1
|
Fu X, Zhang F, Dong X, Pu L, Feng Y, Xu Y, Gao F, Liang T, Kang J, Sun H, Hong T, Liu Y, Zhou H, Jiang J, Yin D, Hu X, Wang DZ, Ding J, Chen J. Adapting cytoskeleton-mitochondria patterning with myocyte differentiation by promyogenic PRR33. Cell Death Differ 2025; 32:177-193. [PMID: 39147882 PMCID: PMC11742405 DOI: 10.1038/s41418-024-01363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor. Depletion of Prr33 in C2C12 represses myoblast differentiation. Genetic deletion of Prr33 in mice reduces myofiber size and decreases muscle strength. The Prr33 mutant mice also exhibit impaired myogenesis and defects in muscle regeneration in response to injury. Interactome and transcriptome analyses reveal that PRR33 regulates cytoskeleton and mitochondrial function. Remarkably, PRR33 interacts with DESMIN, a key regulator of cytoskeleton-mitochondria organization in muscle cells. Abrogation of PRR33 in myocytes substantially abolishes the interaction of DESMIN filaments with mitochondria, leading to abnormal intracellular accumulation of DESMIN and mitochondrial disorganization/dysfunction in myofibers. Together, our findings demonstrate that PRR33 and DESMIN constitute an important regulatory module coordinating mitochondrial organization with muscle differentiation.
Collapse
Affiliation(s)
- Xuyang Fu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianmeng Kang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongke Sun
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yunxia Liu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hongmei Zhou
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Jiang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Deling Yin
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xinyang Hu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
2
|
Callan-Sidat A, Zewdu E, Cavallaro M, Liu J, Hebenstreit D. N-terminal tagging of RNA Polymerase II shapes transcriptomes more than C-terminal alterations. iScience 2024; 27:109914. [PMID: 38799575 PMCID: PMC11126984 DOI: 10.1016/j.isci.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
RNA polymerase II (Pol II) has a C-terminal domain (CTD) that is unstructured, consisting of a large number of heptad repeats, and whose precise function remains unclear. Here, we investigate how altering the CTD's length and fusing it with protein tags affects transcriptional output on a genome-wide scale in mammalian cells at single-cell resolution. While transcription generally appears to occur in burst-like fashion, where RNA is predominantly made during short bursts of activity that are interspersed with periods of transcriptional silence, the CTD's role in shaping these dynamics seems gene-dependent; global patterns of bursting appear mostly robust to CTD alterations. Introducing protein tags with defined structures to the N terminus cause transcriptome-wide effects, however. We find the type of tag to dominate characteristics of the resulting transcriptomes. This is possibly due to Pol II-interacting factors, including non-coding RNAs, whose expression correlates with the tags. Proteins involved in liquid-liquid phase separation appear prominently.
Collapse
Affiliation(s)
- Adam Callan-Sidat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Emmanuel Zewdu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Massimo Cavallaro
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Juntai Liu
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
3
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Fang X, Ye H, Zhang S, Guo L, Xu Y, Zhang D, Nie Q. Investigation of potential genetic factors for growth traits in yellow-feather broilers using weighted single-step genome-wide association study. Poult Sci 2023; 102:103034. [PMID: 37657249 PMCID: PMC10480639 DOI: 10.1016/j.psj.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Yellow-feather broilers take a large portion of poultry industry in China due to its meat characteristics. Improving the growth traits of yellow-feathered broilers will have great significance for the Chinese poultry market. The current study was designed to investigate the potential genetic factors using the weighted single-step genome-wide association study (wssGWAS) method, which takes consideration of more factors including pedigree, sex, environment and has more accuracy than traditional GWAS. The yellow-feather dwarf chickens from Wens Nanfang Poultry Breeding Co. Ltd. were revolved to recode 9 growth traits: Average daily gain (ADG), body weight (BW) at 45 d, 49 d, 56 d, 63 d, 70 d, 77 d, 84 d, 91 d for analysis. For the results, the region 4.63 to 5.03 Mb on chromosome 15, which was the QTL overlapped in BW45, BW49, BW56, BW63, BW84, might be the crucial genetic region for growth traits. Seven GO terms and 3 KEGG pathways, GO:0005200, GO:0005882, GO:0045111, GO:0099513, GO:0099081, GO:0099512, GO:0099080, KEGG:gga04020, KEGG:gga04540, KEGG:gga04210, were detected to relevant with growth traits. The genes enriched in these biological processes (NRAS, TUBB1, ADORA2B, NTRK3, NGF, TNNC2, F-KER, LOC429492, LOC431325, LOC431324, LOC396480) might have the function in growth of yellow-feather broilers.
Collapse
Affiliation(s)
- Xiang Fang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Haoqiang Ye
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yibin Xu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
5
|
Lalonde R, Strazielle C. The DST gene in neurobiology. J Neurogenet 2023; 37:131-138. [PMID: 38465459 DOI: 10.1080/01677063.2024.2319880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
DST is a gene whose alternative splicing yields epithelial, neuronal, and muscular isoforms. The autosomal recessive Dstdt (dystonia musculorum) spontaneous mouse mutation causes degeneration of spinocerebellar tracts as well as peripheral sensory nerves, dorsal root ganglia, and cranial nerve ganglia. In addition to Dstdt mutants, axonopathy and neurofilament accumulation in perikarya are features of two other murine lines with spontaneous Dst mutations, targeted Dst knockout mice, DstTg4 transgenic mice carrying two deleted Dst exons, DstGt mice with trapped actin-binding domain-containing isoforms, and conditional Schwann cell-specific Dst knockout mice. As a result of nerve damage, Dstdt mutants display dystonia and ataxia, as seen in several genetically modified models and their motor coordination deficits have been quantified along with the spontaneous Dst nonsense mutant, the conditional Schwann cell-specific Dst knockout, the conditional DstGt mutant, and the Dst-b isoform specific Dst mutant. Recent findings in humans have associated DST mutations of the Dst-b isoform with hereditary sensory and autonomic neuropathies type 6 (HSAN-VI). These data should further encourage the development of genetic techniques to treat or prevent ataxic and dystonic symptoms.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
6
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
7
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
8
|
Prokop A. A common theme for axonopathies? The dependency cycle of local axon homeostasis. Cytoskeleton (Hoboken) 2021; 78:52-63. [PMID: 33713552 DOI: 10.1002/cm.21657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The number of acquired or inherited conditions leading to axon degeneration (from now on referred to as axonopathies) is vast. To diagnose patients, clinicians use a range of indicators including physiology, morphology, family and patient history, as well as genetics, with the specific location of the lesion within the nervous system being a prominent feature. For the neurobiologist, these criteria are often unsatisfactory, and key questions remain unanswered. For example, does it make sense that different axonopathies affect distinct neuron groups through distinct mechanisms? Would it not be more likely that there are common routes to axon degeneration? In this opinion piece, I shall pose this fundamental question and try to find answers that are hopefully thought-provoking and trigger some conceptual rethinking in the field. I will conclude by describing the 'dependency cycle of axon homeostasis' as a new approach to make sense of the intricate connections of axon biology and physiology, also suggesting that different axonopathies might share common paths to axon degeneration.
Collapse
Affiliation(s)
- Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Pinto-Costa R, Sousa MM. Microtubules, actin and cytolinkers: how to connect cytoskeletons in the neuronal growth cone. Neurosci Lett 2021; 747:135693. [PMID: 33529653 DOI: 10.1016/j.neulet.2021.135693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/20/2023]
Abstract
Cytolinkers ensure the integration of the different cytoskeleton components in the neuronal growth cone during development and in the course of axon regeneration. In neurons, an integrated skeleton guarantees appropriate function, and connectivity of high order circuits. Over the past years, several cytoskeleton regulatory proteins with actin-microtubule crosslinking activity have been identified. In neurons, the importance of spectrins, formins and other cytolinkers capable of coupling actin and microtubules has been extensively highlighted during axon outgrowth and guidance. In this Review, we discuss the current knowledge on cytolinkers specifically expressed in the neuronal growth cone of developing and regenerating axons.
Collapse
Affiliation(s)
- Rita Pinto-Costa
- Nerve Regeneration Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Monica Mendes Sousa
- Nerve Regeneration Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
10
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
11
|
Evidence of association of the DISC1 interactome gene set with schizophrenia from GWAS. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109729. [PMID: 31398428 DOI: 10.1016/j.pnpbp.2019.109729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
Abstract
DISC1 was discovered as a gene disrupted by a balanced translocation in a large pedigree that segregated with major mental disorders, including schizophrenia. Further attempts to find genetic association with schizophrenia were inconclusive. Most of the biology of DISC1 was inferred from the functionality of its protein partners. Recently, a gene set constituted by DISC1 and several of its partners has been associated with cognitive performance during development, a well-known schizophrenia endophenotype, by means of burden test of rare disruptive variants. Here, we performed a gene set analysis using common variants from the largest schizophrenia genome-wide association study of the Psychiatric Genomics Consortium to test if this gene set is associated with schizophrenia. The main test was based on the MAGMA software. Several additional tests were performed to analyze the robustness of the main findings. The DISC1 interactome gene set was associated with schizophrenia (P = .0056), confirmed by an additional method (INRICH). This association was robust to removal of the major histocompatibility complex region, different definitions of gene boundaries, or different statistical gene models. Conditional analysis revealed that the association was not solely explained by higher expression in brain. Three genes from the gene set, CLIC1, DST, and PDE4B, were associated with schizophrenia at the gene level. Consideration of other DISC1 interactome gene sets revealed the importance of gene set definition. Therefore, we present the first evidence from genome-wide association studies of the role of DISC1 and interacting partners in schizophrenia susceptibility, reconciling genetic and molecular biology data.
Collapse
|
12
|
Piao F, Chen Y, Yu L, Shi X, Liu X, Jiang L, Yang G, Wang N, Gao B, Zhang C. 2,5-hexanedione-induced deregulation of axon-related microRNA expression in rat nerve tissues. Toxicol Lett 2019; 320:95-102. [PMID: 31760062 DOI: 10.1016/j.toxlet.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Exposure to organic solvent in industry, including n-hexane is correlated with central-peripheral axonopathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). However, the underlying mechanism is still largely unknown. Recently identified microRNAs (miRNAs) may play important roles in toxicant exposure and in the process of toxicant-induced neuropathys. To examine the role of miRNAs in HD-induced toxicity, neuropathic animal model was successfully built. miRNA microarray analysis revealed 105 differentially expressed miRNAs after HD exposure. Bioinformatics analysis showed that "Axon" and "Neurotrophin Signaling Pathway" was the top significant GO term and pathway, respectively. 7 miRNAs both related to "Axon" and "Neurotrophin Signaling Pathway" were screened out and further confirmed by Real-Time PCR. Correspondingly, the deregulation expression levels of proteins of four target genes (GSK3β, Map3k1, BDNF and MAP1B) were further confirmed via western blot, verifying the results of gene target analysis. Taken together, our results showed that the axon-related miRNAs to be associated with MAP1B or neurotrophin signal pathways changed in nerve tissues following HD exposure. These miRNAs may play important roles in HD-induced neurotoxicity.
Collapse
Affiliation(s)
- Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, PR China; Comprehensive Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian 116044, PR China
| | - Yang Chen
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian 116044, PR China
| | - Li Yu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, PR China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, PR China
| | - Liping Jiang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, PR China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, PR China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, PR China
| | - Bihu Gao
- Department of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116044, PR China.
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
13
|
Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019; 14:3875-3892. [PMID: 31213807 PMCID: PMC6539172 DOI: 10.2147/ijn.s205574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022] Open
Abstract
Multipotent mesenchymal stem cells have shown great promise for application in regenerative medicine owing to their particular therapeutic effects, such as significant self-renewability, low immunogenicity, and ability to differentiate into a variety of specialized cells. However, there remain certain complicated and unavoidable problems that limit their further development and application. One of the challenges is to noninvasively monitor the delivery and biodistribution of transplanted stem cells during treatment without relying on behavioral endpoints or tissue histology, and it is important to explore the potential mechanisms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles (NPs) and their corresponding imaging methods have been developed recently and have made great progress. In this review, we mainly discuss NPs used to label stem cells and their toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing challenges in this field.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
14
|
Lynch-Godrei A, De Repentigny Y, Gagnon S, Trung MT, Kothary R. Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Hum Mol Genet 2019; 27:3598-3611. [PMID: 29982604 DOI: 10.1093/hmg/ddy250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - My Tran Trung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada
| |
Collapse
|
15
|
Fortugno P, Angelucci F, Cestra G, Camerota L, Ferraro AS, Cordisco S, Uccioli L, Castiglia D, De Angelis B, Kurth I, Kornak U, Brancati F. Recessive mutations in the neuronal isoforms of DST
, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum Mutat 2018; 40:106-114. [DOI: 10.1002/humu.23678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Fortugno
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Francesco Angelucci
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Gianluca Cestra
- IBPM; Istituto di Biologia e Patologia Molecolari; CNR; Rome Italy
- Deptartment of Biology and Biotechnology; University of Rome “Sapienza,”; Rome Italy
| | - Letizia Camerota
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | | | - Sonia Cordisco
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Luigi Uccioli
- Department of Systems Medicine; University of Rome Tor Vergata; Rome Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Barbara De Angelis
- Department of Plastic and Reconstructive Surgery; University of Rome “Tor Vergata,”; Rome Italy
| | - Ingo Kurth
- Institute of Human Genetics; Medical Faculty; RWTH Aachen University; Aachen Germany
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik and Berlin-Brandenburg Center for Regenerative Therapies; Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
- FG Development and Disease; Max-Planck-Institut fuer Molekulare Genetik; Berlin Germany
| | - Francesco Brancati
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| |
Collapse
|
16
|
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. LAB ON A CHIP 2017; 17:4134-4147. [PMID: 29114689 DOI: 10.1039/c7lc00802c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight into the interactions occurring at the cell-material interface. The success of such an approach is, however, largely dependent on the ability to miniaturize the biomaterials as well as on the choice of the assay used to study the cell-material interactions. In this work, we developed a microfluidic device, the main component of which is made of a widely used biocompatible polymer, polylactic acid (PLA). This device enabled cell culture under different fluidic regimes, including perfusion and diffusion. Through a combination of photolithography, two-photon polymerization and hot embossing, it was possible to microstructure the surface of the cell culture chamber of the device with highly defined geometrical features. Furthermore, using pyramids with different heights and wall microtopographies as an example, adhesion, morphology and distribution of human MG63 osteosarcoma cells were studied. The results showed that both the height of the topographical features and the microstructural properties of their walls affected cell spreading and distribution. This proof-of-concept study shows that the platform developed here is a useful tool for studying interactions between cells and clinically relevant biomaterials under controlled fluidic regimes.
Collapse
Affiliation(s)
- D Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | | | | | | |
Collapse
|
17
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
18
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
20
|
Ali A, Hu L, Zhao F, Qiu W, Wang P, Ma X, Zhang Y, Chen L, Qian A. BPAG1, a distinctive role in skin and neurological diseases. Semin Cell Dev Biol 2017. [PMID: 28627382 DOI: 10.1016/j.semcdb.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectraplakins are multifunctional cytoskeletal linker proteins that act as important communicators, connecting cytoskeletal components with each other and to cellular junctions. Bullous pemphigoid antigen 1 (BPAG1)/dystonin is a member of spectraplakin family and expressed in various tissues. Alternative splicing of BPAG1 gene produces various isoforms with unique structure and domains. BPAG1 plays crucial roles in numerous biological processes, such as cytoskeleton organization, cell polarization, cell adhesion, and cell migration as well as signaling transduction. Genetic mutation of BPAG1 isoforms is the miscreant of epidermolysis bullosa and multifarious, destructive neurological diseases. In this review, we summarize the recent advances of BPAG1's role in various biological processes and in skin and neurological diseases.
Collapse
Affiliation(s)
- Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Wuxia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lei Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China.
| |
Collapse
|
21
|
Lane TR, Fuchs E, Slep KC. Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Structure 2017; 25:1130-1138.e6. [PMID: 28602822 DOI: 10.1016/j.str.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn2+. While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn2+-binding site, mediate MT binding.
Collapse
Affiliation(s)
- Thomas R Lane
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Kevin C Slep
- Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
23
|
Amber KT, Zikry J, Hertl M. A multi-hit hypothesis of bullous pemphigoid and associated neurological disease: Is HLA-DQB1*03:01, a potential link between immune privileged antigen exposure and epitope spreading? HLA 2017; 89:127-134. [PMID: 28101965 DOI: 10.1111/tan.12960] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Bullous pemphigoid (BP) is the most common autoimmune blistering disease and is linked to IgG recognition of 2 hemidesmosomal antigens, that is, BP230 (BP antigen 1) and BP180 (BP antigen 2, collagen XVII). The association of BP with other systemic diseases, particularly neurocognitive diseases, provides a potential clue in the underlying pathogenesis of BP. The role of HLA-DQB1*03:01 binding to the immunogenic portion of BP180 provides a potential mechanism by which exposure to neuronal collagen BP180 may lead to cutaneous disease. In our proposed multi-hit hypothesis, patients with underlying neuronal disease are exposed to previously sequestered self-antigen, most importantly BP180. Patients with the HLA-DQB1*03:01 allele show an increased T-cell avidity to several epitopes of BP180, particularly the BP180-NC16a domain. Thus, they have a genetic susceptibility to developing BP upon exposure to the target antigen. In a patient with dysregulation of Th1/Th2 balance, anergy is lost and T-cells are subsequently primed resulting in the development of functional autoimmunity against the BP180-NC16a domain leading to clinically overt disease.
Collapse
Affiliation(s)
- K T Amber
- Department of Dermatology, University of California Irvine, Irvine, California
| | - J Zikry
- Department of Dermatology, University of California Irvine, Irvine, California
| | - M Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Germany
| |
Collapse
|
24
|
Qu Y, Hahn I, Webb SED, Pearce SP, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 2016; 28:296-308. [PMID: 27881663 PMCID: PMC5231898 DOI: 10.1091/mbc.e16-10-0727] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced rings of cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization. Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.
Collapse
Affiliation(s)
- Yue Qu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen E D Webb
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Simon P Pearce
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom.,School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andreas Prokop
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
25
|
Kirkcaldie MTK, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat 2016; 76:9-18. [PMID: 27233660 DOI: 10.1016/j.jchemneu.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to injury, and require specific consideration in evaluating research models of neurotrauma.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
26
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2015; 2016:7920358. [PMID: 26839568 PMCID: PMC4709786 DOI: 10.1155/2016/7920358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.
Collapse
|
28
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
29
|
Abstract
The neuronal isoforms of bullous pemphigoid antigen 1 (BPAG1, and also known as dystonin) are a group of large cytoskeletal linker proteins predominantly expressed in sensory neurons. The major neuronal isoforms consist of the spectraplakins (BPAG1/dystonin-a1, -a2, -a3), which have an N-terminus actin-binding domain and a C-terminus microtubule-binding domain. These proteins have crucial roles in cytoskeletal organization and stability, organelle integrity, and intracellular transport. BPAG1 loss-of-function in mice results in a lethal movement disorder known as dystonia musculorum (dt), which is likely caused by rapid sensory neuron degeneration. A human disease termed hereditary and sensory autonomic neuropathy type VI was also identified to be associated with mutations in the BPAG1 gene (DST). This chapter provides an overview of the type of experiments used for analysis of the different isoforms of BPAG1.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, Canada.
| |
Collapse
|
30
|
Hess EJ, Jinnah H. Mouse Models of Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Patel DM, Dubash AD, Kreitzer G, Green KJ. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. ACTA ACUST UNITED AC 2014; 206:779-97. [PMID: 25225338 PMCID: PMC4164953 DOI: 10.1083/jcb.201312110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms by which microtubule plus ends interact with regions of cell-cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP-EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell-cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP-EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.
Collapse
Affiliation(s)
- Dipal M Patel
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Adi D Dubash
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Geri Kreitzer
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065
| | - Kathleen J Green
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
32
|
Poliakova K, Adebola A, Leung CL, Favre B, Liem RKH, Schepens I, Borradori L. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts. PLoS One 2014; 9:e107535. [PMID: 25244344 PMCID: PMC4171495 DOI: 10.1371/journal.pone.0107535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Collapse
Affiliation(s)
- Kseniia Poliakova
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- * E-mail:
| | - Adijat Adebola
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Conrad L. Leung
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Bertrand Favre
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ronald K. H. Liem
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Isabelle Schepens
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Luca Borradori
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
33
|
Bouameur JE, Favre B, Borradori L. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol 2013; 134:885-894. [PMID: 24352042 DOI: 10.1038/jid.2013.498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Abstract
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bertrand Favre
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Luca Borradori
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Shabbir SH, Cleland MM, Goldman RD, Mrksich M. Geometric control of vimentin intermediate filaments. Biomaterials 2013; 35:1359-66. [PMID: 24268665 DOI: 10.1016/j.biomaterials.2013.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
Significant efforts have addressed the role of vimentin intermediate filaments (VIF) in cell motility, shape, adhesion and their connections to microfilaments (MF) and microtubules (MT). The present work uses micropatterned substrates to control the shapes of mouse fibroblasts and demonstrates that the cytoskeletal elements are dependent on each other and that unlike MF, VIF are globally controlled. For example, both square and circle shaped cells have a similar VIF distribution while MF distributions in these two shapes are quite different and depend on the curvature of the shape. Furthermore, in asymmetric and polarized shaped cells VIF avoid the sharp edges where MF are highly localized. Experiments with vimentin null mouse embryonic fibroblasts (MEFs) adherent to polarized (teardrop) and un-polarized (dumbbell) patterns show that the absence of VIF alters microtubule organization and perturbs cell polarity. The results of this study also demonstrate the utility of patterned substrates for quantitative studies of cytoskeleton organization in adherent cells.
Collapse
Affiliation(s)
- Shagufta H Shabbir
- Departments of Biomedical Engineering and Chemistry, Northwestern University, IL, United States
| | - Megan M Cleland
- Department of Cell and Molecular Biology, Northwestern University, IL, United States
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University, IL, United States
| | - Milan Mrksich
- Departments of Biomedical Engineering and Chemistry, Northwestern University, IL, United States.,Department of Cell and Molecular Biology, Northwestern University, IL, United States
| |
Collapse
|
35
|
Costas J, Suárez-Rama JJ, Carrera N, Paz E, Páramo M, Agra S, Brenlla J, Ramos-Ríos R, Arrojo M. Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs. Ann Hum Genet 2013; 77:504-12. [PMID: 23909765 DOI: 10.1111/ahg.12037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 06/25/2013] [Indexed: 02/01/2023]
Abstract
A balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia.
Collapse
Affiliation(s)
- Javier Costas
- Servizo Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
37
|
Valencia RG, Walko G, Janda L, Novacek J, Mihailovska E, Reipert S, Andrä-Marobela K, Wiche G. Intermediate filament-associated cytolinker plectin 1c destabilizes microtubules in keratinocytes. Mol Biol Cell 2013; 24:768-84. [PMID: 23363598 PMCID: PMC3596248 DOI: 10.1091/mbc.e12-06-0488] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transition of microtubules (MTs) from an assembled to a disassembled state plays an essential role in several cellular functions. While MT dynamics are often linked to those of actin filaments, little is known about whether intermediate filaments (IFs) have an influence on MT dynamics. We show here that plectin 1c (P1c), one of the multiple isoforms of the IF-associated cytolinker protein plectin, acts as an MT destabilizer. We found that MTs in P1c-deficient (P1c(-/-)) keratinocytes are more resistant toward nocodazole-induced disassembly and display increased acetylation. In addition, live imaging of MTs in P1c(-/-), as well as in plectin-null, cells revealed decreased MT dynamics. Increased MT stability due to P1c deficiency led to changes in cell shape, increased velocity but loss of directionality of migration, smaller-sized focal adhesions, higher glucose uptake, and mitotic spindle aberrations combined with reduced growth rates of cells. On the basis of ex vivo and in vitro experimental approaches, we suggest a mechanism for MT destabilization in which isoform-specific binding of P1c to MTs antagonizes the MT-stabilizing and assembly-promoting function of MT-associated proteins through an inhibitory function exerted by plectin's SH3 domain. Our results open new perspectives on cytolinker-coordinated IF-MT interaction and its physiological significance.
Collapse
Affiliation(s)
- Rocio G Valencia
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Cellular and Molecular Biology of Neuronal Dystonin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:85-120. [DOI: 10.1016/b978-0-12-405210-9.00003-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Herpesvirus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress. J Virol 2012; 87:2857-67. [PMID: 23269794 DOI: 10.1128/jvi.02676-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that travels long distances through cells using the microtubule network. Its 125-nm-diameter capsid is a large cargo which efficiently recruits molecular motors for movement. Upon entry, capsids reach the centrosome by minus-end-directed transport. From there, they are believed to reach the nucleus by plus-end-directed transport. Plus-end-directed transport is also important during egress, when capsids leave the nucleus to reach the site of envelopment in the cytoplasm. Although capsid interactions with dynein and kinesins have been described in vitro, the actual composition of the cellular machinery recruited by herpesviruses for capsid transport in infected cells remains unknown. Here, we identify the spectraplakin protein, dystonin/BPAG1, an important cytoskeleton cross-linker involved in microtubule-based transport, as a binding partner of the HSV-1 protein pUL37, which has been implicated in capsid transport. Viral replication is delayed in dystonin-depleted cells, and, using video microscopy of living infected cells, we show that dystonin depletion strongly inhibits capsid movement in the cytoplasm during egress. This study provides new insights into the cellular requirements for HSV-1 capsid transport and identifies dystonin as a nonmotor protein part of the transport machinery.
Collapse
|
41
|
Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J Neurosci 2012; 32:9143-58. [PMID: 22764224 DOI: 10.1523/jneurosci.0416-12.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correct outgrowth of axons is essential for the development and regeneration of nervous systems. Axon growth is primarily driven by microtubules. Key regulators of microtubules in this context are the spectraplakins, a family of evolutionarily conserved actin-microtubule linkers. Loss of function of the mouse spectraplakin ACF7 or of its close Drosophila homolog Short stop/Shot similarly cause severe axon shortening and microtubule disorganization. How spectraplakins perform these functions is not known. Here we show that axonal growth-promoting roles of Shot require interaction with EB1 (End binding protein) at polymerizing plus ends of microtubules. We show that binding of Shot to EB1 requires SxIP motifs in Shot's C-terminal tail (Ctail), mutations of these motifs abolish Shot functions in axonal growth, loss of EB1 function phenocopies Shot loss, and genetic interaction studies reveal strong functional links between Shot and EB1 in axonal growth and microtubule organization. In addition, we report that Shot localizes along microtubule shafts and stabilizes them against pharmacologically induced depolymerization. This function is EB1-independent but requires net positive charges within Ctail which essentially contribute to the microtubule shaft association of Shot. Therefore, spectraplakins are true members of two important classes of neuronal microtubule regulating proteins: +TIPs (tip interacting proteins; plus end regulators) and structural MAPs (microtubule-associated proteins). From our data we deduce a model that relates the different features of the spectraplakin C terminus to the two functions of Shot during axonal growth.
Collapse
|
42
|
Suozzi KC, Wu X, Fuchs E. Spectraplakins: master orchestrators of cytoskeletal dynamics. J Cell Biol 2012; 197:465-75. [PMID: 22584905 PMCID: PMC3352950 DOI: 10.1083/jcb.201112034] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/23/2012] [Indexed: 01/26/2023] Open
Abstract
The dynamics of different cytoskeletal networks are coordinated to bring about many fundamental cellular processes, from neuronal pathfinding to cell division. Increasing evidence points to the importance of spectraplakins in integrating cytoskeletal networks. Spectraplakins are evolutionarily conserved giant cytoskeletal cross-linkers, which belong to the spectrin superfamily. Their genes consist of multiple promoters and many exons, yielding a vast array of differential splice forms with distinct functions. Spectraplakins are also unique in their ability to associate with all three elements of the cytoskeleton: F-actin, microtubules, and intermediate filaments. Recent studies have begun to unveil their role in a wide range of processes, from cell migration to tissue integrity.
Collapse
Affiliation(s)
- Kathleen C. Suozzi
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Xiaoyang Wu
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
43
|
Shin J, Yoo CH, Lee J, Cha M. Cell response induced by internalized bacterial magnetic nanoparticles under an external static magnetic field. Biomaterials 2012; 33:5650-7. [PMID: 22571804 DOI: 10.1016/j.biomaterials.2012.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Magnetic nanoparticles are widely used in bioapplications such as imaging and targeting tool. Their magnetic nature allows for the more efficient bioapplications by an external field gradient. However their combined effects have not yet been extensively characterized. Herein, we first demonstrate the biological effects of the communications between internalized bacterial magnetic nanoparticles (BMPs) and an external static magnetic field (SMF) on a standard human cell line. Combination of the BMPs and SMF act as the key factor leading to the alteration of cell structure and the enhanced cell growth. Also, their interaction reduced the apoptotic efficiency of human tumor cells induced by anticancer drugs. Microarray analysis suggests that these phenomena were caused by the alterations of GPCRs-mediated signal transduction originated in the interaction of internalized BMPs and the external SMF. Our findings may offer new approach for targeted cell therapy with the advantage of controlling cell viability by magnetic stimulation.
Collapse
Affiliation(s)
- Jaeha Shin
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
44
|
Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB, Elpeleg O. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol 2012; 71:569-72. [DOI: 10.1002/ana.23524] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Wang W, Lundin VF, Millan I, Zeng A, Chen X, Yang J, Allen E, Chen N, Bach G, Hsu A, Maloney MT, Kapur M, Yang Y. Nemitin, a novel Map8/Map1s interacting protein with Wd40 repeats. PLoS One 2012; 7:e33094. [PMID: 22523538 PMCID: PMC3327699 DOI: 10.1371/journal.pone.0033094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/03/2012] [Indexed: 11/18/2022] Open
Abstract
In neurons, a highly regulated microtubule cytoskeleton is essential for many cellular functions. These include axonal transport, regional specialization and synaptic function. Given the critical roles of microtubule-associated proteins (MAPs) in maintaining and regulating microtubule stability and dynamics, we sought to understand how this regulation is achieved. Here, we identify a novel LisH/WD40 repeat protein, tentatively named nemitin (neuronal enriched MAP interacting protein), as a potential regulator of MAP8-associated microtubule function. Based on expression at both the mRNA and protein levels, nemitin is enriched in the nervous system. Its protein expression is detected as early as embryonic day 11 and continues through adulthood. Interestingly, when expressed in non-neuronal cells, nemitin displays a diffuse pattern with puncta, although at the ultrastructural level it localizes along the microtubule network in vivo in sciatic nerves. These results suggest that the association of nemitin to microtubules may require an intermediary protein. Indeed, co-expression of nemitin with microtubule-associated protein 8 (MAP8) results in nemitin losing its diffuse pattern, instead decorating microtubules uniformly along with MAP8. Together, these results imply that nemitin may play an important role in regulating the neuronal cytoskeleton through an interaction with MAP8.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Victor F. Lundin
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ivan Millan
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anne Zeng
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xinyu Chen
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Elizabeth Allen
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ningna Chen
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gillian Bach
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrew Hsu
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael T. Maloney
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mridu Kapur
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yanmin Yang
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Ryan SD, Bhanot K, Ferrier A, De Repentigny Y, Chu A, Blais A, Kothary R. Microtubule stability, Golgi organization, and transport flux require dystonin-a2-MAP1B interaction. ACTA ACUST UNITED AC 2012; 196:727-42. [PMID: 22412020 PMCID: PMC3308695 DOI: 10.1083/jcb.201107096] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Loss of interaction between the dystonin-a2 isoform and the microtubule-associated protein MAP1B induces microtubule instability and trafficking defects that may underlie certain neuropathies. Loss of function of dystonin cytoskeletal linker proteins causes neurodegeneration in dystonia musculorum (dt) mutant mice. Although much investigation has focused on understanding dt pathology, the diverse cellular functions of dystonin isoforms remain poorly characterized. In this paper, we highlight novel functions of the dystonin-a2 isoform in mediating microtubule (MT) stability, Golgi organization, and flux through the secretory pathway. Using dystonin mutant mice combined with isoform-specific loss-of-function analysis, we found dystonin-a2 bound to MT-associated protein 1B (MAP1B) in the centrosomal region, where it maintained MT acetylation. In dt neurons, absence of the MAP1B–dystonin-a2 interaction resulted in altered MAP1B perikaryal localization, leading to MT deacetylation and instability. Deacetylated MT accumulation resulted in Golgi fragmentation and prevented anterograde trafficking via motor proteins. Maintenance of MT acetylation through trichostatin A administration or MAP1B overexpression mitigated the observed defect. These cellular aberrations are apparent in prephenotype dorsal root ganglia and primary sensory neurons from dt mice, suggesting they are causal in the disorder.
Collapse
Affiliation(s)
- Scott D Ryan
- Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Ryan SD, Ferrier A, Sato T, O'Meara RW, De Repentigny Y, Jiang SX, Hou ST, Kothary R. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Mol Biol Cell 2012; 23:553-66. [PMID: 22190742 PMCID: PMC3279385 DOI: 10.1091/mbc.e11-06-0573] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/26/2011] [Accepted: 12/12/2011] [Indexed: 12/16/2022] Open
Abstract
Dystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins. ER stress subsequently leads to sensory neurodegeneration through induction of a proapoptotic caspase cascade. dt sensory neurons display neurodegenerative pathologies, including Ca(2+) dyshomeostasis, unfolded protein response (UPR) induction, caspase activation, and apoptosis. Isoform-specific loss-of-function analysis attributes these neurodegenerative pathologies to specific loss of dystonin-a2. Inhibition of either UPR or caspase signaling promotes the viability of cells deficient in dystonin. This study provides insight into the mechanism of dt neuropathology and proposes a role for dystonin-a2 as a mediator of normal ER structure and function.
Collapse
Affiliation(s)
- Scott D. Ryan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Andrew Ferrier
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tadasu Sato
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Division of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Ryan W. O'Meara
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Susan X. Jiang
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Sheng T. Hou
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
48
|
Hnia K, Tronchère H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 2010; 121:70-85. [PMID: 21135508 DOI: 10.1172/jci44021] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/13/2010] [Indexed: 12/27/2022] Open
Abstract
Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy. Here, we demonstrate that myotubularin (MTM1), which is mutated in individuals with X-linked centronuclear myopathy (XLCNM; also known as myotubular myopathy), is a desmin-binding protein and provide evidence for direct regulation of desmin by MTM1 in vitro and in vivo. XLCNM-causing mutations in MTM1 disrupted the MTM1-desmin complex, resulting in abnormal IF assembly and architecture in muscle cells and both mouse and human skeletal muscles. Adeno-associated virus-mediated ectopic expression of WT MTM1 in Mtm1-KO muscle reestablished normal desmin expression and localization. In addition, decreased MTM1 expression and XLCNM-causing mutations induced abnormal mitochondrial positioning, shape, dynamics, and function. We therefore conclude that MTM1 is a major regulator of both the desmin cytoskeleton and mitochondria homeostasis, specifically in skeletal muscle. Defects in IF stabilization and mitochondrial dynamics appear as common physiopathological features of centronuclear myopathies and desmin-related myopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vlad MD, Valle LJ, Poeată I, López J, Torres R, Barracó M, Fernández E. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications:
in vitro
study. Biomed Mater 2010; 5:25006. [DOI: 10.1088/1748-6041/5/2/025006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Optically resolving individual microtubules in live axons. Structure 2010; 17:1433-41. [PMID: 19913478 DOI: 10.1016/j.str.2009.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/21/2009] [Accepted: 09/01/2009] [Indexed: 12/24/2022]
Abstract
Microtubules are essential cytoskeletal tracks for cargo transportation in axons and also serve as the primary structural scaffold of neurons. Structural assembly, stability, and dynamics of axonal microtubules are of great interest for understanding neuronal functions and pathologies. However, microtubules are so densely packed in axons that their separations are well below the diffraction limit of light, which precludes using optical microscopy for live-cell studies. Here, we present a single-molecule imaging method capable of resolving individual microtubules in live axons. In our method, unlabeled microtubules are revealed by following individual axonal cargos that travel along them. We resolved more than six microtubules in a 1 microm diameter axon by real-time tracking of endosomes containing quantum dots. Our live-cell study also provided direct evidence that endosomes switch between microtubules while traveling along axons, which has been proposed to be the primary means for axonal cargos to effectively navigate through the crowded axoplasmic environment.
Collapse
|