1
|
Akter R, Afrose A, Sharmin S, Rezwan R, Rahman MR, Neelotpol S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother 2022; 153:113285. [PMID: 35728355 DOI: 10.1016/j.biopha.2022.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
Childhood obesity accounts for several psychosocial and clinical consequences. Psychosocial consequences include lower self-esteem, social isolation, poor academic achievement, peer problems, and depression, whereas clinical consequences are cardiovascular diseases, type 2 diabetes, dyslipidemia, cancer, autoimmune diseases, girls early polycystic ovarian syndrome (PCOS), asthma, bone deformities, etc. A growing number of studies have uncovered the association of childhood obesity and its consequences with vitamin-D (vit-D) deficiency and vitamin-D receptor (VDR) gene polymorphisms such as single nucleotide polymorphisms (SNPs), e.g., TaqI, BsmI, ApaI, FokI, and Cdx2. Considering the impact of vit-D deficiency and VDR gene polymorphisms, identifying associated factors and risk groups linked to lower serum vit-D levels and prevention of obesity-related syndromes in children is of utmost importance. Previously published review articles mainly focused on the association of vit-D deficiency with obesity or other non-communicable diseases in children. The nature of the correlation between vit-D deficiency and VDR gene polymorphisms with obesity in children is yet to be clarified. Therefore, this review attempts to delineate the association of obesity with these two factors by identifying the molecular mechanism of the relationship.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Shahana Sharmin
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Rifat Rezwan
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | |
Collapse
|
2
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
3
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
4
|
Sanz MA, Barragán E. History of Acute Promyelocytic Leukemia. Clin Hematol Int 2021; 3:142-152. [PMID: 34938986 PMCID: PMC8690702 DOI: 10.2991/chi.k.210703.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, we discuss the history of acute promyelocytic leukemia (APL) from the pre-therapeutic era, which began after its recognition by Hillestad in 1947 as a nosological entity, to the present day. It is a paradigmatic history that has transformed the “most malignant leukemia form” into the most curable one. The identification of a balanced reciprocal translocation between chromosomes 15 and 17, resulting in fusion between the promyelocytic leukemia gene and the retinoic acid receptor alpha, has been crucial in understanding the mechanisms of leukemogenesis, and responsible for the peculiar response to targeted therapy with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). We review the milestones that marked successive therapeutic advances, beginning with the introduction of the first successful chemotherapy in the early 1970s, followed by a subsequent incorporation of ATRA and ATO in the late 1980s and early 1990s which have revolutionized the treatment of this disease. Over the past two decades, treatment optimization has relied on the combination of ATRA, ATO, and chemotherapy according to risk-adapted approaches, which together with improvements in supportive therapy have paved the way for cure for most patients with APL.
Collapse
Affiliation(s)
- Miguel A Sanz
- Department of Hematology, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eva Barragán
- Clinical Laboratory, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Carlos III Institute, Madrid, Spain
| |
Collapse
|
5
|
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers (Basel) 2020; 12:cancers12030624. [PMID: 32182684 PMCID: PMC7139833 DOI: 10.3390/cancers12030624] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although acute promyelocytic leukemia (APL) is one of the most characterized forms of acute myeloid leukemia (AML), the molecular mechanisms involved in the development and progression of this disease are still a matter of study. APL is defined by the PML-RARA rearrangement as a consequence of the translocation t(15;17)(q24;q21). However, this abnormality alone is not able to trigger the whole leukemic phenotype and secondary cooperating events might contribute to APL pathogenesis. Additional somatic mutations are known to occur recurrently in several genes, such as FLT3, WT1, NRAS and KRAS, whereas mutations in other common AML genes are rarely detected, resulting in a different molecular profile compared to other AML subtypes. How this mutational spectrum, including point mutations in the PML-RARA fusion gene, could contribute to the 10%–15% of relapsed or resistant APL patients is still unknown. Moreover, due to the uncertain impact of additional mutations on prognosis, the identification of the APL-specific genetic lesion is still the only method recommended in the routine evaluation/screening at diagnosis and for minimal residual disease (MRD) assessment. However, the gene expression profile of genes, such as ID1, BAALC, ERG, and KMT2E, once combined with the molecular events, might improve future prognostic models, allowing us to predict clinical outcomes and to categorize APL patients in different risk subsets, as recently reported. In this review, we will focus on the molecular characterization of APL patients at diagnosis, relapse and resistance, in both children and adults. We will also describe different standardized molecular approaches to study MRD, including those recently developed. Finally, we will discuss how novel molecular findings can improve the management of this disease.
Collapse
Affiliation(s)
- Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Mariam Ibañez
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Claudia Sargas
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Miguel Ángel Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Russell RP, Fu Y, Liu Y, Maye P. Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage. Stem Cell Res 2018; 30:85-95. [PMID: 29807258 PMCID: PMC6083448 DOI: 10.1016/j.scr.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
We have investigated the differentiation of paraxial mesoderm from mouse embryonic stem cells utilizing a Tbx6-EYFP/Brachyury (T)-Cherry dual reporter system. Differentiation from the mouse ESC state directly into mesoderm via Wnt pathway activation was low, but augmented by treatment with AGN193109, a pan-retinoic acid receptor inverse agonist. After five days of differentiation, T+ cells increased from 12.2% to 18.8%, Tbx6+ cells increased from 5.8% to 12.7%, and T+/Tbx6+ cells increased from 2.4% to 14.1%. The synergism of AGN193109 with Wnt3a/CHIR99021 was further substantiated by the increased expression of paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, and Hoxb1. Separate to inverse agonist treatment, when mouse ESCs were indirectly differentiated into mesoderm via a transient epiblast step the efficiency of paraxial mesoderm formation markedly increased. Tbx6+ cells represented 65-75% of the total cell population after just 3 days of differentiation and the expression of paraxial mesoderm marker genes Tbx6 and Msgn increased over 100-fold and 300-fold, respectively. Further evaluation of AGN193109 treatment on the indirect differentiation protocol suggested that RARs have two distinct roles. First, AGN193109 treatment at the epiblast step and mesoderm step promoted paraxial mesoderm formation over other mesoderm and endoderm lineage types. Second, continued treatment during mesoderm formation revealed its ability to repress the maturation of presomitic mesoderm into somitic paraxial mesoderm. Thus, the continuous treatment of AGN193109 during epiblast and mesoderm differentiation steps yielded a culture where ~90% of the cells were Tbx6+. The surprisingly early effect of inverse agonist treatment at the epiblast step of differentiation led us to further examine the effect of AGN193109 treatment during an extended epiblast differentiation protocol. Interestingly, while inverse agonist treatment had no impact on the conversion of ESCs into epiblast cells based on the expression of Rex1, Fgf5, and pluripotency marker genes Oct4, Nanog, and Sox2, after three days of differentiation in the presence of AGN193109 caudal epiblast and early paraxial mesoderm marker genes, T, Cyp26a1, Fgf8, Tbx6 and Msgn were all highly up-regulated. Collectively, our studies reveal an earlier than appreciated role for RARs in epiblast cells and the modulation of their function via inverse agonist treatment can promote their differentiation into the paraxial mesoderm lineage.
Collapse
Affiliation(s)
- Ryan P Russell
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States.
| |
Collapse
|
7
|
Wang X, Zhang X, Xia P, Zhang J, Wang Y, Zhang R, Giesy JP, Shi W, Yu H. A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:609-616. [PMID: 27810749 DOI: 10.1016/j.scitotenv.2016.10.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Some pollutants can bind to nuclear receptors (NRs) and modulate their activities. Predicting interactions of NRs with chemicals is required by various jurisdictions because these molecular initiating events can result in adverse, apical outcomes, such as survival, growth or reproduction. The goal of this study was to develop a high-throughput, computational method to predict potential agonists of NRs, especially for contaminants in the environment or to which people or wildlife are expected to be exposed, including both persistent and pseudo-persistent chemicals. A 3D-structure database containing 39 human NRs was developed. The database was then combined with AutoDock Vina to develop a System for Predicting Potential Effective Nuclear Receptors (SPEN), based on inverse docking of chemicals. The SPEN was further validated and evaluated by experimental results for a subset of 10 chemicals. Finally, to assess the robustness of SPEN, its ability to predict potentials of 40 chemicals to bind to some of the most studied receptors was evaluated. SPEN is rapid, cost effective and powerful for predicting binding of chemicals to NRs. SPEN was determined to be useful for screening chemicals so that pollutants in the environment can be prioritized for regulators or when considering alternative compounds to replace known or suspected contaminants with poor environmental profiles.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Rui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; School of Resources and Environment, University of Jinan, Jinan, Shandong 250022, PR China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N5A2, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR 999077, PR China; Zoology Dept. and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| |
Collapse
|
8
|
Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol 2017; 165:369-381. [PMID: 27520301 DOI: 10.1016/j.jsbmb.2016.08.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
Adipose tissue has long been identified as the major site of vitamin D storage. Recent studies have demonstrated that VDR and vitamin D metabolizing enzymes are expressed in adipocytes. Furthermore, it has been shown that vitamin D regulates adipogenic gene expression as well as adipocyte apoptosis. Vitamin D is active in adipocytes at all levels. It interacts with membrane receptors, adaptor molecules, and nuclear coregulator proteins. Several functions of unliganded nVDR were discovered by studying human samples from patients having hereditary vitamin D resistant rickets, transgenic mice overexpressing the VDR and VDR knockout mice. Through its genomic action, vitamin D participates in the regulation of energy metabolism by controlling the expression of uncoupling proteins. In vitro, vitamin D stimulates lipogenesis and inhibits lipolysis by interacting with mVDR. mVDR is present in caveolae of the plasma membrane and is the same as the classic nVDR. In addition, vitamin D affects directly the expression of the appetite regulating hormone, leptin. Some researchers reported also that vitamin D regulates the expression of the insulin sensitizing hormone, adiponectin. Vitamin D reduced cytokine release and adipose tissue inflammation through the inhibition of NF-κB signaling. Scientific research investigating the role of adipose tissue resident immune cells in the pathogenesis of obesity-associated inflammation is scarce. Obesity is associated with vitamin D deficiency. However there is no scientific evidence to prove that vitamin D deficiency predispose to obesity. Vitamin D supplementation may prevent obesity but it does not lead to weight loss in obese subjects.
Collapse
|
9
|
Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci 2015; 145:265-73. [PMID: 26497928 DOI: 10.1016/j.lfs.2015.10.022] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases.
Collapse
Affiliation(s)
- Faheem Maqbool
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sara Mostafalou
- School of Pharmacy, Ardebil University of Medical Sciences, Ardebil, Iran
| | - Haji Bahadar
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Triorganotin compounds - ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol Lett 2015; 234:50-8. [DOI: 10.1016/j.toxlet.2015.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
|
11
|
Pusceddu I, Farrell CJL, Di Pierro AM, Jani E, Herrmann W, Herrmann M. The role of telomeres and vitamin D in cellular aging and age-related diseases. ACTA ACUST UNITED AC 2015; 53:1661-78. [DOI: 10.1515/cclm-2014-1184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
AbstractAging is a complex biological process characterized by a progressive decline of organ functions leading to an increased risk of age-associated diseases and death. Decades of intensive research have identified a range of molecular and biochemical pathways contributing to aging. However, many aspects regarding the regulation and interplay of these pathways are insufficiently understood. Telomere dysfunction and genomic instability appear to be of critical importance for aging at a cellular level. For example, age-related diseases and premature aging syndromes are frequently associated with telomere shortening. Telomeres are repetitive nucleotide sequences that together with the associated sheltrin complex protect the ends of chromosomes and maintain genomic stability. Recent studies suggest that micronutrients, such as vitamin D, folate and vitamin B12, are involved in telomere biology and cellular aging. In particular, vitamin D is important for a range of vital cellular processes including cellular differentiation, proliferation and apoptosis. As a result of the multiple functions of vitamin D it has been speculated that vitamin D might play a role in telomere biology and genomic stability. Here we review existing knowledge about the link between telomere biology and cellular aging with a focus on the role of vitamin D. We searched the literature up to November 2014 for human studies, animal models and in vitro experiments that addressed this topic.
Collapse
|
12
|
Jiang X, Ye X, Guo W, Lu H, Gao Z. Inhibition of HDAC3 promotes ligand-independent PPARγ activation by protein acetylation. J Mol Endocrinol 2014; 53:191-200. [PMID: 24982244 PMCID: PMC4391273 DOI: 10.1530/jme-14-0066] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor whose activation is dependent on a ligand. PPARγ activation by exogenous ligands, such as thiazolidinediones (TZDs), is a strategy in the treatment of type 2 diabetes mellitus for the improvement of insulin sensitivity. In addition to a ligand, PPARγ function is also regulated by posttranslational modifications, such as phosphorylation, sumoylation, and ubiquitination. Herein, we report that the PPARγ protein is modified by acetylation, which induces the PPARγ function in the absence of an external ligand. We observed that histone deacetylase 3 (HDAC3) interacted with PPARγ to deacetylate the protein. In immunoprecipitation assays, the HDAC3 protein was associated with the PPARγ protein. Inhibition of HDAC3 using RNAi-mediated knockdown or HDAC3 inhibitor increased acetylation of the PPARγ protein. Furthermore, inhibition of HDAC3 enhanced the expression of PPARγ target genes such as adiponectin and aP2. The expression was associated with an increase in glucose uptake and insulin signaling in adipocytes. HDAC3 inhibition enhanced lipid accumulation during differentiation of adipocytes. PPARγ acetylation was also induced by pioglitazone and acetylation was required for PPARγ activation. In the absence of TZDs, the acetylation from HDAC3 inhibition was sufficient to induce the transcriptional activity of PPARγ. Treating diet-induced obesity mice with HDAC3 inhibitor or pioglitazone for 2 weeks significantly improved high-fat-diet-induced insulin resistance. Our results indicate that acetylation of PPARγ is a ligand-independent mechanism of PPARγ activation. HDAC3 inhibitor is a potential PPARγ activator for the improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China
| | - Xin Ye
- Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China
| | - Wei Guo
- Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China
| | - Hongyun Lu
- Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China
| | - Zhanguo Gao
- Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China Pennington Biomedical Research CenterLouisiana State University System, Baton Rouge, Louisiana 70808, USADepartment of PathologyShanghai University of Traditional Chinese Medicine, Shanghai, ChinaDepartment of Endocrinology and MetabolismThe Third/Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, ChinaDepartment of Medical TestsXinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 2014; 27:3-9. [DOI: 10.1016/j.beha.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Yoon K, Kwack SJ, Kim HS, Lee BM. Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:127-174. [PMID: 24749480 DOI: 10.1080/10937404.2014.882194] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocrine-disrupting chemicals (EDC), including phthalates, bisphenol A (BPA), phytoestrogens such as genistein and daidzein, dichlorodiphenyltrichloroethane (DDT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are associated with a variety of adverse health effects in organisms or progeny by altering the endocrine system. Environmental estrogens, including BPA, phthalates, and phytoestrogens, are the most extensively studied and are considered to mimic the actions of endogenous estrogen, 17β-estradiol (E2). Diverse modes of action of estrogen and estrogen receptors (ERα and ERβ) have been described, but the mode of action of estrogenic EDC is postulated to be more complex and needs to be more clearly elucidated. This review examines the adverse effects of estrogenic EDC on male or female reproductive systems and molecular mechanisms underlying EDC effects that modulate ER-mediated signaling. Mechanisms of action for estrogenic EDC may involve both ER-dependent and ER-independent pathways. Recent findings from systems toxicology of examining estrogenic EDC are also discussed.
Collapse
Affiliation(s)
- Kyungsil Yoon
- a Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | | | | | | |
Collapse
|
15
|
Ji M, Liu Y, Yang S, Zhai D, Zhang D, Bai L, Wang Z, Yu J, Yu C, Cai Z. Puerarin suppresses proliferation of endometriotic stromal cells in part via differential recruitment of nuclear receptor coregulators to estrogen receptor-α. J Steroid Biochem Mol Biol 2013; 138:421-6. [PMID: 23907019 DOI: 10.1016/j.jsbmb.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Puerarin, a phytoestrogen with a weak estrogenic effect, binds to estrogen receptors, thereby competing with 17β-estradiol and producing an anti-estrogenic effect. In our early clinical practice to treat endometriosis, a better therapeutic effect was achieved if the formula of traditional Chinese medicine included Radix puerariae. This study was to investigate whether puerarin could suppress the proliferation of endometriotic stromal cells (ESCs) and to further elucidate the potential mechanism. METHODS AND RESULTS The ESCs were successfully established. The effects of puerarin on the proliferation of ESCs, cell cycle and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry. The mRNA and protein levels of cyclin D1 and cdc25A were detected by real-time PCR and Western blot analysis. Coimmunoprecipitation was applied to examine the recruitment of nuclear receptor coregulators to the estrogen receptor-α. We found that puerarin can suppress estrogen-stimulated proliferation partly through down-regulating the transcription of cyclin D1 and cdc25A by promoting the recruitment of corepressors to estrogen receptor-α as well as limiting that of coactivators in ESCs. CONCLUSIONS Our data suggest that puerarin could suppress the proliferation of ESCs and could be a potential therapeutic agent for the treatment of endometriosis.
Collapse
Affiliation(s)
- Mei Ji
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012; 13:11718-11752. [PMID: 23109880 PMCID: PMC3472772 DOI: 10.3390/ijms130911718] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system commonly affecting young adults. Pathologically, there are patches of inflammation (plaques) with demyelination of axons and oligodendrocyte loss. There is a global latitude gradient in MS prevalence, and incidence of MS is increasing (particularly in females). These changes suggest a major role for environmental factors in causation of disease. We have reviewed the evidence and potential mechanisms of action for three exposures: vitamin D, Epstein Barr virus and cigarette smoking. Recent advances supporting gene-environment interactions are reviewed. Further research is needed to establish mechanisms of causality in humans and to explore preventative strategies.
Collapse
|
17
|
Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83:1112-26. [PMID: 22326308 PMCID: PMC3339266 DOI: 10.1016/j.bcp.2012.01.030] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
19
|
New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Prostate Cancer 2011; 2011:918707. [PMID: 22111003 PMCID: PMC3196248 DOI: 10.1155/2011/918707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/27/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the United States, and it is the second leading cause of cancer-related death in American men. The androgen receptor (AR), a receptor of nuclear family and a transcription factor, is the most important target in this disease. While most efforts in the clinic are currently directed at lowering levels of androgens that activate AR, resistance to androgen deprivation eventually develops. Most prostate cancer deaths are attributable to this castration-resistant form of prostate cancer (CRPC). Recent work has shed light on the importance of epigenetic events including facilitation of AR signaling by histone-modifying enzymes, posttranslational modifications of AR such as sumoylation. Herein, we provide an overview of the structure of human AR and its key structural domains that can be used as targets to develop novel antiandrogens. We also summarize recent findings about the antiandrogens and the epigenetic factors that modulate the action of AR.
Collapse
|
20
|
Li J, Lu Y, Liu R, Xiong X, Zhang Z, Zhang X, Ning G, Li X. DAX1 suppresses FXR transactivity as a novel co-repressor. Biochem Biophys Res Commun 2011; 412:660-6. [PMID: 21856289 DOI: 10.1016/j.bbrc.2011.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022]
Abstract
Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1α. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.
Collapse
Affiliation(s)
- Jin Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gocek E, Marcinkowska E. Differentiation therapy of acute myeloid leukemia. Cancers (Basel) 2011; 3:2402-20. [PMID: 24212816 PMCID: PMC3757424 DOI: 10.3390/cancers3022402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called 'differentiation therapy', was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| |
Collapse
|
22
|
Lisse TS, Hewison M, Adams JS. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling. Steroids 2011; 76:331-9. [PMID: 21236284 PMCID: PMC3042887 DOI: 10.1016/j.steroids.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/11/2023]
Abstract
Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements.
Collapse
Affiliation(s)
- Thomas S Lisse
- Department of Orthopaedic Surgery and Molecular Biology Institute, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
23
|
Abstract
A human multi-protein complex (WINAC), composed of SWI/SNF components and DNA replication-related factors, that directly interacts with the vitamin D receptor (VDR) through the Williams syndrome transcription factor (WSTF), was identified with an ATP-dependent chromatin remodeling activity. This novel ATP-dependent chromatin remodeling complex facilitates VDR-mediated transrepression as well as transactivation with its ATP-dependent chromatin remodeling activity and promoter targeting property for the activator to access to the DNA. It also suggested that in this complex, WSTF serves as a signaling sensor to receive intra-cellular singalings to switch the activity of WINAC as well as WICH, another ATP-dependent chromatin remodeling complex containing hSNF2h. By making WSTF-deficient mice, some of the heart defects as well as abnormal calcium metabolism observed in Williams syndrome are attributed to the abnormal chromatin remodeling activity caused by WSTF deficiency. Thus, we would propose to designate Williams syndrome as an epigenome-regulator disease.
Collapse
Affiliation(s)
- Hirochika Kitagawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
24
|
Ramamoorthy S, Dhananjayan SC, Demayo FJ, Nawaz Z. Isoform-specific degradation of PR-B by E6-AP is critical for normal mammary gland development. Mol Endocrinol 2010; 24:2099-113. [PMID: 20829392 DOI: 10.1210/me.2010-0116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
E6-associated protein (E6-AP), which was originally identified as an ubiquitin-protein ligase, also functions as a coactivator of estrogen (ER-α) and progesterone (PR) receptors. To investigate the in vivo role of E6-AP in mammary gland development, we generated transgenic mouse lines that either overexpress wild-type (WT) human E6-AP (E6-AP(WT)) or ubiquitin-protein ligase-defective E6-AP (E6-AP(C833S)) in the mammary gland. Here we show that overexpression of E6-AP(WT) results in impaired mammary gland development. In contrast, overexpression of E6-AP(C833S) or loss of E6-AP (E6-AP(KO)) increases lateral branching and alveolus-like protuberances in the mammary gland. We also show that the mammary phenotypes observed in the E6-AP transgenic and knockout mice are due, in large part, to the alteration of PR-B protein levels. We also observed alteration in ER-α protein level, which might contribute to the observed mammary phenotype by regulating PR expression. Furthermore, E6-AP regulates PR-B protein levels via the ubiquitin-proteasome pathway. Additionally, we also show that E6-AP impairs progesterone-induced Wnt-4 expression by decreasing the steady state level of PR-B in both mice and in human breast cancer cells. In conclusion, we present the novel observation that E6-AP controls mammary gland development by regulating PR-B protein turnover via the ubiquitin proteasome pathway. For the first time, we show that the E3-ligase activity rather than the coactivation function of E6-AP plays an important role in the mammary gland development, and the ubiquitin-dependent PR-B degradation is not required for its transactivation functions. This mechanism appears to regulate normal mammogenesis, and dysregulation of this process may be an important contributor to mammary cancer development and progression.
Collapse
Affiliation(s)
- Sivapriya Ramamoorthy
- Department of Biochemistry & Molecular Biology, Braman Breast Cancer Institute (M-877), University of Miami School of Medicine, Batchelor Building, Room 416, 1580 Northwest 10 Avenue, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
25
|
Estrogen receptor signaling and its relationship to cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2010; 2010:317452. [PMID: 20617147 PMCID: PMC2896666 DOI: 10.1155/2010/317452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of cytokines is among the main abnormalities in Systemic Lupus Erythematosus (SLE). However, although, estrogens, which are known to be involved in lupus disease,
influence cytokine production, the underlying molecular mechanisms remain poorly defined.
Recent evidence demonstrates the presence of estrogen receptor in various cell types of the
immune system, while divergent effects of estrogens on the cytokine regulation are thought to be
implicated. In this paper, we provide an overview of the current knowledge as to how estrogen-induced
modulation of cytokine production in SLE is mediated by the estrogen receptor while
simultaneously clarifying various aspects of estrogen receptor signaling in this disease. The
estrogen receptor subtypes, their structure, and the mode of action of estrogens by gene activation
and via extranuclear effects are briefly presented. Results regarding the possible correlation
between estrogen receptor gene polymorphisms and quantitative changes in the receptor protein
to SLE pathology and cytokine production are reviewed.
Collapse
|
26
|
Immunohistochemical detection of steroid receptor cofactors in ovarian endometriosis: involvement of down-regulated SRC-1 expression in the limited growth activity of the endometriotic epithelium. Virchows Arch 2010; 456:433-41. [DOI: 10.1007/s00428-010-0884-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
|
27
|
Ondkova S, Bakos J, Macejova D, Jezova D, Brtko J. Changes in retinoic acid receptor status, 5'-deiodinase activity and neuroendocrine response to voluntary wheel running. Gen Comp Endocrinol 2010; 165:304-8. [PMID: 19646447 DOI: 10.1016/j.ygcen.2009.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 11/16/2022]
Abstract
Little information is available on the involvement of retinoic acid in processes related to physical activity. The aim of this study was to test the hypotheses that long-term voluntary wheel running (1) modifies RARs concentration as well as the expression of RAR subtypes and (2) alters Iiodothyronine deiodinase (5'-DI) activity in rat liver. To evaluate relevant mechanisms, hepatic gene expression of specific nuclear receptor coregulators and stress hormone levels in plasma have also been measured. Sprague-Dawley rats were housed either in standard cages or in cages with access to running wheel attached for 3 weeks. RAR maximal binding capacity in the liver was found to be significantly lower while gene expression of RAR beta increased in rats exposed to voluntary running compared to that in sedentary controls. Gene expression of RAR alpha, RXR alpha and RXR beta was found to be unaffected. Voluntary running led to a significant decrease of 5'-DI activity in the liver. No significant changes in the gene expression of specific nuclear receptor coregulators in the liver were observed. Significant elevation of aldosterone while no changes in ACTH and corticosterone concentrations were observed in rats exposed to wheel running compared to those in controls. In conclusion, this study provided first evidence on the reduction of liver RAR concentrations and 5'-DI activity in response to long-term voluntary wheel running. Neuroendocrine mechanisms involved in these changes may include adrenal mineralo- and glucocorticoids.
Collapse
Affiliation(s)
- Slavomira Ondkova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, Bratislava 83306, Slovak Republic
| | | | | | | | | |
Collapse
|
28
|
Campbell F, Xu H, El-Tanani M, Crowe P, Bingham V. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. Biochem Pharmacol 2010; 79:1-9. [PMID: 19737544 PMCID: PMC2824849 DOI: 10.1016/j.bcp.2009.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/24/2009] [Accepted: 09/01/2009] [Indexed: 12/21/2022]
Abstract
Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1alpha,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1alpha,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1alpha,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1alpha,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.
Collapse
Key Words
- 1α,25-(oh)2 d3, one alpha, 25 dihydroxyvitamin d3
- apc, adenomatous polyposis coli
- crc, colorectal cancer
- dmba, dimethylbenzanthracene
- dr3-type, directly repeated arrangement of the hexameric binding sites with three spacing nucleotides
- drip, vitamin d receptor-interacting protein
- erk, extracellular signal-regulated kinase
- gsk3β, glycogen synthase kinase beta
- hdac, histone deacetylator co-repressor complex
- mapk, mitogen-activated protein kinase
- ncor, nuclear receptor co-repressor
- nhl, non-hodgkins lymphoma
- opn, osteopontin
- rac3, receptor activated coactivators 3
- rock, rho-associated coiled kinase
- rxr, retinoid x receptor
- src-1, steroid receptor coactivators-1
- tcf, t cell factor
- tif2, transcriptional intermediary factor 2
- tpa, 12-o-tetradecanoylphorbol-13-acetate
- vdre, vitamin d response element
- vdr, vitamin d receptor
- winac, williams syndrome transcription factor (wstf) including nucleosome assembly complex
- 1α,25-(oh)2 d3
- vitamin d receptor
- signaling
- cancer
Collapse
Affiliation(s)
- F.C. Campbell
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Lisburn Rd, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
29
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
30
|
Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte Differentiation of Neural Precursor Cells is Enhanced by Retinoic Acid Through a Change in Epigenetic Modification. Stem Cells 2009; 27:2744-52. [DOI: 10.1002/stem.176] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Oya H, Yokoyama A, Yamaoka I, Fujiki R, Yonezawa M, Youn MY, Takada I, Kato S, Kitagawa H. Phosphorylation of Williams syndrome transcription factor by MAPK induces a switching between two distinct chromatin remodeling complexes. J Biol Chem 2009; 284:32472-82. [PMID: 19776015 DOI: 10.1074/jbc.m109.009738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Changes in the environment of a cell precipitate extracellular signals and sequential cascades of protein modification and elicit nuclear transcriptional responses. However, the functional links between intracellular signaling-dependent gene regulation and epigenetic regulation by chromatin-modifying proteins within the nucleus are largely unknown. Here, we describe novel epigenetic regulation by MAPK cascades that modulate formation of an ATP-dependent chromatin remodeling complex, WINAC (WSTF Including Nucleosome Assembly Complex), an SWI/SNF-type complex containing Williams syndrome transcription factor (WSTF). WSTF, a specific component of two chromatin remodeling complexes (SWI/SNF-type WINAC and ISWI-type WICH), was phosphorylated by the stimulation of MAPK cascades in vitro and in vivo. Ser-158 residue in the WAC (WSTF/Acf1/cbpq46) domain, located close to the N terminus of WSTF, was identified as a major phosphorylation target. Using biochemical analysis of a WSTF mutant (WSTF-S158A) stably expressing cell line, the phosphorylation of this residue (Ser-158) was found to be essential for maintaining the association between WSTF and core BAF complex components, thereby maintaining the ATPase activity of WINAC. WINAC-dependent transcriptional regulation of vitamin D receptor was consequently impaired by this WSTF mutation, but the recovery from DNA damage mediated by WICH was not impaired. Our results suggest that WSTF serves as a nuclear sensor of the extracellular signals to fine-tune the chromatin remodeling activity of WINAC. WINAC mediates a previously unknown MAPK-dependent step in epigenetic regulation, and this MAPK-dependent switching mechanism between the two functionally distinct WSTF-containing complexes might underlie the diverse functions of WSTF in various nuclear events.
Collapse
Affiliation(s)
- Hiroyuki Oya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Daverey A, Saxena R, Tewari S, Goel SK, Dwivedi A. Expression of estrogen receptor co-regulators SRC-1, RIP140 and NCoR and their interaction with estrogen receptor in rat uterus, under the influence of ormeloxifene. J Steroid Biochem Mol Biol 2009; 116:93-101. [PMID: 19460436 DOI: 10.1016/j.jsbmb.2009.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 04/22/2009] [Accepted: 05/08/2009] [Indexed: 11/17/2022]
Abstract
Ormeloxifene binds competitively to ERs and antagonizes estrogen-induced gene expression in the uterus. However its detailed molecular mechanisms are not well understood. Present study was aimed to examine the changes in expression pattern of co-regulatory proteins SRC-1 (co-activator), RIP140 and NCoR (co-repressors) and their interaction with ERalpha in rat uterus under the influence of ormeloxifene (Orm) and tamoxifen (Tam). Adult ovariectomized rats were treated with estradiol (E(2)) (5 microg/100g), or Orm or Tam (200 microg/100g, s.c.) alone or along with E(2), for 3 days. RT-PCR analysis of uterine RNA and immunoblotting of uterine extracts revealed that expression of SRC-1, RIP140 and NCoR was insensitive to E(2) or Orm or Tam treatment. Direct protein-protein interaction experiments using co-immunoprecipitation revealed that E(2)-induced the interaction of ERalpha with co-activator SRC-1. In rats given Orm alone or along with E(2), there was a significant reduction in E(2)-induced effect on ERalpha-SRC-1 interaction. In case of ERbeta and SRC-1, Orm reduced interaction only in the absence of E(2). Interaction of RIP140 or NCoR with ERalpha was found to be more in rats treated with Orm along with E(2) as compared to that in E(2)-treated rats whereas no such recruitment was found in Tam treated rats. Interaction of RIP140 with ERbeta was insensitive to Orm or Tam treatment whereas the interaction of NCoR with ERalpha and ERbeta was increased in Orm treated rats. Ormeloxifene also showed inhibitory effects on uterine ER-ERE binding and estrogen-induced expression of progesterone receptor. Taken together, these findings demonstrate that ormeloxifene antagonizes ERalpha-mediated transcription by inhibiting the recruitment of SRC-1 and inducing the recruitment of RIP140 and NCoR.
Collapse
Affiliation(s)
- Amita Daverey
- Division of Endocrinology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
33
|
Discovery of novel dual functional agent as PPARγ agonist and 11β-HSD1 inhibitor for the treatment of diabetes. Bioorg Med Chem 2009; 17:5722-32. [DOI: 10.1016/j.bmc.2009.05.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/22/2022]
|
34
|
Abstract
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Collapse
Affiliation(s)
- Grant W Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota 55812, USA.
| |
Collapse
|
35
|
Chen M, Ni J, Chang HC, Lin CY, Muyan M, Yeh S. CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells. Carcinogenesis 2009; 30:841-50. [PMID: 19126643 DOI: 10.1093/carcin/bgn288] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer (PCa) and prostate epithelial cells predominantly express estrogen receptor (ER) beta, but not ERalpha. ERbeta might utilize various ER coregulators to mediate the E2-signaling pathway in PCa. Here, we identified coiled-coil domain containing 62 (CCDC62)/ERAP75 as a novel ER coactivator. CCDC62/ERAP75 is widely expressed in PCa cell lines and has low expression in MCF7 cells. Both in vitro and in vivo interaction assays using mammalian two-hybrid, glutathione S-transferase pull-down and coimmunoprecipitation methods proved that ERbeta can interact with the C-terminus of CCDC62/ERAP75 via the ligand-binding domain. The first LXXLL motif within CCDC62/ERAP75 is required for the interaction between ERbeta and CCDC62/ERAP75. Electrophoretic mobility shift assay showed that CCDC62/ERAP75 can be recruited by the estrogen response element-ER complex in the presence of ligand. Furthermore, a chromatin immunoprecipitation assay demonstrated the hormone-dependent recruitment of CCDC62/ERAP75 within the promoter of the estrogen-responsive gene cyclin D1. In addition, using silencing RNA (siRNA) against endogeneous CCDC62/ERAP75, we demonstrated that inhibition of endogenous CCDC62/ERAP75 results in the suppression of ERbeta-mediated transactivation as well as target gene expression in LNCaP cells. More importantly, using the tet-on overexpression system, we showed that induced expression of CCDC62/ERAP75 can enhance the E2-regulated cyclin D1 expression and cell growth in LNCaP cells. Together, our results revealed the role of CCDC62/ERAP75 as a novel coactivator in PCa cells that can modulate ERbeta transactivation and receptor function.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
36
|
Brtko J. Retinoids, rexinoids and their cognate nuclear receptors: character and their role in chemoprevention of selected malignant diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:187-94. [PMID: 18345250 DOI: 10.5507/bp.2007.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Retinoids, rexinoids and their biologically active derivatives are involved in a complex arrangement of physiological and developmental responses in many tissues of higher vertebrates. Both retinoids and rexinoids are either natural or synthetic compounds related to retinoic acids that act through interaction with two basic types of nuclear receptors belonging to the nuclear receptor superfamily: All-trans retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta and RXRgamma) as retinoid-inducible transcription factors. AIM Summarization of selected effects of biologically active natural or synthetic retinoids and rexinoids and their exploitation in chemoprevention of various types of cancer. RESULTS Retinoid receptors play a role as ligand-activated, DNA-binding, trans-acting, transcription-modulating proteins involved in a general molecular mechanism responsible for transcriptional responses in target genes. They exert both beneficial and detrimental activity; they have tumour-suppressive activity but on the other hand they are teratogenic. A number of nuclear receptor selective retinoids and rexinoids, have been successfully tested using a variety of cell lines or animal models. Retinoids inhibit carcinogenesis, suppress premalignant epithelial lesions and tumour growth and invasion in a variety of tissues. CONCLUSIONS Natural and synthetic retinoids exert important biological effects due to their antiproliferative and apoptosis-inducing effects. They are also known to cause redifferentiation or to prevent further dedifferentiation of various tumour tissues.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Laboratory of Molecular Endocrinology, Bratislava, Slovak Republic.
| |
Collapse
|
37
|
Fleet JC. Molecular actions of vitamin D contributing to cancer prevention. Mol Aspects Med 2008; 29:388-96. [PMID: 18755215 PMCID: PMC2613446 DOI: 10.1016/j.mam.2008.07.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/31/2008] [Indexed: 02/07/2023]
Abstract
The population-based relationship between low vitamin D status and increased cancer risk is now generally accepted. While these relationships are between serum 25 hydroxyvitamin D and cancer, cell-based studies show that the metabolite 1,25 dihydroxyvitamin D is biologically active and influences cell biology relevant to cancer through vitamin D receptor-mediated gene transcription. This review examines this paradox and also discusses the cell and gene targets influenced by 1,25 dihydroxyvitamin D that may account for the anti-cancer actions of vitamin D. A review of the literature shows that while vitamin D-induced growth arrest and apoptosis of tumor cells or their non-neoplastic progenitors are plausible mechanisms, other gene targets related to DNA repair and immunomodulation, and other cell targets such as the stromal cells and cells of the immune system, may be regulated by 1,25 dihydroxyvitamin D and contribute to vitamin D mediated cancer prevention.
Collapse
Affiliation(s)
- James C Fleet
- Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
38
|
Coactivation of estrogen receptor beta by gonadotropin-induced cofactor GIOT-4. Mol Cell Biol 2008; 29:83-92. [PMID: 18981223 DOI: 10.1128/mcb.00884-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Estrogen exerts its diverse effects through two subtypes of estrogen receptors (ER), ERalpha and ERbeta. Each subtype has its own distinct function and expression pattern in its target tissues. Little, however, is known about the transcriptional regulatory mechanism of ERbeta in the major ERbeta-expressing tissues. Using biochemical methods, we identified and described a novel ERbeta coactivator. This protein, designated GIOT-4, was biochemically purified from 293F cells. It coactivated ERbeta in ovarian granulosa cells. GIOT-4 expression was induced by stimulation with follicle-stimulating hormone (FSH). GIOT-4 recruited an SWI/SNF-type complex in a ligand-independent manner to ERbeta as an ER subtype-specific physical bridging factor and induced subsequent histone modifications in the ERbeta target gene promoters in a human ovarian granulosa cell line (KGN). Indeed, two ERbeta-specific target genes were upregulated by FSH at a specific stage of a normal ovulatory cycle in intact mice. These findings imply the presence of a novel regulatory convergence between the gonadotropin signaling cascade and ERbeta-mediated transcription in the ovary.
Collapse
|
39
|
Chen M, Ni J, Zhang Y, Muyan M, Yeh S. ERAP75 functions as a coactivator to enhance estrogen receptor alpha transactivation in prostate stromal cells. Prostate 2008; 68:1273-82. [PMID: 18563714 DOI: 10.1002/pros.20774] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ER alpha) has been reported to be expressed and function in the prostate stromal cells, and numerous evidences indicated that the stromal ER alpha signal pathway plays critical roles in prostate development and cancer. ER alpha requires distinct coregulators for efficient transcriptional regulation. The goal of this study is to examine physical and functional interaction between ER alpha and ERAP75 in the context of prostate stromal cells. METHOD Yeast two-hybrid assays were used to screen novel ER alpha interaction proteins. The interaction between ER alpha and ERAP75 was confirmed by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation methods. The interaction motif was examined by site-directed mutagenesis. The effect of ERAP75 on ER alpha transactivation and the expression of ER alpha target genes were determined by luciferase assay and real-time PCR, respectively. RESULT ER alpha can interact with the C terminus of ERAP75 via its ligand binding domain both in vivo and in vitro. The conserved LXXLL motif within the C terminus of ERAP75 is required for the interaction between ER alpha and ERAP75. ERAP75 can enhance ER alpha transactivation in a dose-dependent manner and up-regulate the expression of the endogenous ER alpha target gene, stromal-derived factor-1 (SDF-1), in the prostate stromal cells. CONCLUSION ERAP75 functions as a novel coactivator that can modulate ER alpha function in the prostate stromal cells. The understanding of the mechanism of ER alpha transactivation in prostate stromal cells could possibly help in the development of new strategies to control or treat prostate cancer by targeting its transactivation protein complex.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
40
|
Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. J Mol Neurosci 2008; 37:269-73. [PMID: 18679832 DOI: 10.1007/s12031-008-9131-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
We have reported earlier that estrogen receptor (ER) alpha-transactivation domain (TAD) interacted with four nuclear proteins of 100 kD, 80 kD, 68 kD, and 50 kD of mouse brain and identified 68 kD as p68 RNA helicase and 50 kD as beta-tubulin. In this paper, we describe the identification of 80 kD nuclear protein as metastasis associated protein 1 (MTA1) and its interaction and expression in the brain of aging mice. Far-Western blotting and immunoprecipitation data revealed lower interaction of MTA1 in old than adult mice of both sexes. Furthermore, adult male showed lower expression of protein as compared to adult female. Altogether these findings suggest that age-dependent decrease in the expression of MTA1 and its interaction with ERalpha-TAD may influence the estrogen-mediated signaling pathway during aging of mouse brain.
Collapse
|
41
|
Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-alpha transactivation. Oncogene 2008; 27:5233-42. [PMID: 18521086 DOI: 10.1038/onc.2008.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NRIF3 is an estrogen-inducible nuclear receptor coregulator that stimulates estrogen receptor-alpha (ERalpha) transactivation functions and associates with the endogenous ER and its target gene promoter. p21-activated protein kinase 1 (Pak1) phosphorylates ERalpha at Ser305 and this modification is important in ERalpha transactivation function. Although ERalpha transactivation functions are regulated by co-activator activity of NRIF3, it remains unclear whether Pak1 could impact ER functions via a posttranslational modification of NRIF3. Here, we report that Pak1 phosphorylates NRIF3 at Serine28 and that NRIF3 binds to Pak1 in vitro and in vivo. We found that NRIF3 phosphorylation, co-activator activity and association with ERalpha increased following Pak1 phosphorylation of NRIF3's Ser28 and that activated ERalpha-Ser305 and NRIF3-Ser28 cooperatively support transactivation of ERalpha. NRIF3 expression increased significantly in cells with inducible Pak1 expression. We found that NRIF3 and ERalpha interaction, subcellular localization and ERalpha transactivation activity all increased in cells expressing the Pak1 phosphorylation-mimicking mutant NRIF3-Ser28Glu. Consistently, the NRIF3-Ser28Glu mutant exhibited an enhanced recruitment to the endogenous ER target genes and increased expression following estrogen stimulation. Finally, breast cancer cells with stable overexpression of NRIF3 showed increased proliferation and enhanced anchorage-independent growth. These findings suggest that NRIF3-Ser28 is a physiologic target of Pak1 signaling and contributes to the enhanced NRIF3 co-activator activity, leading to coordinated potentiation of ERalpha transactivation, its target gene expression and estrogen responsiveness of breast cancer cells.
Collapse
|
42
|
|
43
|
Epping MT, Wang L, Plumb JA, Lieb M, Gronemeyer H, Brown R, Bernards R. A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2007; 104:17777-82. [PMID: 17968018 PMCID: PMC2077016 DOI: 10.1073/pnas.0702518104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Indexed: 11/18/2022] Open
Abstract
Understanding the pathways that are targeted by cancer drugs is instrumental for their rational use in a clinical setting. Inhibitors of histone deacetylases (HDACI) selectively inhibit proliferation of malignant cells and are used for the treatment of cancer, but their cancer selectivity is understood poorly. We conducted a functional genetic screen to address the mechanism(s) of action of HDACI. We report here that ectopic expression of two genes that act on retinoic acid (RA) signaling can cause resistance to growth arrest and apoptosis induced by HDACI of different chemical classes: the retinoic acid receptor alpha (RARalpha) and preferentially expressed antigen of melanoma (PRAME), a repressor of RA signaling. Treatment of cells with HDACI induced RA signaling, which was inhibited by RARalpha or PRAME expression. Conversely, RAR-deficient cells and PRAME-knockdown cells show enhanced sensitivity to HDACI in vitro and in mouse xenograft models. Finally, a combination of RA and HDACI acted synergistically to activate RA signaling and inhibit tumor growth. These experiments identify the RA pathway as a rate-limiting target of HDACI and suggest strategies to enhance the therapeutic efficacy of HDACI.
Collapse
Affiliation(s)
- Mirjam T. Epping
- *Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Liming Wang
- *Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jane A. Plumb
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research United Kingdom Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, United Kingdom; and
| | - Michele Lieb
- Department of Cell Biology and Signal Transduction, Institut de Genetique et de Biologie Moleculaire et Cellulaire/Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, BP 163, 67404 Illkirch Cedex Strasbourg, France
| | - Hinrich Gronemeyer
- Department of Cell Biology and Signal Transduction, Institut de Genetique et de Biologie Moleculaire et Cellulaire/Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, BP 163, 67404 Illkirch Cedex Strasbourg, France
| | - Robert Brown
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research United Kingdom Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, United Kingdom; and
| | - René Bernards
- *Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 2007; 72:799-809. [PMID: 17622575 DOI: 10.1124/mol.107.038794] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-kappaB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | |
Collapse
|
45
|
Yan X, Pérez E, Leid M, Schimerlik MI, de Lera AR, Deinzer ML. Deuterium exchange and mass spectrometry reveal the interaction differences of two synthetic modulators of RXRalpha LBD. Protein Sci 2007; 16:2491-501. [PMID: 17905826 PMCID: PMC2211688 DOI: 10.1110/ps.073019707] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Protein amide hydrogen/deuterium (H/D) exchange was used to compare the interactions of two antagonists, UVI 2112 and UVI 3003, with that of the agonist, 9-cis-retinoic acid, upon binding to the human retinoid X receptor alpha ligand-binding domain (hRXRalpha LBD) homodimer. Analysis of the H/D content by mass spectrometry showed that in comparison to 9-cis-retinoic acid, the antagonists provide much greater protection toward deuterium exchange-in throughout the protein, suggesting that the protein-antagonist complex adopts a more restricted conformation or ensemble of conformations in which solvent accesses to amide protons are reduced. A comparison between the two antagonists shows that UVI 3003 is more protective in the C-terminal region due to the extra hydrophobic interactions derived from the atoms in the benzene ring of the carboxylic acid chain. It was less protective within regions comprising peptides 271-278 and 326-330 due to differences in conformational orientation, and/or shorter carboxylic acid chain length. Decreased deuterium exchange-in in the segment 234-239 where the residues do not involve interactions with the ligand was observed with the two antagonists, but not with 9-cis-RA. The amide protons of helix 12 of the agonist- or antagonist-occupied protein in solution have the same deuterium exchange rates as the unliganded protein, supporting a suggestion made previously that helix 12 can cover the occupied binding cavity only with the cofactor present to adjust its location.
Collapse
Affiliation(s)
- Xuguang Yan
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- James C Fleet
- Department of Foods and Nutrition, Purdue University, 700 West State St., West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
47
|
Redmond KA, Nguyen TS, Ryan RO. All-trans-retinoic acid nanodisks. Int J Pharm 2007; 339:246-50. [PMID: 17412536 PMCID: PMC2045639 DOI: 10.1016/j.ijpharm.2007.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 01/19/2023]
Abstract
Nanodisks are nanoscale, disk-shaped phospholipid bilayers whose edge is stabilized by association of apolipoprotein molecules. Self-assembled ND particles enriched with all-trans-retinoic acid (ATRA) (phospholipid:ATRA molar ratio = 5.5:1) were generated wherein all reaction components were solubilized. ATRA-ND migrated as a single band (Stokes' diameter approximately 20 nm) on native gradient polyacrylamide gel electrophoresis. ATRA, phospholipid and apolipoprotein co-eluted from a Sepharose 6B gel filtration column, consistent with stable integration of ATRA into the ND particle milieu. Spectroscopic analysis of ATRA-ND in buffer yielded an absorbance spectrum characteristic of ATRA. ATRA-ND mediated time-dependent inhibition of cultured HepG2 cell growth more effectively than free ATRA. The nanoscale size of the formulation particles and the stable integration of biologically active ATRA suggest ND represent a potentially useful vehicle for solubilization and in vivo delivery of ATRA.
Collapse
Affiliation(s)
- Katherine A Redmond
- Center for Prevention of Obesity, Cardiovascular Disease and Diabetes, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
48
|
Ikeda M, Inoue S, Muramatsu M, Minatogawa Y. Characterization and identification of a steroid receptor-binding protein, SRB-RGS. Biol Pharm Bull 2007; 30:1056-64. [PMID: 17541154 DOI: 10.1248/bpb.30.1056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the cDNA of a novel steroid receptor-binding protein, SRB-RGS, which suppressed the estrogen receptor (ER)alpha-mediated and other promoter-driven transcriptional activities. This study revealed the interaction between the full-length SRB-RGS and full-length ERalpha or ERbeta by a coimmunoprecipitation assay. The full-length SRB-RGS and full-length ERalpha interacted in COS-7 cell by a mammalian two-hybrid system. The interaction between intrinsic SRB-RGS and ERs in the nuclear ER extract from the rat uteri was observed by the gel-shift assay. These results strongly suggested that SRB-RGS interacts with ERs bound to DNA (estrogen response element) in the nuclei of the cells. SRB-RGS suppressed very efficiently the ERalpha-, ERbeta-, and ERalpha+ERbeta-mediated transcriptional activities. Green fluorescence of enhanced green fluorescence protein (EGFP)-tagged SRB-RGS was localized both in the nucleus and in the cytoplasm. Intrinsic SRB-RGS was immunostained in the nucleus and the cytoplasm of HeLa cells. The putative SRB-RGS deduced from cDNA sequence was identified by the immunostaining and Western blotting by using the anti-SRB-RGS antibody. Overexpression of SRB-RGS induced the cell death in the HeLa cells. The nucleotide sequence of SRB-RGS cDNA that we cloned previously is identical with that of the newly isolated RGS3 cDNA. SRB-RGS could interact with ERs bound DNA in the nuclei of the cells and suppressed the ERs-mediated transcriptional activities.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- COS Cells
- Cell Death
- Cell Nucleus/metabolism
- Chloramphenicol O-Acetyltransferase/analysis
- Chloramphenicol O-Acetyltransferase/metabolism
- Chlorocebus aethiops
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Fluorescent Antibody Technique, Direct
- Green Fluorescent Proteins/metabolism
- HeLa Cells
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Microscopy, Confocal
- Protein Binding
- RGS Proteins
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Mitsunori Ikeda
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | | | | | | |
Collapse
|
49
|
Brtko J. Role of Retinoids and their Cognate Nuclear Receptors in Breast Cancer Chemoprevention. Cent Eur J Public Health 2007; 15:3-6. [PMID: 17491551 DOI: 10.21101/cejph.a3412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinoids are natural and synthetic compounds related to retinoic acid that act through interaction with two basic types of nuclear receptors: retinoic acid receptors (RARalpha, RARbeta and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta and RXRgamma) as ligand-activated, DNA-binding, transacting, transcription-modulating proteins involved in a general molecular mechanism responsible for transcriptional responses in target genes. Function of retinoids in organisms affecting broad spectrum of various biochemical and molecular biology reactions is unimaginable without fully functional nuclear receptors--retinoid inducible transcription factors. Retinoic acids exert tumour-suppressive activity due to their antiproliferative and apoptosis-inducing effects. A number of novel retinoids and rexinoids acting through cognate nuclear receptors have been tested both in vitro and in vivo, using cell culture or animal models for breast cancer. This article briefly summarizes the role and properties of nuclear retinoid/rexinoid receptors as well as selected effects of retinoic acids or selected synthetic retinoids and rexinoids with respect to their potential use in chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Július Brtko
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
50
|
Bitter GA. Regulation of human estrogen receptor alpha-mediated gene transactivation in Saccharomyces cerevisiae by human coactivator and corepressor proteins. J Steroid Biochem Mol Biol 2007; 103:189-95. [PMID: 17194583 DOI: 10.1016/j.jsbmb.2006.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/10/2006] [Indexed: 11/17/2022]
Abstract
Human estrogen receptor alpha (ERalpha)-mediated transcription activation was evaluated in the yeast Saccharomyces cerevisiae using both the native ERalpha and a G400V variant. A previous study demonstrated that coexpression of human SRC-1, a potent stimulator of ERalpha function in mammalian cells, potentiated ERalpha-mediated gene expression in yeast over five-fold in an E(2)-dependent manner. In the present study, two additional human coactivator proteins were shown to potentiate ERalpha-mediated gene expression in yeast. SRC2 potentiated transactivation two- to three-fold while SRC3 potentiated transactivation five- to eight-fold. Both human coactivators potentiated both the native ERalpha and the G400V variant in an E(2)-dependent manner. The effect of a human corepressor protein was also evaluated in yeast. Repressor of estrogen receptor activity (REA) did not affect E(2)-induced transactivation by ERalpha (either isoform). However, in a strain that coexpressed human SRC1, REA reduced E(2)-induced transactivation to that observed with ERalpha alone. Furthermore, repression of SRC1 potentiation was specific for the native ERalpha since REA had no effect on SRC1 potentiation of the G400V variant. Additionally, REA repression was specific for SRC1 since potentiation of ERalpha (either isoform) transactivation by SRC2 and SRC3 was unaffected by coexpression of REA. These results support previous observations in mammalian cells that REA does not prevent ERalpha from binding to DNA but does inhibit potentiation of ERalpha-mediated transactivation by SRC1. The results in the present study further characterize REA-mediated repression, and demonstrate the utility of this yeast system for dissecting molecular mechanisms involved in regulating gene transactivation by human ERalpha.
Collapse
|