1
|
Zhang X, Buckley C, Lee MD, Chalmers S, Wilson C, McCarron JG. Mitochondria regulate inositol triphosphate-mediated Ca 2+ release triggered by voltage-dependent Ca 2+ entry in resistance arteries. J Physiol 2025; 603:2959-2978. [PMID: 40320995 DOI: 10.1113/jp288022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/19/2025] [Indexed: 06/02/2025] Open
Abstract
An increase in cytoplasmic Ca2+ concentration activates multiple cellular activities, including cell division, metabolism, growth, contraction and death. In smooth muscle Ca2+ entry via voltage-dependent Ca2+ channels leads to a relatively uniform increase in cytoplasmic Ca2+ levels that facilitates co-ordinated contraction throughout the cell. However certain functions triggered by voltage-dependent Ca2+ channels require periodic, pulsatile Ca2+ changes. The mechanism by which Ca2+ entry through voltage-dependent channels supports both co-ordinated contraction and distinct cellular responses driven by pulsatile Ca2+ changes is unclear. Here in intact resistance arteries we show that Ca2+ entry via voltage-dependent Ca2+ channels evokes Ca2+ release via inositol triphosphate receptors (IP3Rs), generating repetitive Ca2+ oscillations and waves. We also show that mitochondria play a vital role in regulating Ca2+ signals evoked by voltage-dependent Ca2+ entry by selectively modulating Ca2+ release via IP3Rs. Depolarizing the mitochondrial membrane inhibits Ca2+ release from internal stores, reducing the overall signal-generated Ca2+ influx without altering the signal resulting from voltage-dependent Ca2+ entry. Notably neither Ca2+ entry via voltage-dependent Ca2+ channels nor Ca2+ release via IP3Rs alters mitochondrial location or mitochondrial membrane potential in intact smooth muscle cells. Collectively these results demonstrate that activation of voltage-dependent Ca2+ channels drives Ca2+ entry, which subsequently triggers Ca2+ release from the internal store in smooth muscle cells. Mitochondria selectively regulate this process by modulating IP3R-mediated amplification of Ca2+ signals, ensuring that different cellular responses are precisely controlled. KEY POINTS: In smooth muscle Ca2⁺ entry via voltage-dependent channels produces a uniform Ca2⁺ increase, enabling co-ordinated contraction in each cell. Certain functions, however, require large, pulsatile Ca2⁺ changes rather than a uniform increase. Using advanced imaging in intact arteries, we discovered that voltage-dependent Ca2⁺ entry triggers internal store Ca2⁺ release via IP₃ receptors, generating repetitive Ca2⁺ oscillations and waves. Mitochondria selectively modulate these signals by regulating only IP₃ receptor-mediated release; neither mitochondrial location nor membrane potential is altered by either type of Ca2+ signal. These findings demonstrate how voltage-dependent Ca2⁺ entry supports both co-ordinated contraction and pulsatile Ca2⁺-driven biological responses.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Trisolini L, Musio B, Teixeira B, Sgobba MN, Francavilla AL, Volpicella M, Guerra L, De Grassi A, Gallo V, Duarte IF, Pierri CL. Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics. Cells 2025; 14:367. [PMID: 40072095 PMCID: PMC11899725 DOI: 10.3390/cells14050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using 1H NMR metabolomics to identify metabolite markers linked to mitochondrial apoptotic pathways. BKA had minimal metabolic effects in RCC cells, suggesting its role in preserving mitochondrial function without significantly altering metabolic pathways. In contrast, STAU induced substantial metabolic reprogramming in RCC cells, disrupting energy production, redox balance, and biosynthesis, thereby triggering apoptotic pathways. The combined treatment of BKA and STAU primarily mirrored the effects of STAU alone, with BKA showing little capacity to counteract the pro-apoptotic effects. In non-cancerous HK2 cells, the metabolic alterations were far less pronounced, highlighting key differences in the metabolic responses of cancerous and non-cancerous cells. RCC cells displayed greater metabolic flexibility, while HK2 cells maintained a more regulated metabolic state. These findings emphasize the potential for targeting cancer-specific metabolic vulnerabilities while sparing non-cancerous cells, underscoring the value of metabolomics in understanding apoptotic and anti-apoptotic mechanisms. Future studies should validate these results in vivo and explore their potential for personalized treatment strategies.
Collapse
Affiliation(s)
- Lucia Trisolini
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, 70125 Bari, Italy; (B.M.); (V.G.)
| | - Beatriz Teixeira
- CICECO-Aveiro Institute of Materials and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Anna Lucia Francavilla
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy; (L.T.); (M.N.S.); (A.L.F.); (M.V.); (L.G.); (A.D.G.)
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, 70125 Bari, Italy; (B.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of the Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Iola F. Duarte
- CICECO-Aveiro Institute of Materials and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ciro Leonardo Pierri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
3
|
Ong E, Clottes P, Leon C, Guedouari H, Gallo-Bona N, Lo Grasso M, Motter L, Bolbos R, Ovize M, Nighogossian N, Wiart M, Paillard M. Mitochondria dysfunction, a potential cytoprotection target against ischemia-reperfusion injury in a mouse stroke model. Neurotherapeutics 2025; 22:e00549. [PMID: 39933968 PMCID: PMC12014409 DOI: 10.1016/j.neurot.2025.e00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
More than 50 % of patients undergoing mechanical thrombectomy (MT) for ischemic stroke have a poor functional outcome despite timely and successful angiographic reperfusion, highlighting the need for adjunctive treatments to reperfusion therapy. Mitochondria are key regulators of cell fate, by controlling cell bioenergetics via oxidative phosphorylation (OXPHOS) and cell death through the mitochondrial permeability transition pore (mPTP). Whether these two main mitochondrial functions are altered by reperfusion and could represent a new cytoprotective approach remains to be elucidated in mice. Swiss male mice underwent either permanent or transient middle cerebral artery occlusion (pMCAO or tMCAO), with neuroscore evaluation and multimodal imaging. The area at risk of necrosis was evaluated by per-occlusion dynamic contrast-enhanced ultrasound. Final infarct size was assessed at day 1 by MRI. Cortical mitochondrial isolation was subsequently performed to assess mPTP sensitivity by calcium retention capacity (CRC) and OXPHOS. A cytoprotective treatment targeting mitochondria, ciclosporine A (CsA), was tested in tMCAO, to mimick the clinical situation of patients treated with MT. Reperfusion after 60 min of ischemia improves neuroscores but does not significantly reduce infarct size or mitochondrial dysfunction compared to permanent ischemia. CsA treatment at reperfusion mitigates stroke outcome, decreases final infarct size and improves mitochondrial CRC and OXPHOS. Mitochondrial dysfunctions, i.e. reduced mPTP sensitivity and decreased oxygen consumption rates, were observed in pMCAO and tMCAO regardless of the reperfusion status. CsA improved mitochondrial functions when injected at reperfusion. These suggest that both mPTP opening and OXPHOS alterations are thus early but reversible hallmarks of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Elodie Ong
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Paul Clottes
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Christelle Leon
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Hala Guedouari
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Noelle Gallo-Bona
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Megane Lo Grasso
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Lucas Motter
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | - Michel Ovize
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Norbert Nighogossian
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Marlene Wiart
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France; CNRS, 69100 Villeurbanne, France
| | - Melanie Paillard
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France.
| |
Collapse
|
4
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Reshetnyak VI, Maev IV. Mechanism of formation and significance of antimitochondrial autoantibodies in the pathogenesis of primary biliary cholangitis. EXPLORATION OF IMMUNOLOGY 2024:624-639. [DOI: 10.37349/ei.2024.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic progressive liver disease associated with cholangiopathies. The detection of antimitochondrial autoantibodies (AMAs) plays an important role in the diagnosis of classical PBC. AMAs are formed against the antigenic component associated with the dihydrolipoyl transacetylase of pyruvate dehydrogenase complex (E2 PDC) localized on the inner membrane of mitochondria. The loss of immune tolerance of E2 PDC in PBC is thought to be the cause of the mechanism of AMA formation and immune-mediated destruction of biliary epithelial cells (BECs) of the small- and medium-sized intrahepatic bile ducts. E2 PDC is not only present in BECs, but is also abundant in the mitochondria of all nucleated cells. The question remains as to why E2 PDC of only small BECs is the target of autoimmune attack. There is no evidence that AMAs have a deleterious effect on BECs. New scientific data has emerged that explains the damage to BECs in PBC by the defect of the biliary bicarbonate (HCO3–) “umbrella” that protects BECs from the detergent action of bile acids under physiological conditions. Disruption of HCO3– production by BECs in PBC leads to changes in the pH of hepatic bile, accompanied by accumulation of bile acids in the small BECs. The detergent action of bile acids leads to damage of membrane structures of BECs and their apoptosis, development of ductulopenia, and intrahepatic cholestasis. For the first time, it has been suggested that under the influence of bile acids, the E2 PDC antigen may undergo conformational changes that alter its immunological properties. E2 PDC becomes a neoantigen that is recognized by the normal (“healthy”) immune system as a foreign antigen, leading to the production of AMAs. For the first time, the authors of this review provide an explanation for why only small BECs are damaged in PBC.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, 127473 Moscow, Russian Federation
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, 127473 Moscow, Russian Federation
| |
Collapse
|
6
|
Kim M, Han K, Choi G, Ahn S, Suh JS, Kim TJ. ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity. Anim Cells Syst (Seoul) 2024; 28:417-427. [PMID: 39220629 PMCID: PMC11363740 DOI: 10.1080/19768354.2024.2393811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium ions (Ca2+) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca2+ regulation through the mitochondria, which are crucial to Ca2+ homeostasis. We investigated how Ca2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca2+ signaling.
Collapse
Affiliation(s)
- Minji Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Cai T, Zhang B, Reddy E, Wu Y, Tang Y, Mondal I, Wang J, Ho WS, Lu RO, Wu Z. The mitochondrial stress-induced protein carboxyl-terminal alanine and threonine tailing (msiCAT-tailing) promotes glioblastoma tumorigenesis by modulating mitochondrial functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594447. [PMID: 38798583 PMCID: PMC11118334 DOI: 10.1101/2024.05.15.594447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The rapid and sustained proliferation in cancer cells requires accelerated protein synthesis. Accelerated protein synthesis and disordered cell metabolism in cancer cells greatly increase the risk of translation errors. ribosome-associated quality control (RQC) is a recently discovered mechanism for resolving ribosome collisions caused by frequent translation stalls. The role of the RQC pathway in cancer initiation and progression remains controversial and confusing. In this study, we investigated the pathogenic role of mitochondrial stress-induced protein carboxyl-terminal terminal alanine and threonine tailing (msiCAT-tailing) in glioblastoma (GBM), which is a specific RQC response to translational arrest on the outer mitochondrial membrane. We found that msiCAT-tailed mitochondrial proteins frequently exist in glioblastoma stem cells (GSCs). Ectopically expressed msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5α) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore (MPTP) formation/opening. These changes in mitochondrial properties confer resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells. Highlights The RQC pathway is disturbed in glioblastoma (GBM) cellsmsiCAT-tailing on ATP5α elevates mitochondrial membrane potential and inhibits MPTP openingmsiCAT-tailing on ATP5α inhibits drug-induced apoptosis in GBM cellsInhibition of msiCAT-tailing impedes overall growth of GBM cells.
Collapse
|
10
|
Stevens TL, Cohen HM, Garbincius JF, Elrod JW. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:500-514. [PMID: 39185387 PMCID: PMC11343476 DOI: 10.1038/s44161-024-00463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Zhu J, Chen H, Wu J, Li S, Lin W, Wang N, Bai L. Ferroptosis in Glaucoma: A Promising Avenue for Therapy. Adv Biol (Weinh) 2024; 8:e2300530. [PMID: 38411382 DOI: 10.1002/adbi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Glaucoma, a blind-leading disease largely since chronic pathological intraocular high pressure (ph-IOP). Hitherto, it is reckoned incurable for irreversible neural damage and challenges in managing IOP. Thus, it is significant to develop neuroprotective strategies. Ferroptosis, initially identified as an iron-dependent regulated death that triggers Fenton reactions and culminates in lipid peroxidation (LPO), has emerged as a focal point in multiple tumors and neurodegenerative diseases. Researches show that iron homeostasis play critical roles in the optic nerve (ON) and retinal ganglion cells (RGCs), suggesting targeted treatments could be effective. In glaucoma, apart from neural lesions, disrupted metal balance and increased oxidative stress in trabecular meshwork (TM) are observed. These disturbances lead to extracellular matrix excretion disorders, known as sclerotic mechanisms, resulting in refractory blockages. Importantly, oxidative stress, a significant downstream effect of ferroptosis, is also a key factor in cell senescence. It plays a crucial role in both the etiology and risk of glaucoma. Moreover, ferroptosis also induces non-infectious inflammation, which exacerbate glaucomatous injury. Therefore, the relevance of ferroptosis in glaucoma is extensive and multifaceted. In this review, the study delves into the current understanding of ferroptosis mechanisms in glaucoma, aiming to provide clues to inform clinical therapeutic practices.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hui Chen
- Department of Geriatrics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Sen Li
- Department of Spinal Surgery, Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu, 210008, China
| | - Wanying Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
12
|
Vishnu N, Venkatesan M, Madaris TR, Venkateswaran MK, Stanley K, Ramachandran K, Chidambaram A, Madesh AK, Yang W, Nair J, Narkunan M, Muthukumar T, Karanam V, Joseph LC, Le A, Osidele A, Aslam MI, Morrow JP, Malicdan MC, Stathopulos PB, Madesh M. ERMA (TMEM94) is a P-type ATPase transporter for Mg 2+ uptake in the endoplasmic reticulum. Mol Cell 2024; 84:1321-1337.e11. [PMID: 38513662 PMCID: PMC10997467 DOI: 10.1016/j.molcel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adhishree Chidambaram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Abitha K Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jyotsna Nair
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tharani Muthukumar
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Amy Le
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - M Imran Aslam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - May C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, and the Common Fund, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Yu C, Sautchuk R, Martinez J, Eliseev RA. Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis. J Biol Chem 2023; 299:105458. [PMID: 37949231 PMCID: PMC10716586 DOI: 10.1016/j.jbc.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.
Collapse
Affiliation(s)
- Chen Yu
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
14
|
Reshetnyak VI, Maev IV. New insights into the pathogenesis of primary biliary cholangitis asymptomatic stage. World J Gastroenterol 2023; 29:5292-5304. [PMID: 37899787 PMCID: PMC10600802 DOI: 10.3748/wjg.v29.i37.5292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults. Damage to cholangiocytes triggers the development of intrahepatic cholestasis, which progresses to cirrhosis in the terminal stage of the disease. Accumulating data indicate that damage to biliary epithelial cells [(BECs), cholangiocytes] is most likely associated with the intracellular accumulation of bile acids, which have potent detergent properties and damaging effects on cell membranes. The mechanisms underlying uncontrolled bile acid intake into BECs in PBC are associated with pH change in the bile duct lumen, which is controlled by the bicarbonate (HCO3-) buffer system "biliary HCO3- umbrella". The impaired production and entry of HCO3- from BECs into the bile duct lumen is due to epigenetic changes in expression of the X-linked microRNA 506. Based on the growing body of knowledge on the molecular mechanisms of cholangiocyte damage in patients with PBC, we propose a hypothesis explaining the pathogenesis of the first morphologic (ductulopenia), immunologic (antimitochondrial autoantibodies) and clinical (weakness, malaise, rapid fatigue) signs of the disease in the asymptomatic stage. This review focuses on the consideration of these mechanisms.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
15
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Endlicher R, Drahota Z, Štefková K, Červinková Z, Kučera O. The Mitochondrial Permeability Transition Pore-Current Knowledge of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its Functional State. Cells 2023; 12:1273. [PMID: 37174672 PMCID: PMC10177258 DOI: 10.3390/cells12091273] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.
Collapse
Affiliation(s)
- René Endlicher
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (R.E.); (Z.Č.)
- Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic;
| | - Zdeněk Drahota
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (R.E.); (Z.Č.)
- Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kateřina Štefková
- Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic;
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (R.E.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (R.E.); (Z.Č.)
| |
Collapse
|
17
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
18
|
Yoon Y, Lee H, Federico M, Sheu SS. Non-conventional mitochondrial permeability transition: Its regulation by mitochondrial dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148914. [PMID: 36063902 PMCID: PMC9729414 DOI: 10.1016/j.bbabio.2022.148914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This "non-conventional" MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.
Collapse
Affiliation(s)
- Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA.
| | - Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA
| | - Marilen Federico
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Lee JK, Rosales JL, Lee KY. Requirement for ER-mitochondria Ca 2+ transfer, ROS production and mPTP formation in L-asparaginase-induced apoptosis of acute lymphoblastic leukemia cells. Front Cell Dev Biol 2023; 11:1124164. [PMID: 36895789 PMCID: PMC9988955 DOI: 10.3389/fcell.2023.1124164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Acute lymphoblastic leukemia (aLL) is a malignant cancer in the blood and bone marrow characterized by rapid expansion of lymphoblasts. It is a common pediatric cancer and the principal basis of cancer death in children. Previously, we reported that L-asparaginase, a key component of acute lymphoblastic leukemia chemotherapy, causes IP3R-mediated ER Ca2+ release, which contributes to a fatal rise in [Ca2+]cyt, eliciting aLL cell apoptosis via upregulation of the Ca2+-regulated caspase pathway (Blood, 133, 2222-2232). However, the cellular events leading to the rise in [Ca2+]cyt following L-asparaginase-induced ER Ca2+ release remain obscure. Here, we show that in acute lymphoblastic leukemia cells, L-asparaginase causes mitochondrial permeability transition pore (mPTP) formation that is dependent on IP3R-mediated ER Ca2+ release. This is substantiated by the lack of L-asparaginase-induced ER Ca2+ release and loss of mitochondrial permeability transition pore formation in cells depleted of HAP1, a key component of the functional IP3R/HAP1/Htt ER Ca2+ channel. L-asparaginase induces ER Ca2+ transfer into mitochondria, which evokes an increase in reactive oxygen species (ROS) level. L-asparaginase-induced rise in mitochondrial Ca2+ and reactive oxygen species production cause mitochondrial permeability transition pore formation that then leads to an increase in [Ca2+]cyt. Such rise in [Ca2+]cyt is inhibited by Ruthenium red (RuR), an inhibitor of the mitochondrial calcium uniporter (MCU) that is required for mitochondrial Ca2+ uptake, and cyclosporine A (CsA), an mitochondrial permeability transition pore inhibitor. Blocking ER-mitochondria Ca2+ transfer, mitochondrial ROS production, and/or mitochondrial permeability transition pore formation inhibit L-asparaginase-induced apoptosis. Taken together, these findings fill in the gaps in our understanding of the Ca2+-mediated mechanisms behind L-asparaginase-induced apoptosis in acute lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Jung Kwon Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Jesusa L Rosales
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Chustecki JM, Etherington RD, Gibbs DJ, Johnston IG. Altered collective mitochondrial dynamics in the Arabidopsis msh1 mutant compromising organelle DNA maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5428-5439. [PMID: 35662332 PMCID: PMC9467644 DOI: 10.1093/jxb/erac250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 05/19/2023]
Abstract
Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective 'social' dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange-reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population.
Collapse
Affiliation(s)
| | | | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
21
|
Khmelinskii I, Makarov VI. Theoretical approaches used in the modelling of reversible and irreversible mitochondrial swelling in vitro. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:15-23. [PMID: 35447196 DOI: 10.1016/j.pbiomolbio.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Existing theoretical approaches were considered that allow modelling of mitochondrial swelling (MS) dynamics. Simple phenomenological kinetic models were reviewed. Simple and extended biophysical and bioenergetic models that ignore mechanical properties of inner mitochondrial membrane (IMM), and similar models that include these mechanical properties were also reviewed. Limitations of these models we considered, as regards correct modelling of MS dynamics. It was found that simple phenomenological kinetic models have significant limitations, due to dependence of the kinetic parameter values estimated by fitting of the experimental data on the experimental conditions. Additionally, such simple models provide no understanding of the detailed mechanisms behind the MS dynamics, nor of the dynamics of various system parameters during MS. Thus, biophysical and bioenergetic models ignoring IMM mechanical properties can't be used to model the transition between reversible and irreversible MS. However, simple and extended biophysical models that include IMM mechanical properties allow modelling the transition to irreversible swelling. These latter models are still limited due to significantly simplified description of biochemistry, compared to those of bioenergetic models. Finally, a strategy of model development is proposed, towards correct interpretation of the mitochondrial life cycle, including the effects of MS dynamics.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139, Faro, Portugal
| | - Vladimir I Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR, 00931-3343, USA.
| |
Collapse
|
22
|
Kempmann A, Gensch T, Offenhäusser A, Tihaa I, Maybeck V, Balfanz S, Baumann A. The Functional Characterization of GCaMP3.0 Variants Specifically Targeted to Subcellular Domains. Int J Mol Sci 2022; 23:ijms23126593. [PMID: 35743038 PMCID: PMC9223625 DOI: 10.3390/ijms23126593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) ions play a pivotal role in physiology and cellular signaling. The intracellular Ca2+ concentration ([Ca2+]i) is about three orders of magnitude lower than the extracellular concentration, resulting in a steep transmembrane concentration gradient. Thus, the spatial and the temporal dynamics of [Ca2+]i are ideally suited to modulate Ca2+-mediated cellular responses to external signals. A variety of highly sophisticated methods have been developed to gain insight into cellular Ca2+ dynamics. In addition to electrophysiological measurements and the application of synthetic dyes that change their fluorescent properties upon interaction with Ca2+, the introduction and the ongoing development of genetically encoded Ca2+ indicators (GECI) opened a new era to study Ca2+-driven processes in living cells and organisms. Here, we have focused on one well-established GECI, i.e., GCaMP3.0. We have systematically modified the protein with sequence motifs, allowing localization of the sensor in the nucleus, in the mitochondrial matrix, at the mitochondrial outer membrane, and at the plasma membrane. The individual variants and a cytosolic version of GCaMP3.0 were overexpressed and purified from E. coli cells to study their biophysical properties in solution. All versions were examined to monitor Ca2+ signaling in stably transfected cell lines and in primary cortical neurons transduced with recombinant Adeno-associated viruses (rAAV). In this comparative study, we provide evidence for a robust approach to reliably trace Ca2+ signals at the (sub)-cellular level with pronounced temporal resolution.
Collapse
Affiliation(s)
- Annika Kempmann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Irina Tihaa
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Vanessa Maybeck
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Sabine Balfanz
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Arnd Baumann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
- Correspondence: ; Tel.: +49-2461-614014
| |
Collapse
|
23
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
De Giorgi F, Uversky VN, Ichas F. α-Synuclein Fibrils as Penrose Machines: A Chameleon in the Gear. Biomolecules 2022; 12:494. [PMID: 35454083 PMCID: PMC9029340 DOI: 10.3390/biom12040494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here. By making a 30-year-jump in the early 90's, we evoke the studies performed by Peter Lansbury and his group in which α-Synuclein (α-Syn) was for the first time (i) compared to a prion; (ii) shown to contain a fibrillization-prone domain capable of seeding its own assembly into fibrils; (iii) identified as an intrinsically disordered protein (IDP), and which, in the early 2000s, (iv) was described by one of us as a protein chameleon. We use these temporally distant breakthroughs to propose that the combination of the chameleon nature of α-Syn with the rigid gear of the Penrose machine is sufficient to account for a phenomenon that is of current interest: the emergence and the spread of a variety of α-Syn fibril strains in α-Synucleinopathies.
Collapse
Affiliation(s)
- Francesca De Giorgi
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
25
|
Mitochondrial Ca 2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022; 23:ijms23063025. [PMID: 35328444 PMCID: PMC8954803 DOI: 10.3390/ijms23063025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.
Collapse
|
26
|
Attenuation of ischemia-reperfusion injury by intracoronary chelating agent administration. Sci Rep 2022; 12:2050. [PMID: 35136090 PMCID: PMC8825805 DOI: 10.1038/s41598-022-05479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Ischemia–reperfusion (IR) injury accelerates myocardial injury sustained during the myocardial ischemic period and thus abrogates the benefit of reperfusion therapy in patients with acute myocardial infarction. We investigated the efficacy of intracoronary ethylenediaminetetraacetic acid (EDTA) administration as an adjunctive treatment to coronary intervention to reduce IR injury in a swine model. We occluded the left anterior descending artery for 1 h. From the time of reperfusion, we infused 50 mL of EDTA-based chelating agent via the coronary artery in the EDTA group and normal saline in the control group. IR injury was identified by myocardial edema on echocardiography. Tetrazolium chloride assay revealed that the infarct size was significantly lower in the EDTA group than in the control group, and the salvage percentage was higher. Electron microscopy demonstrated that the mitochondrial loss in the cardiomyocytes of the infarcted area was significantly lower in the EDTA group than in the control group. Echocardiography after 4 weeks showed that the remodeling of the left ventricle was significantly less in the EDTA group than in the control group: end-diastolic dimension 38.8 ± 3.3 mm vs. 43.9 ± 3.7 mm (n = 10, p = 0.0089). Left ventricular ejection fraction was higher in the EDTA group (45.3 ± 10.3 vs. 34.4 ± 11.8, n = 10, respectively, p = 0.031). In a swine model, intracoronary administration of an EDTA chelating agent reduced infarct size, mitochondrial damage, and post-infarct remodeling. This result warrants further clinical study evaluating the efficacy of the EDTA chelating agent in patients with ST-segment elevation myocardial infarction.
Collapse
|
27
|
Khmelinskii I, Makarov VI. Mitochondrial ATP Synthesis Activated by Exciton Energy Transfer from Müller cell Intermediate Filaments. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Endlicher R, Drahota Z, Kučera O, Červinková Z. Age-Dependent Changes in the Function of Mitochondrial Membrane Permeability Transition Pore in Rat Liver Mitochondria. Physiol Res 2021. [DOI: 10.33549//physiolres.934734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.
Collapse
Affiliation(s)
| | | | | | - Z. Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
29
|
Mitochondrial Phenotypes in Parkinson's Diseases-A Focus on Human iPSC-Derived Dopaminergic Neurons. Cells 2021; 10:cells10123436. [PMID: 34943944 PMCID: PMC8699816 DOI: 10.3390/cells10123436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Established disease models have helped unravel the mechanistic underpinnings of pathological phenotypes in Parkinson’s disease (PD), the second most common neurodegenerative disorder. However, these discoveries have been limited to relatively simple cellular systems and animal models, which typically manifest with incomplete or imperfect recapitulation of disease phenotypes. The advent of induced pluripotent stem cells (iPSCs) has provided a powerful scientific tool for investigating the underlying molecular mechanisms of both familial and sporadic PD within disease-relevant cell types and patient-specific genetic backgrounds. Overwhelming evidence supports mitochondrial dysfunction as a central feature in PD pathophysiology, and iPSC-based neuronal models have expanded our understanding of mitochondrial dynamics in the development and progression of this devastating disorder. The present review provides a comprehensive assessment of mitochondrial phenotypes reported in iPSC-derived neurons generated from PD patients’ somatic cells, with an emphasis on the role of mitochondrial respiration, morphology, and trafficking, as well as mitophagy and calcium handling in health and disease. Furthermore, we summarize the distinguishing characteristics of vulnerable midbrain dopaminergic neurons in PD and report the unique advantages and challenges of iPSC disease modeling at present, and for future mechanistic and therapeutic applications.
Collapse
|
30
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Effects of Metformin on Spontaneous Ca 2+ Signals in Cultured Microglia Cells under Normoxic and Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms22179493. [PMID: 34502402 PMCID: PMC8430509 DOI: 10.3390/ijms22179493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.
Collapse
|
32
|
Khmelinskii I, Makarov V. Reversible and irreversible mitochondrial swelling in vitro. Biophys Chem 2021; 278:106668. [PMID: 34418677 DOI: 10.1016/j.bpc.2021.106668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Mitochondrial activity as regards ATP production strongly depends on mitochondrial swelling (MS) mode. Therefore, this work analyzes reversible and irreversible MS using a detailed biophysical model. The reported model includes mechanical properties of the inner mitochondrial membrane (IMM). The model describes MS dynamics for spherically symmetric, axisymmetric ellipsoidal and general ellipsoidal mitochondria. Mechanical stretching properties of the IMM were described by a second-rank rigidity tensor. The tensor components were estimated by fitting to the earlier reported results of in vitro experiments. The IMM rigidity constant of ca. 0.008 dyn/nm was obtained for linear deformations. The model also included membrane bending effects, which were small compared to those of membrane stretching. The model was also tested by simulation of the earlier reported experimental data and of the system dynamics at different initial conditions, predicting the system behavior. The transition criteria from reversible to irreversible swelling were determined and tested. The presently developed model is applicable directly to the analysis of in vitro experimental data, while additional improvements are necessary before it could be used to describe mitochondrial swelling in vivo. The reported theoretical model also provides an idea of physically consistent mechanism for the permeability transport pore (PTP) opening, which depends on the IMM stretching stress. In the current study, this idea is discussed briefly, but a detailed theoretical analysis of these ideas will be performed later. The currently developed model provides new understanding of the detailed MS mechanism and of the conditions for the transition between reversible and irreversible MS modes. On the other hand, the current model provides useful mathematical tools, that may be successfully used in mitochondrial biophysics research, and also in other applications, predicting the behavior of mitochondria in different conditions of the surrounding media in vitro or cellular cyto(sarco)plasm in vivo. These mathematical tools are based on real biophysical processes occurring in mitochondria. Thus, we note a significant progress in the theoretical approach, which may be used in real biological systems, compared to the earlier reported models. Significance of this study derives from inclusion of IMM mechanical properties, which directly impact the reversible and irreversible mitochondrial swelling dynamics. Reversible swelling corresponds to reversible IMM deformations, while irreversible swelling corresponds to irreversible deformations, with eventual membrane disruption. The IMM mechanical properties are directly dependent on the membrane biochemical composition and structure. The IMM deformationas are induced by osmotic pressure created by the ionic/neutral solute imbalance between the mitochondrial matrix media and the bulk solution in vitro, or cyto(sarco)plasm in vivo. The novelty of the reported model is in the biophysical mechanism detailing ionic and neutral solute transport for a large number of solutes, which were not taken into account in the earlier reported biophysical models of MS. Therefore, the reported model allows understanding response of mitochondria to the changes of initial concentration(s) of any of the solute(s) included in the model. Note that the values of all of the model parameters and kinetic constants have been estimated and the resulting complete model may be used for quantitative analysis of mitochondrial swelling dynamics in conditions of real in vitro experiments.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139 Faro, Portugal
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA.
| |
Collapse
|
33
|
Structural characterization of the mitochondrial Ca 2+ uniporter provides insights into Ca 2+ uptake and regulation. iScience 2021; 24:102895. [PMID: 34401674 PMCID: PMC8353469 DOI: 10.1016/j.isci.2021.102895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial uniporter is a Ca2+-selective ion-conducting channel in the inner mitochondrial membrane that is involved in various cellular processes. The components of this uniporter, including the pore-forming membrane subunit MCU and the modulatory subunits MCUb, EMRE, MICU1, and MICU2, have been identified in recent years. Previously, extensive studies revealed various aspects of uniporter activities and proposed multiple regulatory models of mitochondrial Ca2+ uptake. Recently, the individual auxiliary components of the uniporter and its holocomplex have been structurally characterized, providing the first insight into the component structures and their spatial relationship within the context of the uniporter. Here, we review recent uniporter structural studies in an attempt to establish an architectural framework, elucidating the mechanism that governs mitochondrial Ca2+ uptake and regulation, and to address some apparent controversies. This information could facilitate further characterization of mitochondrial Ca2+ permeation and a better understanding of uniporter-related disease conditions. The uniporter contains multiple subunits regulating various cellular processes Significant structural progresses have been made for the holo-complex of uniporter The holo-complex structures have inspired to propose several regulatory models
Collapse
|
34
|
Li A, Li X, Yi J, Ma J, Zhou J. Butyrate Feeding Reverses CypD-Related Mitoflash Phenotypes in Mouse Myofibers. Int J Mol Sci 2021; 22:7412. [PMID: 34299032 PMCID: PMC8304904 DOI: 10.3390/ijms22147412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitoflashes are spontaneous transients of the biosensor mt-cpYFP. In cardiomyocytes, mitoflashes are associated with the cyclophilin D (CypD) mediated opening of mitochondrial permeability transition pore (mPTP), while in skeletal muscle they are considered hallmarks of mitochondrial respiration burst under physiological conditions. Here, we evaluated the potential association between mitoflashes and the mPTP opening at different CypD levels and phosphorylation status by generating three CypD derived fusion constructs with a red shifted, pH stable Ca2+ sensor jRCaMP1b. We observed perinuclear mitochondrial Ca2+ efflux accompanying mitoflashes in CypD and CypDS42A (a phosphor-resistant mutation at Serine 42) overexpressed myofibers but not the control myofibers expressing the mitochondria-targeting sequence of CypD (CypDN30). Assisted by a newly developed analysis program, we identified shorter, more frequent mitoflash activities occurring over larger areas in CypD and CypDS42A overexpressed myofibers than the control CypDN30 myofibers. These observations provide an association between the elevated CypD expression and increased mitoflash activities in hindlimb muscles in an amyotrophic lateral sclerosis (ALS) mouse model previously observed. More importantly, feeding the mice with sodium butyrate reversed the CypD-associated mitoflash phenotypes and protected against ectopic upregulation of CypD, unveiling a novel molecular mechanism underlying butyrate mediated alleviation of ALS progression in the mouse model.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA; (X.L.); (J.Y.)
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA; (X.L.); (J.Y.)
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA; (X.L.); (J.Y.)
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA;
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA; (X.L.); (J.Y.)
| |
Collapse
|
35
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
36
|
Andreyev AY, Kushnareva YE, Starkova NN, Starkov AA. Metabolic ROS Signaling: To Immunity and Beyond. BIOCHEMISTRY (MOSCOW) 2021; 85:1650-1667. [PMID: 33705302 PMCID: PMC7768995 DOI: 10.1134/s0006297920120160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a critical determinant of immune cell functionality. Immunometabolism, by definition, is a multidisciplinary area of immunology research that integrates the knowledge of energy transduction mechanisms and biochemical pathways. An important concept in the field is metabolic switch, a transition of immune cells upon activation to preferential utilization of select catabolic pathways for their energy needs. Mitochondria are not inert in this process and contribute to the metabolic adaptation by different mechanisms which include increasing ATP production to match dynamic bioenergetic demands and serving as a signaling platform. The latter involves generation of reactive oxygen species (ROS), one of the most intensively studied mitochondrial processes. While the role of mitochondrial ROS in the context of oxidative stress is well established, ROS signaling in immunity is an emerging and quickly changing field. In this review, we discuss ROS signaling and immunometabolism concepts from the standpoint of bioenergetics. We also provide a critical insight into the methodology for ROS assessment, outlining current challenges in the field. Finally, based on our analysis of the literature data, we hypothesize that regulatory ROS production, as opposed to oxidative stress, is controlled by mitochondrial biogenesis rather than metabolic switches.
Collapse
Affiliation(s)
- A Y Andreyev
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Y E Kushnareva
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - N N Starkova
- State University of New York, Maritime College, New York, NY 10465, USA.
| | - A A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
37
|
Mitochondrial Dysfunction and Permeability Transition in Neonatal Brain and Lung Injuries. Cells 2021; 10:cells10030569. [PMID: 33807810 PMCID: PMC7999701 DOI: 10.3390/cells10030569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
This review discusses the potential mechanistic role of abnormally elevated mitochondrial proton leak and mitochondrial bioenergetic dysfunction in the pathogenesis of neonatal brain and lung injuries associated with premature birth. Providing supporting evidence, we hypothesized that mitochondrial dysfunction contributes to postnatal alveolar developmental arrest in bronchopulmonary dysplasia (BPD) and cerebral myelination failure in diffuse white matter injury (WMI). This review also analyzes data on mitochondrial dysfunction triggered by activation of mitochondrial permeability transition pore(s) (mPTP) during the evolution of perinatal hypoxic-ischemic encephalopathy. While the still cryptic molecular identity of mPTP continues to be a subject for extensive basic science research efforts, the translational significance of mitochondrial proton leak received less scientific attention, especially in diseases of the developing organs. This review is focused on the potential mechanistic relevance of mPTP and mitochondrial dysfunction to neonatal diseases driven by developmental failure of organ maturation or by acute ischemia-reperfusion insult during development.
Collapse
|
38
|
Márta K, Hasan P, Rodríguez-Prados M, Paillard M, Hajnóczky G. Pharmacological inhibition of the mitochondrial Ca 2+ uniporter: Relevance for pathophysiology and human therapy. J Mol Cell Cardiol 2021; 151:135-144. [PMID: 33035551 PMCID: PMC7880870 DOI: 10.1016/j.yjmcc.2020.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Mitochondrial Ca2+ uptake has long been considered crucial for meeting the fluctuating energy demands of cells in the heart and other tissues. Increases in mitochondrial matrix [Ca2+] drive mitochondrial ATP production via stimulation of Ca2+-sensitive dehydrogenases. Mitochondria-targeted sensors have revealed mitochondrial matrix [Ca2+] rises that closely follow the cytoplasmic [Ca2+] signals in many paradigms. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter (mtCU). Pharmacological manipulation of the mtCU is potentially key to understanding its physiological significance, but no specific, cell-permeable inhibitors were identified. In the past decade, as the molecular identity of the mtCU was brought to light, efforts have focused on genetic targeting. However, in the cells/animals that are able to survive impaired mtCU function, robust compensatory changes were found in the mtCU as well as other mechanisms. Thus, the discovery, through chemical library screens on normal and mtCU-deficient cells, of new small-molecule inhibitors with improved cell permeability and specificity might offer a better chance to test the relevance of mitochondrial Ca2+ uptake. Success with the development of small molecule mtCU inhibitors is also expected to have clinical impact, considering the growing evidence for the role of mitochondrial Ca2+ uptake in a variety of diseases, including heart attack, stroke and various neurodegenerative disorders. Here, we review the progress in pharmacological targeting of mtCU and illustrate the challenges in this field using data obtained with MCU-i11, a new small molecule inhibitor.
Collapse
Affiliation(s)
- Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Prottoy Hasan
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Macarena Rodríguez-Prados
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Univ-Lyon, CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, HCL, 69500 Bron, France
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
39
|
Koushi M, Asakai R. Bisindolylpyrrole Induces a Cpr3- and Porin1/2-Dependent Transition in Yeast Mitochondrial Permeability in a Low Conductance State via the AACs-Associated Pore. Int J Mol Sci 2021; 22:ijms22031212. [PMID: 33530556 PMCID: PMC7865566 DOI: 10.3390/ijms22031212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although the mitochondrial permeability transition pore (PTP) is presumably formed by either ATP synthase or the ATP/ADP carrier (AAC), little is known about their differential roles in PTP activation. We explored the role of AAC and ATP synthase in PTP formation in Saccharomyces cerevisiae using bisindolylpyrrole (BP), an activator of the mammalian PTP. The yeast mitochondrial membrane potential, as indicated by tetramethylrhodamine methyl ester signals, dissipated over 2–4 h after treatment of cells with 5 μM BP, which was sensitive to cyclosporin A (CsA) and Cpr3 deficiency and blocked by porin1/2 deficiency. The BP-induced depolarization was inhibited by a specific AAC inhibitor, bongkrekate, and consistently blocked in a yeast strain lacking all three AACs, while it was not affected in the strain with defective ATP synthase dimerization, suggesting the involvement of an AAC-associated pore. Upon BP treatment, isolated yeast mitochondria underwent CsA- and bongkrekate-sensitive depolarization without affecting the mitochondrial calcein signals, indicating the induction of a low conductance channel. These data suggest that, upon BP treatment, yeast can form a porin1/2- and Cpr3-regulated PTP, which is mediated by AACs but not by ATP synthase dimers. This implies that yeast may be an excellent tool for the screening of PTP modulators.
Collapse
Affiliation(s)
| | - Rei Asakai
- Correspondence: ; Tel.: +81-475-53-4588; Fax: +81-475-53-4556
| |
Collapse
|
40
|
Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria. Int J Mol Sci 2020; 22:ijms22010363. [PMID: 33396378 PMCID: PMC7795579 DOI: 10.3390/ijms22010363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
Collapse
|
41
|
Faizan MI, Ahmad T. Altered mitochondrial calcium handling and cell death by necroptosis: An emerging paradigm. Mitochondrion 2020; 57:47-62. [PMID: 33340710 DOI: 10.1016/j.mito.2020.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The classical necroptosis signaling is mediated by death receptors (DRs) that work in synergy with traditional caspase inhibitory signals. Currently, potential therapeutic molecules are in various phases of clinical trials for a spectrum of pathological conditions associated with necroptosis. However, a non-classical model of necroptosis has also emerged over the last decade with a relatively unexplored molecular mechanism. Although in vitro studies and preclinical models have shown its close association with mitochondrial dysfunction (mito-dysfunction), contradictory reports have emerged which complicate its definitiveness. Though impaired mitochondrial calcium ([Ca2+]m) handling is established in necrotic cell death, how this interplay regulates necroptosis is yet to be elucidated. Taking these questions into consideration, we have discussed various molecular aspects of necroptosis with the emerging role of mito-dysfunction. Based on the central role of altered [Ca2+]m handling in mito-dysfunction mediated necroptosis, we have provided a comprehensive molecular insight into this emerging paradigm. Potential reasons for the contradictory findings regarding the role of mito-dysfunction in necroptosis in general and mitochondrial-dependent necroptosis in specific are discussed. We also provide insights into the current understanding of how [Ca2+]m can be a critical determinant in deciding the cell fate under certain pathological conditions, while under others it may be dispensable. Lastly, we have highlighted the key molecular targets which have a direct implication for therapeutic intervention in conditions that are associated with impaired [Ca2+]m handling and cell death by necroptosis.
Collapse
Affiliation(s)
- Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India.
| |
Collapse
|
42
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
43
|
Qi H, Xu G, Peng XL, Li X, Shuai J, Xu R. Roles of four feedback loops in mitochondrial permeability transition pore opening induced by Ca^{2+} and reactive oxygen species. Phys Rev E 2020; 102:062422. [PMID: 33466063 DOI: 10.1103/physreve.102.062422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/04/2020] [Indexed: 11/07/2022]
Abstract
Transient or sustained permeability transition pore (PTP) opening is important in normal physiology or cell death, respectively. These are closely linked to Ca^{2+} and reactive oxygen species (ROS). The entry of Ca^{2+} into mitochondria regulates ROS production, and both Ca^{2+} and ROS trigger PTP opening. In addition to this feedforward loop, there exist four feedback loops in the Ca^{2+}-ROS-PTP system. ROS promotes Ca^{2+} entering (F1) and induces further ROS generation (F2), forming two positive feedback loops. PTP opening results in the efflux of Ca^{2+} (F3) and ROS (F4) from the mitochondria, forming two negative feedback loops. Owing to these complexities, we construct a mathematical model to dissect the roles of these feedback loops in the dynamics of PTP opening. The qualitative agreement between simulation results and recent experimental observations supports our hypothesis that under physiological conditions the PTP opens in an oscillatory state, while under pathological conditions it opens in a high steady state. We clarify that the negative feedback loops are responsible for producing oscillations, wherein F3 plays a more prominent role than F4; whereas the positive feedback loops are beneficial for maintaining oscillation robustness, wherein F1 has a more dominant role than F2. Furthermore, we manifest that the proper increase in negative feedback strength or decrease in positive feedback strength not only facilitates the occurrence of oscillations and thus protects the system against a high steady state, but also assists in lowering the oscillation peak. This study may provide potential therapeutic strategies in treating neurodegenerative diseases due to PTP dysfunction.
Collapse
Affiliation(s)
- Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| | - Guoping Xu
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| | - Xiao-Long Peng
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| | - Xiang Li
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| | - Jianwei Shuai
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Rui Xu
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
44
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
45
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
46
|
Koushi M, Aoyama Y, Kamei Y, Asakai R. Bisindolylpyrrole triggers transient mitochondrial permeability transitions to cause apoptosis in a VDAC1/2 and cyclophilin D-dependent manner via the ANT-associated pore. Sci Rep 2020; 10:16751. [PMID: 33046783 PMCID: PMC7552391 DOI: 10.1038/s41598-020-73667-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Bisindolylpyrrole at 0.1 μM is cytoprotective in 2% FBS that is counteracted by cyclosporin-A (CsA), an inhibitor of cyclophilin-D (CypD). We hypothesized that the cytoprotective effect might be due to transient mitochondrial permeability transition (tPT). This study tested the hypothesis that bisindolylpyrrole can trigger tPT extensively, thereby leading to cell death under certain conditions. Indeed, CsA-sensitive tPT-mediated apoptosis could be induced by bisindolylpyrrole at > 5 μM in HeLa cells cultured in 0.1% FBS, depending on CypD and VDAC1/2, as shown by siRNA knockdown experiments. Rat liver mitochondria also underwent swelling in response to bisindolylpyrrole, which proceeded at a slower rate than Ca2+-induced swelling, and which was blocked by the VDAC inhibitor tubulin and the ANT inhibitor bongkrekate, indicating the involvement of the ANT-associated, smaller pore. We examined why 0.1% FBS is a prerequisite for apoptosis and found that apoptosis is blocked by PKC activation, which is counteracted by the overexpressed defective PKCε. In mitochondrial suspensions, bisindolylpyrrole triggered CsA-sensitive swelling, which was suppressed selectively by pretreatment with PKCε, but not in the co-presence of tubulin. These data suggest that upon PKC inactivation the cytoprotective compound bisindolylpyrrole can induce prolonged tPT causing apoptosis in a CypD-dependent manner through the VDAC1/2-regulated ANT-associated pore.
Collapse
Affiliation(s)
- Masami Koushi
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yasunori Aoyama
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yoshiko Kamei
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Rei Asakai
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan.
| |
Collapse
|
47
|
Neginskaya MA, Strubbe JO, Amodeo GF, West BA, Yakar S, Bazil JN, Pavlov EV. The very low number of calcium-induced permeability transition pores in the single mitochondrion. J Gen Physiol 2020; 152:e202012631. [PMID: 32810269 PMCID: PMC7537349 DOI: 10.1085/jgp.202012631] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial permeability transition (PT) is a phenomenon of stress-induced increase in nonspecific permeability of the mitochondrial inner membrane that leads to disruption of oxidative phosphorylation and cell death. Quantitative measurement of the membrane permeability increase during PT is critically important for understanding the PT's impact on mitochondrial function. The elementary unit of PT is a PT pore (PTP), a single channel presumably formed by either ATP synthase or adenine nucleotide translocator (ANT). It is not known how many channels are open in a single mitochondrion during PT, which makes it difficult to quantitatively estimate the overall degree of membrane permeability. Here, we used wide-field microscopy to record mitochondrial swelling and quantitatively measure rates of single-mitochondrion volume increase during PT-induced high-amplitude swelling. PT was quantified by calculating the rates of water flux responsible for measured volume changes. The total water flux through the mitochondrial membrane of a single mitochondrion during PT was in the range of (2.5 ± 0.4) × 10-17 kg/s for swelling in 2 mM Ca2+ and (1.1 ± 0.2) × 10-17 kg/s for swelling in 200 µM Ca2+. Under these experimental conditions, a single PTP channel with ionic conductance of 1.5 nS could allow passage of water at the rate of 0.65 × 10-17 kg/s. Thus, we estimate the integral ionic conductance of the whole mitochondrion during PT to be 5.9 ± 0.9 nS for 2 mM concentration of Ca2+ and 2.6 ± 0.4 nS for 200 µM of Ca2+. The number of PTPs per mitochondrion ranged from one to nine. Due to the uncertainties in PTP structure and model parameters, PTP count results may be slightly underestimated. However, taking into account that each mitochondrion has ∼15,000 copies of ATP synthases and ANTs, our data imply that PTP activation is a rare event that occurs only in a small subpopulation of these proteins.
Collapse
Affiliation(s)
- Maria A. Neginskaya
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY
| | - Jasiel O. Strubbe
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Giuseppe F. Amodeo
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY
| | - Benjamin A. West
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Shoshana Yakar
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY
| |
Collapse
|
48
|
Niatsetskaya Z, Sosunov S, Stepanova A, Goldman J, Galkin A, Neginskaya M, Pavlov E, Ten V. Cyclophilin D-dependent oligodendrocyte mitochondrial ion leak contributes to neonatal white matter injury. J Clin Invest 2020; 130:5536-5550. [PMID: 32925170 PMCID: PMC7524474 DOI: 10.1172/jci133082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Postnatal failure of oligodendrocyte maturation has been proposed as a cellular mechanism of diffuse white matter injury (WMI) in premature infants. However, the molecular mechanisms for oligodendrocyte maturational failure remain unclear. In neonatal mice and cultured differentiating oligodendrocytes, sublethal intermittent hypoxic (IH) stress activated cyclophilin D-dependent mitochondrial proton leak and uncoupled mitochondrial respiration, leading to transient bioenergetic stress. This was associated with development of diffuse WMI: poor oligodendrocyte maturation, diffuse axonal hypomyelination, and permanent sensorimotor deficit. In normoxic mice and oligodendrocytes, exposure to a mitochondrial uncoupler recapitulated the phenotype of WMI, supporting the detrimental role of mitochondrial uncoupling in the pathogenesis of WMI. Compared with WT mice, cyclophilin D-knockout littermates did not develop bioenergetic stress in response to IH challenge and fully preserved oligodendrocyte maturation, axonal myelination, and neurofunction. Our study identified the cyclophilin D-dependent mitochondrial proton leak and uncoupling as a potentially novel subcellular mechanism for the maturational failure of oligodendrocytes and offers a potential therapeutic target for prevention of diffuse WMI in premature infants experiencing chronic IH stress.
Collapse
Affiliation(s)
| | | | | | - James Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Maria Neginskaya
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | | |
Collapse
|
49
|
Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release. Sci Rep 2020; 10:15758. [PMID: 32978406 PMCID: PMC7519669 DOI: 10.1038/s41598-020-71308-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial network of cardiac cells is finely tuned for ATP delivery to sites of energy demand; however, emergent phenomena, such as mitochondrial transmembrane potential oscillations or propagating waves of depolarization have been observed under metabolic stress. While regenerative signaling by reactive oxygen species (ROS)-induced ROS release (RIRR) has been suggested as a potential trigger, it is unknown how it could lead to widespread responses. Here, we present a novel computational model of RIRR transmission that explains the mechanisms of this phenomenon. The results reveal that superoxide mediates neighbor-neighbor activation of energy-dissipating ion channels, while hydrogen peroxide distributes oxidative stress to sensitize the network to mitochondrial criticality. The findings demonstrate the feasibility of RIRR as a synchronizing factor across the dimensions of the adult heart cell and illustrate how a cascade of failures at the organellar level can scale to impact cell and organ level functions of the heart.
Collapse
|
50
|
Oropeza-Almazán Y, Blatter LA. Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes. Am J Physiol Heart Circ Physiol 2020; 319:H873-H881. [PMID: 32857593 DOI: 10.1152/ajpheart.00375.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac alternans, defined as beat-to-beat alternations in action potential duration, cytosolic Ca transient (CaT) amplitude, and cardiac contraction is associated with atrial fibrillation (AF) and sudden cardiac death. At the cellular level, cardiac alternans is linked to abnormal intracellular calcium handling during excitation-contraction coupling. We investigated how pharmacological activation or inhibition of cytosolic Ca sequestration via mitochondrial Ca uptake and mitochondrial Ca retention affects the occurrence of pacing-induced CaT alternans in isolated rabbit atrial myocytes. Cytosolic CaTs were recorded using Fluo-4 fluorescence microscopy. Alternans was quantified as the alternans ratio (AR = 1 - CaTsmall/CaTlarge, where CaTsmall and CaTlarge are the amplitudes of the small and large CaTs of a pair of alternating CaTs). Inhibition of mitochondrial Ca sequestration via mitochondrial Ca uniporter complex (MCUC) with Ru360 enhanced the severity of CaT alternans (AR increase) and lowered the pacing frequency threshold for alternans. In contrast, stimulation of MCUC mediated mitochondrial Ca uptake with spermine-rescued alternans (AR decrease) and increased the alternans pacing threshold. Direct measurement of mitochondrial [Ca] in membrane permeabilized myocytes with Fluo-4 loaded mitochondria revealed that spermine enhanced and accelerated mitochondrial Ca uptake. Stimulation of mitochondrial Ca retention by preventing mitochondrial Ca efflux through the mitochondrial permeability transition pore with cyclosporin A also protected from alternans and increased the alternans pacing threshold. Pharmacological manipulation of MCUC activity did not affect sarcoplasmic reticulum Ca load. Our results suggest that activation of Ca sequestration by mitochondria protects from CaT alternans and could be a potential therapeutic target for cardiac alternans and AF prevention.NEW & NOTEWORTHY This study provides conclusive evidence that mitochondrial Ca uptake and retention protects from Ca alternans, whereas uptake inhibition enhances Ca alternans. The data suggest pharmacological mitochondrial Ca cycling modulation as a potential therapeutic strategy for alternans-related cardiac arrhythmia prevention.
Collapse
Affiliation(s)
| | - Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|