of ovalbumin (OVA)-induced allergic asthma. Guinea pigs were treated with a specific blocker, CaCCinh-A01 (10 μM), administered via inhalation. A significant reduction in cough reflex sensitivity and specific airway resistance was observed in animals treated with CaCCinh-A01, highlighting its potential to improve airway function. Despite a reduction in ciliary beating frequency (CBF), CaCCinh-A01 reduced airway mucus viscosity by decreasing the production of mucin-5AC (MUC5AC). The nonspecific reduction in the Th1/Th2 cytokine spectrum following CaCCinh-A01 treatment indicated the suppression of airway inflammation. Additionally, markers associated with airway remodeling were diminished, suggesting that CaCCinh-A01 may counteract structural changes in airway tissues. Therefore, inhibition appears to mitigate the pathological aspects of asthma, including airway hyperresponsiveness, inflammation, and remodeling. However, further studies are required to comprehensively evaluate the potential of TMEM16A as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia.
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Matúš Dohál
- Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4C, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| |
Collapse
|
3
|
Lin TJ, Huang CC, Lee MC, Lee YP, Huang WC, Chuang HL, Wang IJ. Effects of Lactobacillus salivarius ssp. salicinius SA-03 Supplementation on Reversing Phthalate-Induced Asthma in Mice. Nutrients 2024; 16:1160. [PMID: 38674852 PMCID: PMC11054125 DOI: 10.3390/nu16081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.
Collapse
Affiliation(s)
- Tien-Jen Lin
- Department of Anaesthesiology, Taipei Medical University-Wan Fang Hospital, Taipei City 116081, Taiwan;
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (C.-C.H.); (M.-C.L.)
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (C.-C.H.); (M.-C.L.)
| | - Yen-Peng Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City 402202, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories Research Institute, Taipei 115202, Taiwan;
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242033, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- College of Public Health, China Medical University, Taichung 400439, Taiwan
- National Institutes of Environmental Health Sciences, National Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
4
|
Kuang PP, Liu XQ, Li CG, He BX, Xie YC, Wu ZC, Li CL, Deng XH, Fu QL. Mesenchymal stem cells overexpressing interleukin-10 prevent allergic airway inflammation. Stem Cell Res Ther 2023; 14:369. [PMID: 38093354 PMCID: PMC10720159 DOI: 10.1186/s13287-023-03602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUNDS Allergic airway inflammation is prevalent worldwide and imposes a considerable burden on both society and affected individuals. This study aimed to investigate the therapeutic advantages of mesenchymal stem cells (MSCs) overexpressed interleukin-10 (IL-10) for the treatment of allergic airway inflammation, as both IL-10 and MSCs possess immunosuppressive properties. METHODS Induced pluripotent stem cell (iPSC)-derived MSCs were engineered to overexpress IL-10 via lentiviral transfection (designated as IL-10-MSCs). MSCs and IL-10-MSCs were administered intravenously to mice with allergic inflammation induced by ovalbumin (OVA), and the features of allergic inflammation including inflammatory cell infiltration, Th cells in the lungs, and T helper 2 cell (Th2) cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. MSCs and IL-10-MSCs were co-cultured with CD4+ T cells from patients with allergic rhinitis (AR), and the levels of Th2 cells and corresponding type 2 cytokines were studied. RNA-sequence was performed to further investigate the potential effects of MSCs and IL-10-MSCs on CD4+ T cells. RESULTS Stable IL-10-MSCs were established and characterised by high IL-10 expression. IL-10-MSCs significantly reduced inflammatory cell infiltration and epithelial goblet cell numbers in the lung tissues of mice with allergic airway inflammation. Inflammatory cell and cytokine levels in BALF also decreased after the administration of IL-10-MSCs. Moreover, IL-10-MSCs showed a stronger capacity to inhibit the levels of Th2 after co-cultured with CD4+ T cells from patients with AR. Furthermore, we elucidated lower levels of IL-5 and IL-13 in IL-10-MSCs treated CD4+ T cells, and blockade of IL-10 significantly reversed the inhibitory effects of IL-10-MSCs. We also reported the mRNA profiles of CD4+ T cells treated with IL-10-MSCs and MSCs, in which IL-10 played an important role. CONCLUSION IL-10-MSCs showed positive effects in the treatment of allergic airway inflammation, providing solid support for the use of genetically engineered MSCs as a potential novel therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- Peng-Peng Kuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying-Chun Xie
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
5
|
Chiarella SE, Barnes PJ. Endogenous inhibitory mechanisms in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100135. [PMID: 37781649 PMCID: PMC10509980 DOI: 10.1016/j.jacig.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 10/03/2023]
Abstract
Endogenous inhibitory mechanisms promote resolution of inflammation, enhance tissue repair and integrity, and promote homeostasis in the lung. These mechanisms include steroid hormones, regulatory T cells, IL-10, prostaglandin E2, prostaglandin I2, lipoxins, resolvins, protectins, maresins, glucagon-like peptide-1 receptor, adrenomedullin, nitric oxide, and carbon monoxide. Here we review the most recent literature regarding these endogenous inhibitory mechanisms in asthma, which remain a promising target for the prevention and treatment of asthma.
Collapse
|
6
|
Cao Z, Li Q, Wu J, Li Y. Causal association of rheumatoid arthritis with obstructive lung disease: Evidence from Mendelian randomization study. Heart Lung 2023; 62:35-42. [PMID: 37302263 DOI: 10.1016/j.hrtlng.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Observational studies have found an association between rheumatoid arthritis (RA) and risk of obstructive lung disease (ORDs). However, whether RA plays a role in ORDs development remains unclear. OBJECTIVES This study aimed to explore the causal association of RA with ORDs. METHODS Both univariable and multivariable Mendelian randomization (MR) analyses were employed. Summary statistics for RA were obtained from the genome-wide association study (GWAS) meta-analysis, and the GWAS data source of ORDs, including the chronic obstructive pulmonary disease (COPD) and asthma, was accessed from the FinnGen Biobank. Causal Analysis Using Summary Effect Estimates (CAUSE) method was used to improve statistical power. multivariable and two-step mediation MR was applied to calculate the independent and mediated effects. RESULTS The causal estimates by univariable and CAUSE results indicated genetic predisposition to RA had an effect on the increased risk of asthma/COPD (A/C) (ORCAUSE = 1.03; 95% CI: 1.02-1.04), COPD/asthma related infections (ACI) (ORCAUSE = 1.02; 95% CI: 1.01-1.03) and COPD/asthma related pneumonia or pneumonia derived septicemia (ACP) (ORCAUSE = 1.02; 95% CI: 1.01-1.03). Genetic predisposition to RA was significantly associated with early onset COPD (ORCAUSE = 1.02; 95% CI: 1.01-1.03) and asthma (ORCAUSE = 1.02; 95% CI: 1.01-1.03) risk and suggestively associated with non-allergic asthma (nAA) risk. After adjustment for confounders, independent causal effects remained for the associations of RA with risk of A/C, ACI, and ACP, as well as COPD, early-onset COPD, and asthma [total, nAA and allergic asthma (AA)] risk. Mediation analyses revealed no potential mediator. CONCLUSION This study indicates a causal effect of increased genetic predisposition to RA on an increased risk of ORDs, including COPD and asthma, especially early-onset COPD and nAA, and on asthma/COPD related infections, pneumonia or pneumonia derived septicemia.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiangxiang Li
- Ningxia Geriatric Disease Clinical Research Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, China; National Clinical Research Center for Geriatric Disorders of Xiangya Hospital, Central South University (Sub-center of Ningxia), Yinchuan, Ningxia Hui Autonomous Region 750001, China; Hunan People's Hospital, Geriatrics Institute of Hunan Province, Changsha, China, Changsha 410002, China
| | - Jianhuang Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yajia Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
7
|
Bantulà M, Arismendi E, Tubita V, Roca-Ferrer J, Mullol J, de Hollanda A, Sastre J, Valero A, Baos S, Cremades-Jimeno L, Cárdaba B, Picado C. Effect of Obesity on the Expression of Genes Associated with Severe Asthma-A Pilot Study. J Clin Med 2023; 12:4398. [PMID: 37445432 DOI: 10.3390/jcm12134398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a complex condition resulting from the interaction of genes and environment. Obesity is a risk factor to develop asthma and contributes to poor response to asthma therapy and severity. The aim of the study was to evaluate the effect of obesity on the expression levels of genes previously associated with severe asthma. Three groups of subjects were studied: non-obese asthmatics (NOA), obese asthma patients (OA), and non-asthmatic obese subjects (O). Previously reported overexpressed (IL-10, MSR1, PHLDA1, SERPINB2, and CD86) and underexpressed genes (CHI3L1, CPA3, IL-8, and PI3) in severe asthma were analyzed by RT-qPCR in peripheral blood mononuclear cells (PBMCs). In the overexpressed genes, obesity significantly decreased the expression of MSR1 and PHLDA1 and had no effects on CD86, IL-10, and SERPINB2. In underexpressed genes, obesity did not affect PI3, CHI3L1, and IL-8 and significantly reduced CPA3 expression. The results of this study show that obesity should be included among the known factors that can contribute toward modifying the expression of genes associated with asthma and, in particular, severe asthma.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Valeria Tubita
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Service, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Antonio Valero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - César Picado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Mongelos MA, Sosa FN, Pineda GE, Fiorentino G, Santiago A, Abelleyro MM, Rossetti LC, Exeni R, De Brasi CD, Palermo MS, Ramos MV. Assessment of interleukin-10 promoter variant (-1082A/G) and cytokine production in patients with hemolytic uremic syndrome. Front Pediatr 2023; 11:1210158. [PMID: 37425258 PMCID: PMC10327435 DOI: 10.3389/fped.2023.1210158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Hemolytic uremic syndrome (HUS) is a condition that results in acute kidney failure mainly in children, which is caused by Shiga toxin-producing Escherichia coli and inflammatory response. Although anti-inflammatory mechanisms are triggered, studies on the implication in HUS are scarce. Interleukin-10 (IL-10) regulates inflammation in vivo, and the interindividual differences in its expression are related to genetic variants. Notably, the single nucleotide polymorphism (SNP) rs1800896 -1082 (A/G), located in the IL-10 promoter, regulates cytokine expression. Methods Plasma and peripheral blood mononuclear cells (PBMC) were collected from healthy children and HUS patients exhibiting hemolytic anemia, thrombocytopenia, and kidney damage. Monocytes identified as CD14+ cells were analyzed within PBMC by flow cytometry. IL-10 levels were quantified by ELISA, and SNP -1082 (A/G) was analyzed by allele-specific PCR. Results Circulating IL-10 levels were increased in HUS patients, but PBMC from these patients exhibited a lower capacity to secrete this cytokine compared with those from healthy children. Interestingly, there was a negative association between the circulating levels of IL-10 and inflammatory cytokine IL-8. We observed that circulating IL-10 levels were threefold higher in HUS patients with -1082G allele in comparison to AA genotype. Moreover, there was relative enrichment of GG/AG genotypes in HUS patients with severe kidney failure. Discussion Our results suggest a possible contribution of SNP -1082 (A/G) to the severity of kidney failure in HUS patients that should be further evaluated in a larger cohort.
Collapse
Affiliation(s)
- Micaela Aldana Mongelos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gonzalo Ezequiel Pineda
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriela Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Miguel Martín Abelleyro
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Liliana Carmen Rossetti
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Carlos Daniel De Brasi
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
9
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Luo J, Chen H, Zhang Q, Huang X, Qin X, Li J, Chen S, Xiao Y, Sun L, Sun B. Metabolism Characteristics of Mycoplasma pneumoniae Infection in Asthmatic Children. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:713-729. [PMID: 36426399 PMCID: PMC9709688 DOI: 10.4168/aair.2022.14.6.713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 07/30/2023]
Abstract
PURPOSE Studies have shown that Mycoplasma pneumoniae (Mp) infection can aggravate symptoms in asthmatics. However, the mechanism by which Mp infection exacerbates asthma remains unclear. Metabolomics can help identify the mechanism of Mp aggravating asthma in children, thereby providing more a potential target for improving clinical treatment programs. In this article, we analyzed the metabolic level of patients to explain how Mp aggravates asthma in children. METHODS We divided the subjects into the asthma, Mp infection, asthma combined with Mp infection and healthy groups. Patients' peripheral blood was collected for metabolic and interaction analysis. Cytokine levels were measured via serum and exhaled breath condensate (EBC). RESULTS A total of 150 participating subjects were divided into four groups after exclusion. We found out that there were different metabolic pathways between the healthy and disease groups. The major pathways of both asthma and asthma combined with Mp infection were valine, leucine and isoleucine biosynthesis; malate-aspartate shuttle was the main differential pathway for Mp infection. Moreover, even though three disease groups involved 81 metabolites at the same time, compared with asthma combined with Mp infection, 2 single disease groups still involved different amino acid pathways (phenylalanine, tyrosine and tryptophan biosynthesis; valine, leucine and isoleucine biosynthesis). Interaction analysis showed that Mp infection in asthmatic patients not only activated cytokines, but also activated Toll-like receptors (TLRs) 2 and 6. Finally, the levels of interleukin (IL)-4, IL-8, IL-13 and tumor necrosis factor-α in EBC with asthma combined with Mp infection were significantly higher than the 2 single disease groups. CONCLUSIONS Mp infection in asthmatic children can cause changes in the levels of various amino acids in the body, which were enriched in the pathways such as valine, leucine and isoleucine biosynthesis. Palmitic acid can activate TLR2, and iloprost reduces IL-10 levels, ultimately leading to the increased airway inflammation.
Collapse
Affiliation(s)
- Jiaying Luo
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huian Chen
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyong Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyun Huang
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Qin
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Institute of Integrated Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siyi Chen
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongxin Xiao
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lihong Sun
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Baoqing Sun
- State Key Lab of Respiratory Disease, National Clinical Research Center of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Cahill KM, Johnson TK, Perveen Z, Schexnayder M, Xiao R, Heffernan LM, Langohr IM, Paulsen DB, Penn AL, Noël A. In utero exposures to mint-flavored JUUL aerosol impair lung development and aggravate house dust mite-induced asthma in adult offspring mice. Toxicology 2022; 477:153272. [PMID: 35878681 DOI: 10.1016/j.tox.2022.153272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
There are few reports concerning electronic nicotine delivery system (ENDS) use during pregnancy and no studies on asthma in prenatally JUUL-exposed offspring. Here, we tested the hypothesis that in utero JUUL exposure causes unfavorable birth outcomes and lasting pulmonary health effects in adult offspring. BALB/c dams were exposed to either air or mint-flavored JUUL aerosol, 1-hr/d, 20 consecutive days during gestation. Offspring were sacrificed on post-natal day (PND) 0 or at 11-week of age, following house dust mite (HDM) challenge. Gene expression was assessed in the uterine/placental tissue of the dams and lung responses were assessed in offspring at PND0 and at 11 weeks of age. JUUL-exposed offspring exhibited decreased body weights and lengths at PND0. These birth outcomes were accompanied by dysregulation of 54 genes associated with hypoxia and oxidative stress in the uterine/placental tissues of JUUL-exposed dams, as well as 24 genes in the lungs of the offspring related to Wnt signaling, plus 9 genes related to epigenetics, and 7 genes related to inflammation. At 11 weeks of age, JUUL + HDM exposed mice exhibited pulmonary inflammation when compared to their respective air + HDM controls. Additionally, the JUUL + HDM exposure dysregulated several genes associated with allergies and asthma. Further, the JUUL + HDM females showed decreased methylation of the promoter region of the Il10ra gene. Taken together, our mouse model shows that inhalation of JUUL aerosols during pregnancy affects the intrauterine environment, impairs lung development, and heightens the effects of allergic airway responses later in life.
Collapse
Affiliation(s)
- Kerin M Cahill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Trenton K Johnson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew Schexnayder
- Lincoln Memorial University, College of Veterinary Medicine, 6965 Cumberland Gap Parkway, Harrogate, TN, USA
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Linda M Heffernan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
12
|
Li Q, Shen Y, Guo X, Xu Y, Mao Y, Wu Y, He F, Wang C, Chen Y, Yang Y. Betanin Dose-Dependently Ameliorates Allergic Airway Inflammation by Attenuating Th2 Response and Upregulating cAMP-PKA-CREB Pathway in Asthmatic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3708-3718. [PMID: 35298142 DOI: 10.1021/acs.jafc.2c00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allergic asthma is a refractory disease that affects hundreds of millions of people worldwide. Betanin is a natural plant-derived nutrient and possesses health-promoting properties. The effects of betanin on allergic asthma remain unknown. Herein, the effects and mechanisms of betanin on allergic asthma were explored in ovalbumin (OVA)-induced BALB/c mice. Betanin in doses of 0, 20, 60, and 180 mg/kg was applied. Peripheral inflammatory cells, IgE, pulmonary pathology, T cell subsets, cytokine levels, protein expressions of the cAMP-PKA-CREB/CREM pathway, and gut microbial profile were measured. The 60 and 180 mg/kg/day betanin doses significantly downregulated IgE, eotaxin, eosinophil infiltration, mucus hyperproduction, and Th2. A 180 mg/kg/day betanin dose also significantly reduced percentages of Th17, Tc17, and Tc2 and Th2- and Th17-signature cytokines and upregulated the cAMP-PKA-CREB pathway. Additionally, 20 mg/kg/day betanin altered the gut microbial profile. In conclusion, betanin dose-dependently alleviated allergic asthma and upregulated the cAMP-PKA-CREB pathway in mice. This study provides a novel nutritional strategy to treat allergic asthma.
Collapse
Affiliation(s)
- Qin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yunqin Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Xingyue Guo
- Department of Nutrition, School of Public Health (Guangzhou), Sun Yat-sen University, Guangzhou 510080, China
| | - Yixuan Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yinfan Wu
- Department of Clinical Nutrition, Shanghai Fourth People Hospital, School of Medicine, Tongji University, Shanghai 200331, China
| | - Fang He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Caixia Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou 510623, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
13
|
Abstract
Rheumatoid arthritis (RA) is a common condition affecting approximately 1% of the general population. RA is a multisystem disorder that causes progressive articular destruction through synovial inflammation. One of the most common extraarticular manifestations of RA is pulmonary involvement, where all compartments of the pulmonary system can be impacted (e.g., pulmonary vasculature, pleura, parenchyma, and the airways). Although it has been known for decades that a portion of patients with RA develop interstitial lung disease, and recent advancements in understanding the genetic risk and treatment for RA-interstitial lung disease have drawn attention, more recent data have begun to highlight the significance of airway disease in patients with RA. Yet, little is known about the underlying pathogenesis, clinical impact, or optimal treatment strategies for airway disease in RA. This review will focus on airway disease involvement in patients with RA by highlighting areas of clinical inquiry for pulmonologists and rheumatologists and discuss areas for future research. Finally, we discuss a potential screening algorithm for providers when approaching patients with RA with respiratory complaints.
Collapse
|
14
|
Borghi SM, Domiciano TP, Rasquel-Oliveira FS, Ferraz CR, Bussmann AJC, Vignoli JA, Camilios-Neto D, Ambrósio SR, Arakawa NS, Casagrande R, Verri WA. Sphagneticola trilobata (L.) Pruski-derived kaurenoic acid prevents ovalbumin-induced asthma in mice: Effect on Th2 cytokines, STAT6/GATA-3 signaling, NFκB/Nrf2 redox sensitive pathways, and regulatory T cell phenotype markers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114708. [PMID: 34619320 DOI: 10.1016/j.jep.2021.114708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM Investigate KA effect and mechanisms in asthma. METHODS Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil; Centro de Pesquisa em Ciências da Saúde, Universidade Norte do Paraná - Unopar, Rua Marselha, 591, Jardim Piza, 86.041-140, Londrina, Paraná, Brazil.
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Allan J C Bussmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Sergio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca - Unifran, Avenida Dr. Armando de Sáles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| | - Nilton S Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil; Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
15
|
Mocellin M, de Azeredo Leitão LA, de Araújo PD, Jones MH, Stein RT, Pitrez PM, de Souza APD, Pinto LA. Association between interleukin-10 polymorphisms and CD4 +CD25 +FOXP3 + T cells in asthmatic children. J Pediatr (Rio J) 2021; 97:546-551. [PMID: 33400919 PMCID: PMC9432050 DOI: 10.1016/j.jped.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the association between possible functional interleukin-10 (IL-10) polymorphisms, IL-10 expression and regulatory T cells (Tregs) frequency, and/or asthma severity in a sample of children and adolescents. METHODS This is a nested case-control genetic association study. The study sample consisted of children and adolescents aged 8-14 from public schools. Four polymorphisms of the IL-10 gene (rs1518111, rs3024490, rs3024496, rs3024491) were genotyped in asthmatic subjects and controls using real-time PCR. Tregs cells and IL-10 were analyzed in peripheral blood mononuclear cells by flow cytometry. The severity of asthma was defined according to the Global Initiative for Asthma (GINA) guideline. RESULTS One hundred twenty-three asthmatic subjects and fifty-eight controls participated in the study. The single nucleotide polymorphism (SNP) rs3024491 (T allele) showed association with asthma severity, presenting a higher frequency in patients in the moderate asthma group. The T allele of variant rs3024491 also showed an association with reduced IL-10 levels (p=0.01) and with increased Tregs frequency (p=0.01). The other variants did not present consistent associations. CONCLUSIONS Our results suggest that moderate asthma is associated with a higher frequency of the T allele in the SNP rs3024491. In addition, the variant rs3024491 (TT) was associated with a reduction in IL-10 production and an increased percentage of Tregs cells, suggesting possible mechanisms that influence asthma severity.
Collapse
Affiliation(s)
- Magáli Mocellin
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Lidiane Alves de Azeredo Leitão
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Patrícia Dias de Araújo
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Renato Tetelbom Stein
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Paulo Márcio Pitrez
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil
| | - Ana Paula Duarte de Souza
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Saúde e Ciências da Vida, Centro Infant, Laboratório de Imunologia Clínica e Experimental, Porto Alegre, RS, Brazil
| | - Leonardo Araújo Pinto
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Medicina, Núcleo de Pediatria, Centro Infantil, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Sponchiado M, Liao YS, Atanasova KR, Collins EN, Schurmann V, Bravo L, Reznikov LR. Overexpression of Substance P in pig airways increases MUC5AC through an NF-kβ pathway. Physiol Rep 2021; 9:e14749. [PMID: 33580593 PMCID: PMC7881348 DOI: 10.14814/phy2.14749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Substance P (SP) is a tachykinin that regulates airway mucous secretion in both health and disease. Our study aimed to determine whether overexpression of SP without pre‐existing inflammation was sufficient to induce changes in mucin secretion and transport in small airways. Utilizing porcine precision‐cut lung slices, we measured the impact of AAV‐mediated overexpression of SP on airway physiology ex vivo. Immunofluorescence signal intensity for MUC5AC was significantly increased in SP‐overexpressed precision‐cut lung slices compared to GFP controls. No difference in MUC5B signal intensity between treatments was detected. SP‐overexpressed precision‐cut lung slices also exhibited decreased IL10 mRNA, an important inhibitor of mucous cell metaplasia. Overt deficits in mucociliary transport were not noted, though a trend for decreased mean transport speed was detected in methacholine‐challenged airways overexpressing SP compared to GFP controls. Pharmacologic inhibition of the NF‐kβ pathway abrogated the effects of overexpression of SP on both MUC5AC and IL10. Collectively, these data suggest that overexpression of SP in the absence of existing inflammation increases MUC5AC via activation of the NF‐kβ pathway. Thus, these data further highlight SP as a key driver of abnormal mucous secretion and underscore NF‐kβ signaling as a pathway of potential therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Yan-Shin Liao
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Veronica Schurmann
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Laura Bravo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Current insights into the genetics of food allergy. J Allergy Clin Immunol 2021; 147:15-28. [PMID: 33436162 DOI: 10.1016/j.jaci.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Food allergy (FA), a growing public health burden in the United States, and familial aggregation studies support strong roles for both genes and environment in FA risk. Deepening our understanding of the molecular and cellular mechanisms driving FAs is paramount to improving its prevention, diagnosis, and clinical management. In this review, we document lessons learned from the genetics of FA that have aided our understanding of these mechanisms. Although current genetic association studies suffer from low power, heterogeneity in definition of FA, and difficulty in our ability to truly disentangle FA from food sensitization (FS) and general atopy genetics, they reveal a set of genetic loci, genes, and variants that continue to implicate the importance of barrier and immune function genes across the atopic march, and FA in particular. The largest reported effects on FA are from MALT1 (odds ratio, 10.99), FLG (average odds ratio, ∼2.9), and HLA (average odds ratio, ∼2.03). The biggest challenge in the field of FA genetics is to elucidate the specific mechanism of action on FA risk and pathogenesis for these loci, and integrative approaches including genetics/genomics with transcriptomics, proteomics, and metabolomics will be critical next steps to translating these genetic insights into practice.
Collapse
|
18
|
Role of Cytokines in EGPA and the Possibility of Treatment with an Anti-IL-5 Antibody. J Clin Med 2020; 9:jcm9123890. [PMID: 33265990 PMCID: PMC7760889 DOI: 10.3390/jcm9123890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a type of systemic vasculitis with eosinophilia in the peripheral blood, which is preceded by bronchial asthma or allergic disease. EGPA is pathologically characterized by microangiopathy granulomatosis vasculitis. Vasculitis can be exacerbated and cause central nervous system and cardiovascular disorders and gastrointestinal perforation. Histological examination reveals eosinophil infiltration and granulomas in lesions in areas such as the lung, nervous system, and skin. Laboratory tests show inflammatory findings such as C-reactive protein (CRP) elevation, increased eosinophils, elevated serum IgE, and elevated myeloperoxidase-anti-neutrophil cytoplasmic antibodies (MPO-ANCA). MPO-ANCA is positive in approximately 40-70% of cases of this disease. EGPA is a necrotizing vasculitis that affects small- and medium-sized blood vessels; however, it differs from other types of ANCA-related vasculitis (such as microscopic polyangiitis and granulomatosis) because it is preceded by bronchial asthma and eosinophilia in the blood and tissues. Treatment with immunosuppressive agents such as steroids or cyclophosphamide depends on the Five Factor Score, which predicts the prognosis and severity of the condition. If the effect of appropriate treatment with steroids is insufficient, the anti-interleukin-5 antibody mepolizumab can be administered. The combination of mepolizumab with standard treatment leads to a significantly longer duration of remission, a higher proportion of patients who achieve sustained remission, and less steroid use than with a placebo.
Collapse
|
19
|
Vergallo C. Infusion of HLA-matched and static magnetic field-exposed allogenic lymphocytes treating lymphocytopenia and cytokine storm syndrome: A treatment proposal for COVID-19 patients. Electromagn Biol Med 2020; 40:11-25. [PMID: 33073612 DOI: 10.1080/15368378.2020.1830290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among haematological parameters of patients seriously ill with the coronavirus infectious disease 2019 (COVID-19), leucocytosis, lymphocytopenia, and the abnormal release of circulating cytokines, termed cytokine storm syndrome (CSS, also known as cytokine release syndrome or CRS), were found associated with disease severity. In particular, according to the serum cytokine profiling, pro-inflammatory interleukin 6 (IL-6) and anti-inflammatory interleukin 10 (IL-10) were observed to be considerably higher in patients experiencing respiratory distress, septic shock and/or multi-organ failure, namely "critical cases" requiring intensive care unit (ICU) admission, very often resulting in death. Interestingly, the production of these cytokines from human lymphocytes was found to be modulated by exposure of 24 h to a 554.2-553.8 mT inhomogeneous static magnetic field (SMF), which elicits IL-10 and suppresses IL-6. Thus, herein, with the aim of restoring lymphocyte count and physiological serum levels of IL-6 and IL-10, the infusion of human leukocyte antigen (HLA)-matched and SMF-exposed allogenic lymphocytes is proposed for the first time as an easy and affordable treatment option for COVID-19 patients. Even if the count of lymphocytes in COVID-19 patients is very low, SMF exposure may be a valuable tool for reprogramming autologous lymphocytes towards physiological conditions. Furthermore, the same procedure could be extended to include the whole autologous or allogenic white blood cells (WBCs). Time-varying/pulsed magnetic fields exerting comparable cell effects could also be employed.
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio" , Chieti, Italy
| |
Collapse
|
20
|
Wang B, Hu J, Liu Y, Liu Q, Li D. Food allergy promotes a Th2/Th17 response that drives house dust mite-induced allergic airway inflammation in humanized mice. Clin Exp Immunol 2020; 202:300-307. [PMID: 32757273 DOI: 10.1111/cei.13504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Food allergy is related to increasing risk of the development of allergic asthma, but the precise interplay between sensitization to different allergens in different compartments of the body is not fully understood. The aim of this study was to develop a novel humanized murine model of mixed food and respiratory allergy that recapitulates the human anaphylactic response and to more clearly understand the impact of food allergies on asthma. Immunodeficient mice transferred with peripheral blood mononuclear cells (PBMCs) from donors with peanut and house dust mite (HDM) allergy were exposed and challenged to peanut. Between peanut exposure and challenge, mice were intranasally treated to HDM. Allergic parameters were analyzed. Allergen-specific immunoglobulin (Ig)E in sera could only be measured in mice treated with peripheral blood mononuclear cells (PBMCs) plus allergen. A preceding peanut exposure increased IgE levels, histamine release, bronchial hyper-responsiveness and lung inflammation. Recruitment of inflammatory cells to the airways was aggravated associated with an enhanced T helper type 2 (Th2)/Th17 cytokine secretion when the two allergies were present. A preceding peanut exposure amplifies allergic asthma in this humanized model, which may contribute to the understanding of underlying immunological mechanism of polysensitization occurring in allergic individuals and evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- B Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - J Hu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Y Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Q Liu
- China Resources Healthcare College, Beijing, China
| | - D Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Kuczia P, Zuk J, Iwaniec T, Soja J, Dropinski J, Malesa-Wlodzik M, Zareba L, Bazan JG, Undas A, Bazan-Socha S. Citrullinated histone H3, a marker of extracellular trap formation, is increased in blood of stable asthma patients. Clin Transl Allergy 2020; 10:31. [PMID: 32685129 PMCID: PMC7354860 DOI: 10.1186/s13601-020-00337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging data indicates that extracellular traps (ETs), structures formed by various immune cell types, may contribute to the pathology of noninfectious inflammatory diseases. Histone hypercitrullination is an important step in ETs formation and citrullinated histone H3 (H3cit) is considered a novel and specific biomarker of that process. In the present study we have evaluated circulating H3cit in stable asthmatics and investigated its relationship with asthma severity, pulmonary function and selected blood and bronchoalveolar lavage (BAL) biomarkers. METHODS In 60 white adult stable asthmatics and 50 well-matched controls we measured serum levels of H3cit. In asthmatics we also performed bronchoscopy with BAL. We analyzed blood and BAL biomarkers, including interleukin (IL)-4, IL-5, IL-6, IL-10, IL-12p70, IL-17A and interferon γ. For statistical analysis, Mann-Whitney U-test, χ2 test, one-way ANCOVA, ROC curve analysis and univariate linear regression were applied. Independent determinants of H3cit were established in a multiple linear regression model. RESULTS Asthma was characterized by elevated circulating H3cit (17.49 [11.25-22.58] vs. 13.66 [8.66-18.87] ng/ml, p = 0.03). In asthmatics positive associations were demonstrated between serum H3cit and lung function variables, including total lung capacity (TLC) (β = 0.37 [95% CI 0.24-0.50]) and residual volume (β = 0.38 [95% CI 0.25-0.51]). H3cit was increased in asthma patients receiving systemic steroids (p = 0.02), as well as in subjects with BAL eosinophilia above 144 cells/ml (p = 0.02). In asthmatics, but not in controls, circulating H3cit correlated well with number of neutrophils (β = 0.31 [95% CI 0.19-0.44]) and monocytes (β = 0.42 [95% CI 0.29-0.55]) in peripheral blood. Furthermore, BAL macrophages, BAL neutrophils, TLC, high-sensitivity C-reactive protein, Il-12p70 and bronchial obstruction degree were independent determinants of H3cit in a multivariate linear regression model. CONCLUSIONS Asthma is characterized by increased circulating H3cit likely related to the enhanced lung ETs formation. Inhibition of ETs might be a therapeutic option in selected asthma phenotypes, such as neutrophilic asthma.
Collapse
Affiliation(s)
- Pawel Kuczia
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Joanna Zuk
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Teresa Iwaniec
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Jerzy Dropinski
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Marta Malesa-Wlodzik
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
- Allergology and Pulmonology Clinic, Institute of Tuberculosis and Lung Diseases, Regional Branch in Rabka-Zdrój, Rabka-Zdrój, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, 1 Pigonia Str., 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, 1 Pigonia Str., 35-310 Rzeszow, Poland
| | - Anetta Undas
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
- Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| |
Collapse
|
22
|
L S Alves C, F Santiago L, B R Santana M, C P Figueiredo B, B Morais S, C Oliveira S, G C Pacheco L, M Alcantara-Neves N, S Pinheiro C. Immunomodulatory properties of Schistosoma mansoni proteins Sm200 and SmKI-1 in vitro and in a murine model of allergy to the mite Blomia tropicalis. Mol Immunol 2020; 124:91-99. [PMID: 32544656 DOI: 10.1016/j.molimm.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
The prevalence of allergic diseases in Brazil is one of the biggest in the world. Among these pathologies, we highlight asthma as one of the most importance. Asthma is characterized as a chronic inflammatory disease of airways, associated with hyperresponsiveness. Many environmental factors can trigger asthma symptoms, among them house dust mites can stimulate hypersensitivity type I reaction. The most common in house dust mite, in tropical countries, are Dermatophagoides pteronysinus and Blomia tropicalis. Several studies have shown that helminths, especially Schistosoma mansoni, lead to reduction of symptoms of atopy and allergic diseases. Therefore, the present study aims to evaluate the ability of recombinant S. mansoni proteins Sm200, and SmKI-1 to induce immunomodulation in vitro, using peripheral blood mononuclear cells (PBMCs) from atopic and non-atopic individuals, stimulated or not with B. tropicalis extract, and in vivo, in a murine model of allergy to the mite B. tropicalis. As results, we observed that the fragment called rSm200-3 and the protein rSmKI-1 stood out for their immunomodulatory potential, stimulating IL-10 production by human PBMCs in vitro. When these proteins were associated with B. tropicalis extract, it was observed the reduction of the production of the cytokine IL-5, with a statistically significant difference in non-atopic individual's cells. In vivo, both proteins presented similar results, with a reduction of IL-5 and IL-4 levels in lung homogenates and of serum IgE. SmKI-1 was also able to decrease the levels of EPO in lung homogenates and in BAL. These results showed that both proteins were able to downmodulate Th2 cells on human PBMCs, and in a murine model of allergy. However, SmKI-1 also reduced significantly the levels of EPO in BAL and lungs showing that this protein may be a good candidate to be used as a possible replacement or in conjunction with pharmacotherapy in individuals with unregulated immune response in asthma.
Collapse
Affiliation(s)
- Camile L S Alves
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Leonardo F Santiago
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Marina B R Santana
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Suellen B Morais
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis G C Pacheco
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Carina S Pinheiro
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
23
|
Malinina A, Dikeman D, Westbrook R, Moats M, Gidner S, Poonyagariyagorn H, Walston J, Neptune ER. IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung. Aging Cell 2020; 19:e13130. [PMID: 32170906 PMCID: PMC7189990 DOI: 10.1111/acel.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.
Collapse
Affiliation(s)
- Alla Malinina
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Dustin Dikeman
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Reyhan Westbrook
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Michelle Moats
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
- Departments of Biology and Chemistry and Biochemistry Florida International University Miami FL USA
| | - Sarah Gidner
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | | | - Jeremy Walston
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| |
Collapse
|
24
|
Fernández RDV, Díaz A, Bongiovanni B, Gallucci G, Bértola D, Gardeñez W, Lioi S, Bertolin Y, Galliano R, Bay ML, Bottasso O, D'Attilio L. Evidence for a More Disrupted Immune-Endocrine Relation and Cortisol Immunologic Influences in the Context of Tuberculosis and Type 2 Diabetes Comorbidity. Front Endocrinol (Lausanne) 2020; 11:126. [PMID: 32265833 PMCID: PMC7099637 DOI: 10.3389/fendo.2020.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary tuberculosis (PTB), caused by Mycobacterium tuberculosis (Mtb), is a major health problem worldwide, further aggravated by the convergence of type 2 diabetes mellitus (DM) which constitutes an important risk factor for TB development. The worse scenario of patients with PTB and DM may be partly related to a more unbalanced defensive response. As such, newly diagnosed PTB patients with DM (TB+DM, n = 11) or not (TB, n = 21), as well as DM (n = 18) patients and pair matched controls (Co, n = 22), were investigated for the circulating immuno-endocrine-metabolic profile (ELISA), along with studies in peripheral blood mononuclear cells (PBMC) analyzing transcript expression (RT-qPCR) of mediators involved in glucocorticoid functionality. Given the hyperglycemic/hypercortisolemic scenario of TB+DM patients, PBMC were also exposed to stress-related cortisol concentrations (0.1 and 1 μM) and supraphysiologic glucose doses (10, 20, and 40 mM) and assessed for the specific response against Mtb stimulation (lymphoproliferation, -thymidine incorporation-, and cytokine production -bead-cytometry). All TB patients displayed increased plasma amounts of cortisol, growth hormone -hGH-, and proinflammatory mediators. In turn, TB+DM showed even higher levels of interferon gamma -IFN-γ- and hGH (vs. TB), or IL-6, C reactive protein, cortisol and hGH (vs. DM). Both DM groups had equally augmented values of IL-10. All TB patients showed decreased dehydroepiandrosterone- sulfate concentrations, even more in TB+DM cases. Leptin was also decreased in both TB cases, particularly in the TB group, revealing a lower body mass index, as well. Unlike PBMC from TB cases showing a decreased relationship between the glucocorticoids receptor (GR) isoforms (GRα/GRβ; functional isoform/negative isoform), cells from TB+DM patients had no changes in this regard, along with an increased expression of 11-beta hydroxysteroid dehydrogenase type-1, the enzyme facilitating intracellular cortisone to cortisol conversion. TB+DM patients also showed an increased Mtb antigen-driven lymphoproliferation. Compared to TB, DM and HCo counterparts, PBMC from TB+DM patients had a biased Th1 response to Mtb stimulation (increased IL-2 and IFN-γ production), even when exposed to inhibitory cortisol doses. TB+DM patients show a more unbalanced immuno-endocrine relationship, respect the non-diabetic counterparts, with a relative deficiency of cortisol immunomodulatory influences, despite their more favorable microenvironment for cortisol-mediated immune effects.
Collapse
Affiliation(s)
- Rocío D. V. Fernández
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
| | - Georgina Gallucci
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
| | - Diego Bértola
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
- Hospital Provincial del Centenario, Rosario, Argentina
| | - Walter Gardeñez
- Servicio de Neumonología, Hospital Provincial del Centenario, Rosario, Argentina
| | - Susana Lioi
- Laboratorio Central, Hospital Provincial del Centenario, Rosario, Argentina
| | - Yésica Bertolin
- Servicio de Medicina Transfusional, Hospital Provincial del Centenario, Rosario, Argentina
| | - Romina Galliano
- Servicio de Medicina Transfusional, Hospital Provincial del Centenario, Rosario, Argentina
| | - María L. Bay
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| |
Collapse
|
25
|
Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens 2020; 9:pathogens9020112. [PMID: 32054098 PMCID: PMC7167821 DOI: 10.3390/pathogens9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
Medications for asthma management consisting of inhaled corticosteroids act by controlling symptoms. However, some patients do not respond to steroid treatment due to immunological factors at the cytokine level. Chlamydia pneumoniae (C. pneumoniae) infection is strongly implicated in asthma pathogenesis, causing altered immune responses. We investigated the association of C. pneumoniae serostatus with the production of certain cytokines by peripheral blood mononuclear cells (PBMCs) of steroid-resistant and -sensitive asthmatic patients. Our most important findings are the following: In the case of C. pneumoniae seropositive patients we detected pronounced spontaneous interleukin (IL)-10 secretion and, in the case of steroid-resistant patients, IL-10 secretion was at a significantly higher level as compared with in-sensitive patients (p < 0.01). Furthermore, steroid-resistant seropositive patients produced a significantly higher level of IL-10 spontaneously and under antigen stimulation as compared with steroid-resistant seronegative individuals (p < 0.05). Concerning spontaneous TNF-α secretion by C. pneumoniae seropositive asthmatics, we observed that steroid-resistant patients produced significantly more of this cytokine than steroid-sensitive patients. In the steroid-resistant patients’ sera, a remarkably high MMP-9 concentration was associated with C. pneumoniae seronegativity. Our study revealed that the differences in the cytokine production in steroid-sensitive and -resistant asthmatic patients can be influenced by their C. pneumoniae serostatus.
Collapse
|
26
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
27
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
28
|
The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:878-889.e3. [PMID: 31770653 DOI: 10.1016/j.jaip.2019.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
The low prevalence of asthma and allergies in farm children has partially been ascribed to the consumption of raw cow's milk. A literature search identified 12 publications on 8 pertinent studies. A meta-analysis corroborated the protective effect of raw milk consumption early in life (<1 to 5 years, according to study) on asthma (odds ratio [OR], 0.58; 95% CI, 0.49-0.69), current wheeze (OR, 0.66; 95% CI, 0.55-0.78), hay fever or allergic rhinitis (OR, 0.68; 95% CI, 0.57-0.82), and atopic sensitization (OR, 0.76; 95% CI, 0.62-0.95). The effect particularly on asthma was observed not only in children raised on farms (OR, 0.62; 95% CI, 0.58-0.82) but also in children living in rural areas but not on a farm (OR, 0.60; 95% CI, 0.48-0.74). This demonstrates that the effect of farm milk consumption is independent of other farm exposures and that children not living on a farm can theoretically profit from this effect. Because of the minimal but real risk of life-threatening infections, however, consumption of raw milk and products thereof is strongly discouraged. Raw farm milk and industrially processed milk differ in many instances including removal of cellular components, manipulation of the fat fraction, and various degrees of heating. Preliminary evidence attributes the effect to heat-labile molecules and components residing in the fat fraction. The Milk Against Respiratory Tract Infections and Asthma (MARTHA) trial is currently testing the protective effect of microbiologically safe, minimally processed cow's milk against standard ultra-heat-treated milk in children from 6 months to 3 years with the primary outcome of an asthma diagnosis until age 5 years. If successful, this approach might provide a simple but effective prevention strategy.
Collapse
|
29
|
Bond SL, Hundt J, Léguillette R. Effect of injected dexamethasone on relative cytokine mRNA expression in bronchoalveolar lavage fluid in horses with mild asthma. BMC Vet Res 2019; 15:397. [PMID: 31694631 PMCID: PMC6833259 DOI: 10.1186/s12917-019-2144-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mild equine asthma is a common inflammatory airway disease of the horse. The primary treatment of mild equine asthma is corticosteroids. The purpose of this study was to investigate the effects of injected dexamethasone on relative IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p35, IL-17, IL-23, IFN-γ, Eotaxin-2 and TNF-α mRNA expression in bronchoalveolar lavage (BAL) fluid in healthy Thoroughbred horses (n = 6), and those with mild equine asthma (n = 7). Results Horses with mild equine asthma had a significantly greater bronchoalveolar lavage mast cell percentage than healthy horses both before and after treatment. Mild equine asthma was associated with a 4.95-fold up-regulation of IL-17 (p = 0.026) and a 2.54-fold down-regulation of IL-10 (p = 0.049) compared to healthy horses. TNF-α was down-regulated in response to dexamethasone treatment in both healthy horses (3.03-fold, p = 0.023) and those with mild equine asthma (1.75-fold, p = 0.023). IL-5 was also down-regulated in horses with mild asthma (2.17-fold, p = 0.048). Conclusions Horses with mild equine asthma have a lower concentration of IL-10 in BAL fluid than healthy controls which concurs with human asthmatics. The marked up-regulation of IL-17 in horses with mild asthma suggests these horses had a true tendency of “allergic” airway inflammation in response to environmental allergens. Dexamethasone administration exerted anti-inflammatory effects associated with down-regulation of TNF-α in all horses, and decreased levels of IL-5 mRNA expression in horses with mild equine asthma. The inhibition of the Th-2 response, without any alterations to the airway cytology, indicates that maintained exposure to environmental allergens perpetuates airway inflammation.
Collapse
Affiliation(s)
- Stephanie L Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jana Hundt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
31
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
32
|
Joung J, Cho J, Kim Y, Choi S, Son C. A literature review for the mechanisms of stress-induced liver injury. Brain Behav 2019; 9:e01235. [PMID: 30761781 PMCID: PMC6422711 DOI: 10.1002/brb3.1235] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Experimental studies and clinical observations have shown that stress can damage hepatic tissue both directly and indirectly. Many studies have partially revealed the contributors of stress-induced liver injury; however, the whole process has not yet been uncovered. This review aims to summarize the mechanisms that have been proposed to be involved. METHODS A literature search was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) in its entirety up to March 2018, and analyzed the animal-derived mechanistic studies on stress-induced liver injury. RESULTS The liver is the organ that meets and filters a mass of alien material, and then maintains immune tolerance under physiological conditions. Under stress conditions, however, immune tolerance is interrupted, which results in the induction of inflammation in the liver. Contributors to this process can be categorized as follows: hypoxia-reoxygenation, over-activation of Kupffer cells and oxidative stress, influx of gut-derived lipopolysaccharide and norepinephrine, and over-production of stress hormones and activation of the sympathetic nerve. CONCLUSIONS Psychological stress is associated with a variety of pathological conditions resulting in liver injury through multiple systems, including the sympathetic nervous and adrenocortical system. Mechanistic understanding of this phenomenon is important for the clinical practice of managing patients with hepatic disorders and should be explored further in the future.
Collapse
Affiliation(s)
- Jin‐Yong Joung
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| | - Jung‐Hyo Cho
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| | - Yun‐Hee Kim
- Korean Medicine Convergence Research DivisionKorea Institute of Oriental Medicine (KIOM)DaejeonKorea
| | - Seung‐Hoon Choi
- Department of Life ConvergenceGraduate School of Dankook UniversityYonginKorea
| | - Chang‐Gue Son
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| |
Collapse
|
33
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
34
|
Fraňová S, Kazimierová I, Pappová L, Molitorisová M, Jošková M, Šutovská M. The effect of erdosteine on airway defence mechanisms and inflammatory cytokines in the settings of allergic inflammation. Pulm Pharmacol Ther 2018; 54:60-67. [PMID: 30502381 DOI: 10.1016/j.pupt.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/02/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Mucoactive agent, erdosteine, besides mucolytic activity, is characterized by many other pharmacodynamic properties which could be beneficial in the management of inflammatory conditions. BACKGROUND Using guinea pig experimental model of allergic inflammation, we evaluated the ability of erdosteine to modulate airway defence mechanisms and inflammation after 10 days (10 mg/kg/day) administration. METHODS In vivo changes in specific airway resistance and amplitude of tracheal contraction were estimated to evaluate the bronchodilatory effect. The sensitivity of chemically induced cough reflex was estimated via in vivo method. The ciliary beat frequency assessed on brushed tracheal cells was used as an indicator of the mucociliary clearance rate. The concentrations of the inflammatory cytokines IL-4, IL-5, IL-13 and IL-10 were measured in BALF using multiplex detecting method. RESULTS Our data show that 10 days erdosteine administration resulted in bronchodilation and stimulation of ciliary beat frequency. Erdosteine did not affect the parameters of chemically induced cough reflex. Erdosteine demonstrated the modest decline in inflammatory cytokines IL-5, IL-13 and an increase in the concentration of IL-10, which is a potent regulator of inflammatory responses and plays a critical role in controlling allergic airway inflammation. CONCLUSION In summary, we can state, that erdosteine is multi-action drug and it seems to have many beneficial and complementary effect in the management of chronic inflammatory airway diseases complicated by viscous mucus.
Collapse
Affiliation(s)
- S Fraňová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Martin, Slovakia
| | - I Kazimierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre, Martin, Slovakia.
| | - L Pappová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Martin, Slovakia
| | - M Molitorisová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Martin, Slovakia
| | - M Jošková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Martin, Slovakia
| | - M Šutovská
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Martin, Slovakia
| |
Collapse
|
35
|
Abbring S, Hols G, Garssen J, van Esch BCAM. Raw cow's milk consumption and allergic diseases - The potential role of bioactive whey proteins. Eur J Pharmacol 2018; 843:55-65. [PMID: 30439365 DOI: 10.1016/j.ejphar.2018.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
The prevalence of allergic diseases has increased significantly in Western countries in the last decades. This increase is often explained by the loss of rural living conditions and associated changes in diet and lifestyle. In line with this 'hygiene hypothesis', several epidemiological studies have shown that growing up on a farm lowers the risk of developing allergic diseases. The consumption of raw, unprocessed, cow's milk seems to be one of the factors contributing to this protective effect. Recent evidence indeed shows an inverse relation between raw cow's milk consumption and the development of asthma and allergies. However, the consumption of raw milk is not recommended due to the possible contamination with pathogens. Cow's milk used for commercial purposes is therefore processed, but this milk processing is shown to abolish the allergy-protective effects of raw milk. This emphasizes the importance of understanding the components and mechanisms underlying the allergy-protective capacity of raw cow's milk. Only then, ways to produce a safe and protective milk can be developed. Since mainly heat treatment is shown to abolish the allergy-protective effects of raw cow's milk, the heat-sensitive whey protein fraction of raw milk is an often-mentioned source of the protective components. In this review, several of these whey proteins, their potential contribution to the allergy-protective effects of raw cow's milk and the consequences of heat treatment will be discussed. A better understanding of these bioactive whey proteins might eventually contribute to the development of new nutritional approaches for allergy management.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Gert Hols
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Kordulewska NK, Cieślińska A, Fiedorowicz E, Jarmołowska B, Piskorz-Ogórek K, Kostyra E. Cytokines concentrations in serum samples from allergic children-Multiple analysis to define biomarkers for better diagnosis of allergic inflammatory process. Immunobiology 2018; 223:648-657. [PMID: 30056998 DOI: 10.1016/j.imbio.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Allergic diseases can expand at any age as a result of complicated interaction of environmental and genetic factors. Through the years, studies have found that allergic diseases are primarily described by elevated Th2 pathway activation, leading to increased serum IgE levels, allergen reactivity, blood eosinophil counts and secreted interleukins. METHODS A total of 20 patients with allergy and 20 matched controls participants were recruited for the study. A study was designed with the framework of an ongoing project at the Regional Children's Hospital in Olsztyn on the analysis of the immune profile of children with allergy and asthma. Diagnosis was conducted by medical specialists. Whole blood samples were collected and serum IL's and chemokin levels were made using ELISA kits. RESULTS Results demonstrated that in comparison to the controls, the individuals with allergy showed significantly higher concentration of IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13 and TNF-α. We also demonstrated significant correlations between the levels of cytokines which implies the presence of an interactive network between them. The results of ROC analysis indicated the 3-factors (IL-1β, IL-4, IL-8) could be additional, helpful biomarkers in better diagnosis of allergy. CONCLUSIONS In this study, serum levels of cytokine differed among children with allergy. However, the findings of this support the possibility of using an appropriate selection of serum cytokine for the diagnosis allergy and emphasize the need to standardize quantitative methods for serum analysis.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | | | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| |
Collapse
|
37
|
Terhune TD, Deth RC. Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E901. [PMID: 29751492 PMCID: PMC5981940 DOI: 10.3390/ijerph15050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
There are similarities between the immune response following immunization with aluminum adjuvants and the immune response elicited by some helminthic parasites, including stimulation of immunoglobulin E (IgE) and eosinophilia. Immunization with aluminum adjuvants, as with helminth infection, induces a Th2 type cell mediated immune response, including eosinophilia, but does not induce an environment conducive to the induction of regulatory mechanisms. Helminths play a role in what is known as the hygiene hypothesis, which proposes that decreased exposure to microbes during a critical time in early life has resulted in the increased prevalence and morbidity of asthma and atopic disorders over the past few decades, especially in Western countries. In addition, gut and lung microbiome composition and their interaction with the immune system plays an important role in a properly regulated immune system. Disturbances in microbiome composition are a risk factor for asthma and allergies. We propose that immunization with aluminum adjuvants in general is not favorable for induction of regulatory mechanisms and, in the context of the hygiene hypothesis and microbiome theory, can be viewed as an amplifying factor and significant contributing risk factor for allergic diseases, especially in a genetically susceptible subpopulation.
Collapse
Affiliation(s)
- Todd D Terhune
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | - Richard C Deth
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
38
|
Klier J, Geis S, Steuer J, Geh K, Reese S, Fuchs S, Mueller RS, Winter G, Gehlen H. A comparison of nanoparticullate CpG immunotherapy with and without allergens in spontaneously equine asthma-affected horses, an animal model. Immun Inflamm Dis 2018; 6:81-96. [PMID: 29094511 PMCID: PMC5818452 DOI: 10.1002/iid3.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/14/2017] [Accepted: 08/16/2017] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION New therapeutic strategies to modulate the immune response of human and equine allergic asthma are still under extensive investigation. Immunomodulating agents stimulating T-regulatory cells offer new treatment options beyond conventional symptomatic treatment or specific immunotherapy for human and equine allergic airway diseases, with the goal of a homoeostatic T-helper cell balance. The aim of this study was to evaluate the effects of a nebulized gelatin nanoparticle-CpG formulation (CpG-GNP) with and without specific allergens for the treatment of spontaneous allergic equine asthma as a model for human asthma. METHODS Twenty equine asthma-affected horses were treated either with CpG-GNP alone or CpG-GNP with allergens. Two specific allergens were selected for each horse based on history and an in-vitro test. Each horse received seven administrations of the respective nebulized composition and was examined before treatment, immediately after and 6 weeks after the treatment course. RESULTS Clinical parameters such as breathing rate, indirect interpleural measurement, arterial blood gases, amount of tracheal mucus and percentage of neutrophils and cytokines in tracheal washes and serum samples were evaluated. Treatment with CpG-GNP alone as well as in combinations with relevant allergens resulted in clinical improvement of nasal discharge, breathing rate, amount of secretion and viscosity, neutrophil percentage and partial oxygen pressure directly after and 6 weeks after treatment. There were no significant differences between the two treatments in clinical parameters or local cytokine profiles in the tracheal wash fluid (IL-10, IFN-g, and IL-17). IL-4 concentrations decreased significantly in both groups. CONCLUSION Nonspecific CpG-GNP-based immunotherapy shows potential as a treatment for equine and possibly also human allergic asthma.
Collapse
Affiliation(s)
- John Klier
- Centre for Clinical Veterinary MedicineEquine Clinic, Ludwig‐Maximilians‐UniversityMunichGermany
| | - Sabine Geis
- Centre for Clinical Veterinary MedicineEquine Clinic, Ludwig‐Maximilians‐UniversityMunichGermany
- Department of Veterinary Medicine, Equine Clinic, Surgery and RadiologyFree University of BerlinBerlinGermany
| | - Jeanette Steuer
- Centre for Clinical Veterinary MedicineEquine Clinic, Ludwig‐Maximilians‐UniversityMunichGermany
- Department of Veterinary Medicine, Equine Clinic, Surgery and RadiologyFree University of BerlinBerlinGermany
| | - Katharina Geh
- Department of PharmacyPharmaceutical Technology and Biopharmaceutics, Ludwig‐Maximilians‐UniversityMunichGermany
| | - Sven Reese
- Department of Veterinary Science, Institute of Anatomy, Histology and EmbryologyLudwig‐Maximilians‐UniversityMunichGermany
| | - Sebastian Fuchs
- Department of PharmacyPharmaceutical Technology and Biopharmaceutics, Ludwig‐Maximilians‐UniversityMunichGermany
| | - Ralf S. Mueller
- Centre for Clinical Veterinary Medicine, Small Animal Medicine ClinicLudwig‐Maximilians‐UniversityMunichGermany
| | - Gerhard Winter
- Department of PharmacyPharmaceutical Technology and Biopharmaceutics, Ludwig‐Maximilians‐UniversityMunichGermany
| | - Heidrun Gehlen
- Department of Veterinary Medicine, Equine Clinic, Surgery and RadiologyFree University of BerlinBerlinGermany
| |
Collapse
|
39
|
Fan S, Li K, Zhang D, Liu F. JNK and NF-κB signaling pathways are involved in cytokine changes in patients with congenital heart disease prior to and after transcatheter closure. Exp Ther Med 2017; 15:1525-1531. [PMID: 29434738 DOI: 10.3892/etm.2017.5595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/26/2017] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease (CHD) is a problem in the structure of the heart that is present at birth. Due to advances in interventional cardiology, CHD may currently be without surgery. The present study aimed to explore the molecular mechanism underlying CHD. A total of 200 cases of CHD treated by transcatheter closure as well as 200 controls were retrospectively assessed. Serum cytokines prior to and after treatment were assessed by reverse-transcription quantitative polymerase chain reaction analysis. Furthermore, the levels of proteins associated with c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-κB were assessed by western blot analysis and immunohistochemistry. Furthermore, an animal model of CHD in young pigs was successfully constructed and treated with inhibitors of JNK and/or NF-κB to investigate the roles of these pathways in CHD. The results revealed that tumor necrosis factor-α, interleukin (IL)-6 and IL-8 were significantly elevated in the experimental group following transcatheter closure treatment, compared with those in the healthy control group, and the serum levels of the anti-inflammatory cytokine IL-10 were significantly reduced. Phosphorylated c-Jun and p65 levels in the experimental group were notably higher in the experimental group compared with the control group, but were restored to normal levels following transcatheter closure treatment. Similar results were also obtained in the pig model. The results of the present study suggested that the CHD-associated changes in cytokines, as well as their recovery following transcatheter closure treatment were associated with the JNK and NF-κB signaling pathways. The present study may provide further understanding of the underlying molecular mechanisms in CHD and propose a potential novel target for the treatment of CHD.
Collapse
Affiliation(s)
- Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kefang Li
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Deyin Zhang
- Department of Internal Medicine, The Third People's Hospital of Henan Province, Zhengzhou, Henan 450000, P.R. China
| | - Fuyun Liu
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
40
|
Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 2017; 278:63-86. [PMID: 28658551 PMCID: PMC5501488 DOI: 10.1111/imr.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite advances in the treatment of asthma, optimization of symptom control remains an unmet need in many patients. These patients, labeled severe asthma, are responsible for a substantial fraction of the disease burden. In these patients, research is needed to define the cellular and molecular pathways contributing to disease which in large part are refractory to corticosteroid treatment. The causes of steroid-resistant asthma are multifactorial and result from complex interactions of genetics, environmental factors, and innate and adaptive immunity. Adaptive immunity, addressed here, integrates the activities of distinct T-cell subsets and by definition is dynamic and responsive to an ever-changing environment and the influences of epigenetic modifications. These T-cell subsets exhibit different susceptibilities to the actions of corticosteroids and, in some, corticosteroids enhance their functional activation. Moreover, these subsets are not fixed in lineage differentiation but can undergo transcriptional reprogramming in a bidirectional manner between protective and pathogenic effector states. Together, these factors contribute to asthma heterogeneity between patients but also in the same patient at different stages of their disease. Only by carefully defining mechanistic pathways, delineating their sensitivity to corticosteroids, and determining the balance between regulatory and effector pathways will precision medicine become a reality with selective and effective application of targeted therapies.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
41
|
Penberthy KK, Buckley MW, Arandjelovic S, Ravichandran K. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells. PLoS One 2017; 12:e0173386. [PMID: 28267764 PMCID: PMC5340387 DOI: 10.1371/journal.pone.0173386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Peripheral regulatory CD4+ T cells (Treg cells) prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are refractory to these drugs have defective induction of anti-inflammatory Treg cells. Previous observations suggest that Treg cells deficient in the transcription factor FoxO1 are pro-inflammatory, and that FoxO1 activity is regulated by its phosphorylation status and nuclear localization. Here, we asked whether altering the phosphorylation state of FoxO1 through modulation of a regulatory phosphatase might affect Treg cell function. In a mouse model of house dust mite-induced allergic airway inflammation, we observed robust recruitment of Treg cells to the lungs and lymph nodes of diseased mice, without an apparent increase in the Treg cytokine interleukin-10 in the airways. Intriguingly, expression of PP2A, a serine/threonine phosphatase linked to the regulation of FoxO1 phosphorylation, was decreased in the mediastinal lymph nodes of HDM-treated mice, mirroring the decreased PP2A expression seen in peripheral blood monocytes of glucocorticoid-resistant asthmatic patients. When we asked whether modulation of PP2A activity alters Treg cell function via treatment with the PP2A inhibitor okadaic acid, we observed increased phosphorylation of FoxO1 and decreased nuclear localization. However, dysregulation of FoxO1 did not impair Treg cell differentiation ex vivo or cause Treg cells to adopt a pro-inflammatory phenotype. Moreover, inhibition of PP2A activity did not affect the suppressive function of Treg cells ex vivo. Collectively, these data suggest that modulation of the phosphorylation state of FoxO1 via PP2A inhibition does not modify Treg cell function ex vivo. Our data also highlight the caveat in using ex vivo assays of Treg cell differentiation and function, in that while these assays are useful, they may not fully recapitulate Treg cell phenotypes that are observed in vivo.
Collapse
Affiliation(s)
- Kristen Kelley Penberthy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Monica Weaver Buckley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sanja Arandjelovic
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kodi Ravichandran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
42
|
de Almeida TVVS, Fernandes JS, Lopes DM, Andrade LS, Oliveira SC, Carvalho EM, Araujo MI, Cruz ÁA, Cardoso LS. Schistosoma mansoni antigens alter activation markers and cytokine profile in lymphocytes of patients with asthma. Acta Trop 2017; 166:268-279. [PMID: 27931742 DOI: 10.1016/j.actatropica.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022]
Abstract
Asthma is a chronic disease characterized by airway inflammation, obstruction and hyperresponsiveness. Severe asthma affects a small proportion of subjects but results in most of the morbidity, costs and mortality associated with the disease. Studies have suggested that Schistosoma mansoni infection reduces the severity of asthma and prevent atopy. OBJECTIVE We evaluated the ability of S. mansoni antigens, Sm29 and Sm29TSP-2 to modulate lymphocyte activation status in response to the allergen of the mite Dermatophagoides pteronyssinus (Der p1) in cell cultures of individuals with asthma. METHODS Thirty four patients were enrolled in this study: seventeen patients with severe asthma (SA group), seventeen patients with mild asthma (MA group) and six controls with no asthma. Peripheral blood mononuclear cells (PBMC) were obtained and stimulated with Sm29 and Sm29TSP-2 in the presence or absence of Der p1. The expression of surface markers and cytokines on lymphocytes was evaluated by flow cytometry and the levels of IL-10 in the culture supernatant were determined by ELISA. RESULTS The addition of Sm29 and Sm29TSP-2 antigens to PBMC cultures from both groups of subjects with asthma stimulated with Der p1 reduced the frequency of CD4+CD25low cells whereas and increased frequency of CD4+CD25high population was observed compared to unstimulated cultures. Moreover, cultures stimulated with Sm29TSP-2 showed a reduction in the frequency of T cells expressing CD69, IFN-γ, TNF and TGF-β in the MA group and an increase in the frequency of CD4+TSLPR+ T cells in the SA group. The addition of Sm29 to the cultures reduced the frequency of CD4+CD69+ and CD4+IL-5+ T cells in all asthmatic groups, and reduced the frequency of CD4+ T cells expressing IL-13 in the MA group. The cultures stimulated with Sm29 and Sm29TSP-2 showed an increase in the level of IL-10 in the supernatants. CONCLUSION These results suggest that the addition of Sm29 and Sm29TSP-2 to the cells cultures from subjects with asthma reduced cell activation markers and altered the cytokine production pattern in a way that can potentialy control the inflammatory response associated with asthma.
Collapse
Affiliation(s)
| | - Jamille Souza Fernandes
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Diego Mota Lopes
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Lorena Santana Andrade
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sérgio Costa Oliveira
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT/CNPq), Salvador, Bahia, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerias, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT/CNPq), Salvador, Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
| | - Maria Ilma Araujo
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT/CNPq), Salvador, Bahia, Brazil; Escola Baiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Álvaro A Cruz
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; ProAR-Núcleo de Excelência em Asma, UFBA, Salvador, Bahia, Brazil
| | - Luciana Santos Cardoso
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT/CNPq), Salvador, Bahia, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFBA, Brazil.
| |
Collapse
|
43
|
Abstract
In allergic asthma, aeroallergen exposure of sensitized individuals mobilizes robust innate and adaptive airway immune responses, stimulating eosinophilic airway inflammation and the activation and infiltration of allergen-specific CD4(+) T cells into the airways. Allergen-specific CD4(+) T cells are thought to be central players in the asthmatic response as they specifically recognize the allergen and initiate and orchestrate the asthmatic inflammatory response. In this article, we briefly review the role of allergen-specific CD4(+) T cells in the pathogenesis of human allergic airway inflammation in allergic individuals, discuss the use of allergen-major histocompatibility complex class II tetramers to characterize allergen-specific CD4(+) T cells, and highlight current gaps in knowledge and directions for future research pertaining to the role of allergen-specific CD4(+) T cells in human asthma.
Collapse
|
44
|
Coomes SM, Kannan Y, Pelly VS, Entwistle LJ, Guidi R, Perez-Lloret J, Nikolov N, Müller W, Wilson MS. CD4 + Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol 2017; 10:150-161. [PMID: 27166557 DOI: 10.1038/mi.2016.47] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-10 (IL-10) is an important regulatory cytokine required to control allergy and asthma. IL-10-mediated regulation of T cell-mediated responses was previously thought to occur indirectly via antigen-presenting cells. However, IL-10 can act directly on regulatory T cells and T helper type 17 (Th17) cells. In the context of allergy, it is therefore unclear whether IL-10 can directly regulate T helper type 2 (Th2) cells and whether this is an important regulatory axis during allergic responses. We sought to determine whether IL-10 signaling in CD4+ Th2 cells was an important mechanism of immune regulation during airway allergy. We demonstrate that IL-10 directly limits Th2 cell differentiation and survival in vitro and in vivo. Ablation of IL-10 signaling in Th2 cells led to enhanced Th2 cell survival and exacerbated pulmonary inflammation in a murine model of house dust mite allergy. Mechanistically, IL-10R signaling regulated the expression of several genes in Th2 cells, including granzyme B. Indeed, IL-10 increased granzyme B expression in Th2 cells and led to increased Th2 cell death, identifying an IL-10-regulated granzyme B axis in Th2 cells controlling Th2 cell survival. This study provides clear evidence that IL-10 exerts direct effects on Th2 cells, regulating the survival of Th2 cells and severity of Th2-mediated allergic airway inflammation.
Collapse
Affiliation(s)
- S M Coomes
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - Y Kannan
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - V S Pelly
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - L J Entwistle
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - R Guidi
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - J Perez-Lloret
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - N Nikolov
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - W Müller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - M S Wilson
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
45
|
Oliveira SC, Figueiredo BC, Cardoso LS, Carvalho EM. A double edged sword: Schistosoma mansoni Sm29 regulates both Th1 and Th2 responses in inflammatory mucosal diseases. Mucosal Immunol 2016; 9:1366-1371. [PMID: 27554296 DOI: 10.1038/mi.2016.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil
| | - Barbara C Figueiredo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil
| | - Luciana S Cardoso
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
46
|
Cytokine production by PBMC and serum from allergic and non-allergic subjects following in vitro histamine stimulation to test fexofenadine and osthole anti-allergic properties. Eur J Pharmacol 2016; 791:763-772. [PMID: 27756601 DOI: 10.1016/j.ejphar.2016.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022]
Abstract
FXF is a third-generation antihistamine drug and osthole is assumed a natural antihistamine alternative. This paper compares peripheral blood mononuclear cell (PBMC) incubation with FXF and osthole, by studying FXF, osthole and histamine cytokine secretion in PBMC in vitro cultures. Mabtech kits determined the interleukins IL-1β, IL-4, IL-10, IL-13 and TNF-α. The influence of the above active substances on cytokine secretion in PBMC's and serum was assessed: cytokines were IL-1β, IL-4, IL-10, IL-13 and TNF-α; and cytokine levels secreted by untreated PBMCs in pure culture medium formed the absolute control (ctrl). We determined that osthole affects PBMC cytokine secretion to almost precisely the same extent as FXF (IL-1β, IL-4, IL-10 and TNF). In addition osthole had greater IL-13 blocking ability than FXF. Moreover, we observed significantly decreased IL-4 level in histamine/osthole theatment compared to histamine alone. Meanwhile, FXF not significantly decrease the level of IL-4 increased by histamine. This data indicates osthole's strong role in allergic inflamation. All results confirm our hypothesis that osthole is a natural histamine antagonist and therefore can be beneficially used in antihistamine treatment of conditions such as allergies.
Collapse
|
47
|
Li C, Jiang X, Luo M, Feng G, Sun Q, Chen Y. Mycobacterium vaccae Nebulization Can Protect against Asthma in Balb/c Mice by Regulating Th9 Expression. PLoS One 2016; 11:e0161164. [PMID: 27518187 PMCID: PMC4982628 DOI: 10.1371/journal.pone.0161164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. CD4(+) T-helper 9 (Th9) cells are closely linked to asthma, helping to regulate inflammation and immunity. Epidemiological studies showed that mycobacteria infections are negatively associated with asthma. Our previous research showed that inactivated Mycobacterium phlei nebulization alleviated the airway hyperresponsiveness and inflammation of asthma. However, the relationship between Th9 cells and mycobacteria remains unknown. Here, we evaluated the relationship between Mycobacterium vaccae nebulization and Th9 cells in asthmatic mice. Eighteen Balb/c mice were randomized into 3 groups of 6 mice each (normal control group, asthma control group, and nebulization asthma group [Neb. group]). The Neb. group was nebulized with M. vaccae one month before establishment of the asthmatic model with ovalbumin (OVA) sensitization, and the normal and asthma control groups were nebulized with phosphate-buffered saline. The hyperresponsiveness of the mouse airways was assessed using a non-invasive lung function machine. Lung airway inflammation was evaluated by hematoxylin and eosin and periodic acid-Schiff staining. Cytokine interlukin-9 (IL-9) concentration and OVA-specific IgE in the bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assays. The percentages of γδTCR+ CD3+, IL-9+CD3+, IL-10+CD3+ lymphocytes, and IL9+γδT and IL-10+γδT cells were detected by flow cytometry. The airway inflammation and concentration of IL-9 and OVA-specific IgE were significantly reduced in the Neb. group compared to the asthma control group. The Neb. group had lower airway hyperresponsiveness, percentages of γδTCR+CD3+ and IL-9+CD3+ lymphocytes, and IL9+γδT cells, and higher percentages of IL-10+CD3+ lymphocytes and IL-10+γδT cells compared to the asthma control group. Thus, mouse bronchial asthma could be prevented by M. vaccae nebulization. The mechanism could involve M. vaccae-mediated effects on induction of IL-9 secretion and suppression of IL-10 secretion from γδT cells. γδT cells showed prominent IL-10 expression, indicating that they possibly belong to the Th9 family.
Collapse
Affiliation(s)
- Chaoqian Li
- Department of Respiratory Medicine, Guangxi Medical College, Nanning, Guangxi, China
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| | - Mingjie Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangyi Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qixiang Sun
- The Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiping Chen
- Department of Geriatric Disease, The National Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
48
|
Belanger KK, Ameredes BT, Boldogh I, Aguilera-Aguirre L. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators Inflamm 2016; 2016:3762561. [PMID: 27524866 PMCID: PMC4976190 DOI: 10.1155/2016/3762561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.
Collapse
Affiliation(s)
- KarryAnne K. Belanger
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bill T. Ameredes
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
49
|
Vegran F, Martin F, Apetoh L, Ghiringhelli F. [Th9 cells: a new population of helper T cells]. Med Sci (Paris) 2016; 32:387-93. [PMID: 27137696 DOI: 10.1051/medsci/20163204017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Th9 cells are CD4 T helper cells characterized by their ability to produce IL-9 and IL-21. These cells are obtained from naive CD4(+) T cells cultured in the presence of TGF-β and IL-4. Thus their differentiation results from the balance between the signaling pathways induced by IL-4 in one hand and the one induced by TGF-β in the other hand. These cells are inflammatory cells and were first described in the context of atopic and autoimmune diseases in which they have a pathogenic role. They are also involved in the defense against parasite infections. Recently, some reports defined Th9 anticancer properties through their cytokine secretion. Indeed, their high secretion of IL-9 and IL-21 in the tumor bed contributes to their anticancer functions. These cytokines trigger the activation of dendritic cells, mast cells, natural killer cells, and CD8 T cells to mount an antitumor immune response.
Collapse
Affiliation(s)
- Frédérique Vegran
- Centre Georges François Leclerc, 1, rue du Professeur Marion, 21079 Dijon, France - Inserm, U866, faculté de médecine et de pharmacie, 7, boulevard Jeanne d'Arc, 21079 Dijon, France - Université de Bourgogne, faculté de médecine, 7, boulevard Jeanne d'Arc, 21079 Dijon, France
| | - François Martin
- Inserm, U866, faculté de médecine et de pharmacie, 7, boulevard Jeanne d'Arc, 21079 Dijon, France
| | - Lionel Apetoh
- Centre Georges François Leclerc, 1, rue du Professeur Marion, 21079 Dijon, France - Inserm, U866, faculté de médecine et de pharmacie, 7, boulevard Jeanne d'Arc, 21079 Dijon, France - Université de Bourgogne, faculté de médecine, 7, boulevard Jeanne d'Arc, 21079 Dijon, France
| | - François Ghiringhelli
- Centre Georges François Leclerc, 1, rue du Professeur Marion, 21079 Dijon, France - Inserm, U866, faculté de médecine et de pharmacie, 7, boulevard Jeanne d'Arc, 21079 Dijon, France - Université de Bourgogne, faculté de médecine, 7, boulevard Jeanne d'Arc, 21079 Dijon, France
| |
Collapse
|
50
|
The anti-inflammatory and pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on peripheral blood mononuclear cells from patients with severe asthma. Int Immunopharmacol 2016; 35:142-148. [PMID: 27044027 DOI: 10.1016/j.intimp.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Asthma is an inflammatory disease that is characterized by a predominance of eosinophils and/or neutrophils in the airways. In the resolution of inflammation, lipid mediators such as resolvin D1 (RvD1) and its epimer aspirin-triggered RvD1 (AT-RvD1) are produced and demonstrate anti-inflammatory and pro-resolution effects. In experimental models such as airway allergic inflammation induced by ovalbumin in mice, RvD1 and AT-RvD1 alleviate some of the most important phenotypes of asthma. Here, we demonstrated the effects of AT-RvD1 on peripheral blood mononuclear cells (PBMCs) from healthy individuals and patients with severe asthma stimulated with lipopolysaccharide (LPS) or Dermatophagoides pteronyssinus (DM). AT-RvD1 (100nM) reduced the concentration of TNF-α in PBMCs from healthy individuals and patients with severe asthma stimulated with LPS or DM. In addition, AT-RvD1 lowered the production of IL-10 only in PBMCs from patients with severe asthma stimulated with LPS. These effects were associated in part with decreasing NF-κB activation. Moreover, AT-RvD1 significantly increased phagocytosis of apoptotic neutrophils by monocytes from patients with severe asthma. In conclusion, AT-RvD1 demonstrated both anti-inflammatory and pro-resolution effects in PBMCs from patients with severe asthma and could become in the future an alternative treatment for asthma.
Collapse
|