1
|
Lago S, Poli V, Fol L, Botteon M, Busi F, Turdo A, Gaggianesi M, Ciani Y, D'Amato G, Fagnocchi L, Fasciani A, Demichelis F, Todaro M, Zippo A. ANP32E drives vulnerability to ATR inhibitors by inducing R-loops-dependent transcription replication conflicts in triple negative breast cancer. Nat Commun 2025; 16:4602. [PMID: 40382323 PMCID: PMC12085574 DOI: 10.1038/s41467-025-59804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Oncogene-induced replicative stress (RS) drives tumor progression by disrupting genome stability, primarily through transcription-replication conflicts (TRCs), which promote R-loop accumulation and trigger the DNA damage response (DDR). In this study, we investigate the role of chromatin regulators in exacerbating TRCs and R-loop accumulation in cancer. We find that in breast cancer patients, the simultaneous upregulation of MYC and the H2A.Z-specific chaperone ANP32E correlates with increased genomic instability. Genome-wide analyses reveal that ANP32E-driven H2A.Z turnover alters RNA polymerase II processivity, leading to the accumulation of long R-loops at TRC sites. Furthermore, we show that ANP32E overexpression enhances TRC formation and activates an ATR-dependent DDR, predisposing cancer cells to R-loop-mediated genomic fragility. By exploiting the vulnerability of ANP32E-expressing cancer cells to ATR inhibitors, we find that tumors relied on this DDR pathway, whose inhibition halts their pro-metastatic capacity. These findings identify ANP32E as a key driver of TRC-induced genomic instability, indicating ATR inhibition as a potential therapeutic strategy for ANP32E-overexpressing tumors.
Collapse
Affiliation(s)
- Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Vittoria Poli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Lisa Fol
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Mattia Botteon
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127, Palermo, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giacomo D'Amato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Luca Fagnocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessandra Fasciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
2
|
Mashayekhi F, Zeinali E, Ganje C, Fanta M, Li L, Godbout R, Weinfeld M, Ismail IH. CDK-dependent phosphorylation regulates PNKP function in DNA replication. J Biol Chem 2024; 300:107880. [PMID: 39395804 DOI: 10.1016/j.jbc.2024.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Okazaki fragment maturation (OFM) stands as a pivotal DNA metabolic process, crucial for genome integrity and cell viability. Dysregulation of OFM leads to DNA single-strand breaks-accumulation, which is linked to various human diseases such as cancer and neurodegenerative disorders. Recent studies have implicated LIG3-XRCC1 acting in an alternative OFM pathway to the canonical FEN1-LIG1 pathway. Here, we reveal that polynucleotide kinase-phosphatase (PNKP) is another key participant in DNA replication, akin to LIG3-XRCC1. Through functional experiments, we demonstrate PNKP's enrichment at DNA replication forks and its association with PCNA, indicating its involvement in DNA replication processes. Cellular depletion of PNKP mirrors defects observed in OFM-related proteins, highlighting its significance in replication fork dynamics. Additionally, we identify PNKP as a substrate for cyclin-dependent kinase 1 and 2 (CDK1/2), which phosphorylates PNKP at multiple residues. Mutation analysis of these phosphorylation sites underscores the importance of CDK-mediated PNKP phosphorylation in DNA replication. Our findings collectively indicate a novel role for PNKP in facilitating Okazaki fragments joining, thus shedding light on its contribution to genome stability maintenance.
Collapse
Affiliation(s)
- Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cassandra Ganje
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mesfin Fanta
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Li
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6574410. [DOI: 10.1093/femsyr/foac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
|
5
|
Tang J, Casey PJ, Wang M. Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair. Life Sci Alliance 2021; 4:4/12/e202101144. [PMID: 34610973 PMCID: PMC8500237 DOI: 10.26508/lsa.202101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of isoprenylcysteine carboxylmethyltransferase reduces cancer cells’ ability to repair DNA damage by suppressing the expression of critical DNA damage repair pathway genes, hence increasing their vulnerability to DNA damaging insults such as PARP inhibitors and other DNA damage agents. DNA damage is a double-edged sword for cancer cells. On the one hand, DNA damage–induced genomic instability contributes to cancer development; on the other hand, accumulating damage compromises proliferation and survival of cancer cells. Understanding the key regulators of DNA damage repair machinery would benefit the development of cancer therapies that induce DNA damage and apoptosis. In this study, we found that isoprenylcysteine carboxylmethyltransferase (ICMT), a posttranslational modification enzyme, plays an important role in DNA damage repair. We found that ICMT suppression consistently reduces the activity of MAPK signaling, which compromises the expression of key proteins in the DNA damage repair machinery. The ensuing accumulation of DNA damage leads to cell cycle arrest and apoptosis in multiple breast cancer cells. Interestingly, these observations are more pronounced in cells grown under anchorage-independent conditions or grown in vivo. Consistent with the negative impact on DNA repair, ICMT inhibition transforms the cancer cells into a “BRCA-like” state, hence sensitizing cancer cells to the treatment of PARP inhibitor and other DNA damage–inducing agents.
Collapse
Affiliation(s)
- Jingyi Tang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore
| | - Patrick J Casey
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mei Wang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore .,Department of Biochemistry, National University of Singapore, Singapore 117596
| |
Collapse
|
6
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
7
|
Liu G, Song Y, Li C, Liu R, Chen Y, Yu L, Huang Q, Zhu D, Lu C, Yu X, Xiao C, Liu Y. Arsenic compounds: The wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur J Med Chem 2021; 221:113519. [PMID: 33984805 DOI: 10.1016/j.ejmech.2021.113519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Arsenic (As), as well as its various compounds have been widely used for nearly 4000 years either as drugs or poisons. These compounds are valuable in the treatment of various diseases ranging from dermatosis to cancer, thereby emphasizing their important roles as therapeutic agents. The ability of As compounds, especially arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL), has fundamentally altered people's understanding of the poison, and has become a major factor in the re-emergence of Western medicine candidates to treat leukemia and other solid tumors. However, long-term exposure to As has been correlated with numerous disadvantageous influences on health, particularly carcinogenesis. Importantly, accumulating evidence suggests that biotransformation of As, as a step to eliminate As from the human body, can induce alterations at the genetic and epigenetic levels, resulting in therapeutic effects or carcinogenesis. In this article, we aimed to provide a systematic overview of the primary contributions associated with As and its compounds, as well as the detailed mechanisms applied in APL cells and carcinogenic toxicology. This review may help to understand the underlying mechanisms and safe wide clinical applications of medicinal As along with its compounds.
Collapse
Affiliation(s)
- Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM. Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress. Int J Mol Sci 2019; 20:ijms20194901. [PMID: 31623305 PMCID: PMC6801751 DOI: 10.3390/ijms20194901] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Margarida C Sobral
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Patrícia L Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | - Maria Carmen Alpoim
- Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Ana M Urbano
- Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
9
|
Watanabe K, Kosaka T, Aimono E, Hongo H, Mikami S, Nishihara H, Oya M. Japanese Case of Enzalutamide-Resistant Prostate Cancer Harboring a SPOP Mutation With Scattered Allelic Imbalance: Response to Platinum-Based Therapy. Clin Genitourin Cancer 2019; 17:e897-e902. [PMID: 31296452 DOI: 10.1016/j.clgc.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Keitaro Watanabe
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Sykora P, Witt KL, Revanna P, Smith-Roe SL, Dismukes J, Lloyd DG, Engelward BP, Sobol RW. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep 2018; 8:2771. [PMID: 29426857 PMCID: PMC5807538 DOI: 10.1038/s41598-018-20995-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/29/2018] [Indexed: 11/23/2022] Open
Abstract
Methods for quantifying DNA damage, as well as repair of that damage, in a high-throughput format are lacking. Single cell gel electrophoresis (SCGE; comet assay) is a widely-used method due to its technical simplicity and sensitivity, but the standard comet assay has limitations in reproducibility and throughput. We have advanced the SCGE assay by creating a 96-well hardware platform coupled with dedicated data processing software (CometChip Platform). Based on the original cometchip approach, the CometChip Platform increases capacity ~200 times over the traditional slide-based SCGE protocol, with excellent reproducibility. We tested this platform in several applications, demonstrating a broad range of potential uses including the routine identification of DNA damaging agents, using a 74-compound library provided by the National Toxicology Program. Additionally, we demonstrated how this tool can be used to evaluate human populations by analysis of peripheral blood mononuclear cells to characterize susceptibility to genotoxic exposures, with implications for epidemiological studies. In summary, we demonstrated a high level of reproducibility and quantitative capacity for the CometChip Platform, making it suitable for high-throughput screening to identify and characterize genotoxic agents in large compound libraries, as well as for human epidemiological studies of genetic diversity relating to DNA damage and repair.
Collapse
Affiliation(s)
- Peter Sykora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pooja Revanna
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jonathan Dismukes
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Bevin P Engelward
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
| |
Collapse
|
12
|
Peng WX, Han X, Zhang CL, Ge L, Du FY, Jin J, Gong AH. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol 2017; 33:527-537. [PMID: 28185110 DOI: 10.1007/s10565-017-9381-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Although methylguanine-DNA-methyltransferase (MGMT) plays an important role in resistance to temozolomide (TMZ) in glioma, 40% of gliomas with MGMT inactivation are still resistant to TMZ. The underlying mechanism is not clear. Here, we report that forkhead box M1 (FoxM1) transcriptionally activates the expression of DNA repair gene replication factor C5 (RFC5) to promote TMZ resistance in glioma cells independent of MGMT activation. We showed that RFC5 expression is positively correlated with FoxM1 expression in human glioma cells and FoxM1 is able to transcriptionally activate RFC expression by interaction with the RFC5 promoter. Furthermore, knockdown of FoxM1 or RFC5 partially re-sensitizes glioma cells to TMZ. Consistently, thiostrepton, a FoxM1 inhibitor, in combination with TMZ significantly inhibits proliferation and promotes apoptosis in glioma cells. Taken together, these findings suggest that the FoxM1-RFC5 axis may mediate TMZ resistance and thiostrepton may serve as a potential therapeutic agent against TMZ resistance in glioma cells.
Collapse
Affiliation(s)
- Wan-Xin Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiu Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chun-Li Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lu Ge
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Feng-Yi Du
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Jin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ai-Hua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
13
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Res Rev 2015; 23:125-38. [PMID: 25847820 DOI: 10.1016/j.arr.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023]
Abstract
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.
Collapse
|
15
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Hematological Medicine, King's College London, Denmark Hill campus, SE5 9NU, London, UK
| | | |
Collapse
|
16
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
17
|
Han Z, Zhang Y, Xu Y, Ji J, Xu W, Zhao Y, Luo F, Wang B, Bian Q, Liu Q. Cell cycle changes mediated by the p53/miR-34c axis are involved in the malignant transformation of human bronchial epithelial cells by benzo[a]pyrene. Toxicol Lett 2013; 225:275-84. [PMID: 24362009 DOI: 10.1016/j.toxlet.2013.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/07/2023]
Abstract
Characterization of aberrant microRNA (miRNA) expression during carcinogen-induced cell transformation will lead to a better understanding of the role of miRNAs in cancer development. In this investigation, we evaluated changes in p53 function and its downstream target miRNAs in benzo[a]pyrene (BaP)-induced transformation of human bronchial epithelial (HBE) cells. Chronic exposure to BaP induced malignant transformation of cells, in which there were increased levels of mutant p53 (mt-p53) and reduced expression of wild-type p53 (wt-p53) and phosphorylated p53 (p-p53). With acute (12h) exposure to BaP, p-p53 was increased, and with increasing time of exposure (24h), the increase in p-p53 at a concentration of 1μM BaP was followed by a decline with increasing concentrations; wt-p53 and mt-p53 did not change. With prolonged exposure (48h), p-p53 and wt-p53 decreased, but mt-p53 increased. At different exposure times, the levels of miR-34c were consistent with p-p53. Over-expression of miR-34c resulted in inhibition of the BaP-induced G1-to-S transition and diminished up-regulation of cyclin D. Further, up-regulation of miR-34c or silencing of cylin D prevented BaP-induced malignant transformation. Thus, changes in the cell cycle mediated by the p53/miR-34c axis are involved in the transformation cells induced by BaP.
Collapse
Affiliation(s)
- Zhuyu Han
- The First Clinic Medical College, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Ying Zhang
- Jiangsu Center for Disease Control and Prevention, Nanjing 210029, Jiangsu, PR China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Jie Ji
- The First Clinic Medical College, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Yue Zhao
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Qian Bian
- Jiangsu Center for Disease Control and Prevention, Nanjing 210029, Jiangsu, PR China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
18
|
Zhang N, Qin Q, Gong H, Meng Q, Zhu W, Wang M, Zhang J, Zhou G, Li X, Zhang H. A new insect cell line from the pupal ovary of the Asian corn borer moth Ostrinia furnacalis. In Vitro Cell Dev Biol Anim 2013; 50:171-3. [DOI: 10.1007/s11626-013-9704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022]
|
19
|
Supady A, Klipp E, Barberis M. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 2013; 168:174-84. [PMID: 23850861 DOI: 10.1016/j.jbiotec.2013.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.
Collapse
Affiliation(s)
- Adriana Supady
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
20
|
ZHANG ZHIYU, WANG CHONGZHI, DU GUANGJIAN, QI LIANWEN, CALWAY TYLER, HE TONGCHUAN, DU WEI, YUAN CHUNSU. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol 2013; 43:289-96. [PMID: 23686257 PMCID: PMC3742162 DOI: 10.3892/ijo.2013.1946] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/11/2013] [Indexed: 12/17/2022] Open
Abstract
Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.
Collapse
Affiliation(s)
- ZHIYU ZHANG
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637,
USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
| | - CHONG-ZHI WANG
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637,
USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
| | - GUANG-JIAN DU
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637,
USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
| | - LIAN-WEN QI
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637,
USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
| | - TYLER CALWAY
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
| | - TONG-CHUAN HE
- Department of Surgery, University of Chicago, Chicago, IL 60637,
USA
| | - WEI DU
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637,
USA
| | - CHUN-SU YUAN
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637,
USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637,
USA
- Committee on Clinical Pharmacology and Pharmacogenomics, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637,
USA
| |
Collapse
|
21
|
Zhao Q, Fan J, Hong W, Li L, Wu M. Inhibition of cancer cell proliferation by 5-fluoro-2'-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. SPRINGERPLUS 2012; 1:65. [PMID: 23397046 PMCID: PMC3565089 DOI: 10.1186/2193-1801-1-65] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
Abstract
Multiple epigenetic changes, including alterations in DNA methylation occur during tumorigenesis. Various inhibitors of DNA methylation have been developed to prevent proliferation of cancer cells. 5-fluoro-2′-deoxycytidine (FCdR) is one such DNA methylation inhibitor, which is currently in phase II clinical trial. To investigate the molecular mechanism/s by which FCdR might mediate repression of tumor cell proliferation, we analyzed the toxicity of FCdR in various cell lines established from different sarcomas. We found HCT116, a colon cancer cell line, is much more sensitive to FCdR compared to others. FCdR treatment inhibited HCT116 cells at G2/M check point and up-regulated expression of multiple cancer-related genes, which could be due to its inhibitory activity towards DNA methylation. Furthermore, we found that FCdR activates DNA damage response pathway. Using an inhibitor for ATM and ATR kinases activity, which are required for amplifying the DNA damage repair signal, we show that FCdR induced inhibition of HCT116 cells at G2/M is mediated through activation of DNA damage response pathway.
Collapse
Affiliation(s)
- Quanyi Zhao
- Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, and College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | | | | | | | | |
Collapse
|
22
|
BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability. Leukemia 2012; 27:629-34. [PMID: 23047475 DOI: 10.1038/leu.2012.294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 25% of TKI-naive patients and 50-90% of patients developing TKI-resistance carry CML clones expressing TKI-resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species, which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI-resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil DNA glycosylase UNG2 were inhibited in BCR-ABL1-transformed cell lines and CD34(+) CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI, we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na(+)/K(+)ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML.
Collapse
|
23
|
Zheng L, Dai H, Zhou M, Li X, Liu C, Guo Z, Wu X, Wu J, Wang C, Zhong J, Huang Q, Garcia-Aguilar J, Pfeifer GP, Shen B. Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression. Nat Commun 2012; 3:815. [PMID: 22569363 PMCID: PMC3517178 DOI: 10.1038/ncomms1825] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/05/2012] [Indexed: 11/09/2022] Open
Abstract
Mutations in genes involved in DNA replication, such as flap endonuclease 1 (FEN1), can cause single-stranded DNA breaks (SSBs) and subsequent collapse of DNA replication forks leading to DNA replication stresses. Persistent replication stresses normally induce p53-mediated senescence or apoptosis to prevent tumour progression. It is unclear how some mutant cells can overcome persistent replication stresses and bypass the p53-mediated pathways to develop malignancy. Here we show that polyploidy, which is often observed in human cancers, leads to overexpression of BRCA1, p19arf and other DNA repair genes in FEN1 mutant cells. This overexpression triggers SSB repair and non-homologous end-joining pathways to increase DNA repair activity, but at the cost of frequent chromosomal translocations. Meanwhile, DNA methylation silences p53 target genes to bypass the p53-mediated senescence and apoptosis. These molecular changes rewire DNA damage response and repair gene networks in polyploid tumour cells, enabling them to escape replication stress-induced senescence barriers.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Huifang Dai
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Mian Zhou
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Xiaojin Li
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Changwei Liu
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhigang Guo
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Xiwei Wu
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Jun Wu
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Charles Wang
- Department of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - John Zhong
- Department of Pathology, 1501 San Pablo St., ZNI 529, University of Southern California, Los Angeles, CA 90033
| | - Qin Huang
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Julio Garcia-Aguilar
- Department of Surgery, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Gerd P. Pfeifer
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
| | - Binghui Shen
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Li X, Qin Q, Zhang N, Zhu W, Zhang J, Wang H, Miao L, Zhang H. A new insect cell line from pupal ovary of Spodoptera exigua established by stimulation with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In Vitro Cell Dev Biol Anim 2012; 48:271-5. [PMID: 22549336 DOI: 10.1007/s11626-012-9511-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
A continuous cell line derived from the pupal ovary of Spodoptera exigua was established by treating primary cells with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Three days after treating cells with 3.0 μg/ml of MNNG, the cells formed a monolayer and were initially subcultured 60 d after the MNNG was removed, followed by subculturing for 30 passages. The established cell line, designated IOZCAS-Spex 12, consisted of a mixture of three types of cells, including spherical, spindle-shaped, and oval cells. The population doubling time of the cell line during its logarithmic growth phase was found to be 71 h. DNA amplification fingerprinting polymerase chain reaction analysis confirmed that the new cell line originated from S. exigua. Susceptibility of IOZCAS-Spex 12 cells to infection by certain nucleopolyhedroviruses was investigated. The results showed that the cell line was highly susceptible to infection by S. exigua nucleopolyhedrovirus and Autographa californica multiple nucleopolyhedrovirus, slightly susceptible to infection by Spodoptera litura nucleopolyhedrovirus, and not susceptible to infection by Helicoverpa armigera nucleopolyhedroviruses or Hyphantria cunea nucleopolyhedroviruses. The results of this study suggest that MNNG treatment may overcome existing limitations to obtaining continually proliferating cells and may open up the possibilities for immortalizing isolated insect cells.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mughal TI, Radich JP, Van Etten RA, Quintás-Cardama A, Skorski T, Ravandi F, DeAngelo DJ, Gambacorti-Passerini C, Martinelli G, Tefferi A. Chronic myeloid leukemia 2011: successes, challenges, and strategies--proceedings of the 5th annual BCR-ABL1 positive and BCR-ABL1 negative myeloproliferative neoplasms workshop. Am J Hematol 2011; 86:811-9. [PMID: 21850662 PMCID: PMC3485684 DOI: 10.1002/ajh.22097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This report is based on the presentations and discussions at the 5th annual BCR-ABL1 positive and BCR-ABL1 negative myeloproliferative neoplasms (MPN) workshop, which took place immediately following the 52nd American Society of Hematology (ASH) meeting in Orlando, Florida on December 7th-8th, 2011. Relevant data which was presented at the ASH meeting as well as all other recent publications were presented and discussed at the workshop. This report covers front-line therapies of BCR-ABL1-positive leukemias, in addition to addressing some topical biological, pre-clinical and clinical issues, such as new insights into genomic instability and resistance to tyrosine kinase inhibitors (TKIs), risk stratification and optimizing molecular monitoring. A report pertaining to the new therapies and other pertinent preclinical and clinical issues in the BCR-ABL1 negative MPNs is published separately.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Drug Monitoring
- Drug Resistance, Neoplasm
- Genomic Instability
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/drug therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
Collapse
Affiliation(s)
- Tariq I Mughal
- University of Colorado School of Medicine, Denver, CO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tanaka S, Araki H. Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance. PLoS Genet 2011; 7:e1002136. [PMID: 21698130 PMCID: PMC3116906 DOI: 10.1371/journal.pgen.1002136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 05/01/2011] [Indexed: 12/28/2022] Open
Abstract
Genomic instability is a hallmark of human cancer cells. To prevent genomic instability, chromosomal DNA is faithfully duplicated in every cell division cycle, and eukaryotic cells have complex regulatory mechanisms to achieve this goal. Here, we show that untimely activation of replication origins during the G1 phase is genotoxic and induces genomic instability in the budding yeast Saccharomyces cerevisiae. Our data indicate that cells preserve a low level of the initiation factor Sld2 to prevent untimely initiation during the normal cell cycle in addition to controlling the phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. Although untimely activation of origin is inhibited on multiple levels, we show that deregulation of a single pathway can cause genomic instability, such as gross chromosome rearrangements (GCRs). Furthermore, simultaneous deregulation of multiple pathways causes an even more severe phenotype. These findings highlight the importance of having multiple inhibitory mechanisms to prevent the untimely initiation of chromosome replication to preserve stable genome maintenance over generations in eukaryotes. Chromosomal DNA replication occurs as a two-step reaction in eukaryotes. In the first reaction, called licensing, the replicative helicase is loaded onto replication origin in an inactive form during the G1 phase of the cell cycle. In the second reaction, called initiation, the replicative helicase is activated, and replication forks are established. Because of this two-step mechanism, licensing and initiation must occur at different times in the cell cycle. Failure of this two-step regulation will cause heterogeneous re-replication of chromosomal DNA, and genome integrity will be lost. Although previous works have established that multiple regulatory pathways regulate licensing, much less is known about how untimely (premature) initiation is prevented during the G1 phase. In this paper, we show that untimely activation of replication origins during the G1 phase is inhibited on multiple levels. Notably, deregulation of a single pathway can cause genomic instability; simultaneous deregulation of multiple pathways causes a more severe phenotype, such as aneuploidy. Therefore, these findings not only indicate the importance of having multiple inhibitory mechanisms to prevent untimely initiation of chromosome replication but also should help us understand how replication might be deregulated in human cancer cells, in which the genome is frequently destabilized.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Japan.
| | | |
Collapse
|
27
|
Skorski T. Chronic myeloid leukemia cells refractory/resistant to tyrosine kinase inhibitors are genetically unstable and may cause relapse and malignant progression to the terminal disease state. Leuk Lymphoma 2011; 52 Suppl 1:23-9. [PMID: 21299457 PMCID: PMC4684553 DOI: 10.3109/10428194.2010.546912] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BCR-ABL1 kinase-induced chronic myeloid leukemia in chronic phase (CML-CP) usually responds to treatment with ABL tyrosine kinase inhibitors (TKIs) such as imatinib, dasatinib, and nilotinib. In most patients TKIs reduce the leukemia cell load substantially, but some leukemia cells, for example leukemia stem cells (LSCs), are intrinsically refractory to TKIs. In addition, some patients who respond initially may later become resistant to TKIs due to accumulation of point mutations in BCR-ABL1 kinase. LSCs or their progeny, leukemia progenitor cells (LPCs), at some stage may acquire additional genetic changes that cause the leukemia to transform further to a more advanced blast phase (CML-BP), which responds poorly to treatment and is usually fatal. We postulate that LSCs and/or LPCs refractory or resistant to TKIs may be 'ticking time-bombs' accumulating additional genetic aberrations and eventually 'exploding' to generate additional TKI-resistant clones and CML-BP clones with complex karyotypes.
Collapse
MESH Headings
- DNA Repair
- Disease Progression
- Drug Resistance, Neoplasm/physiology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/therapeutic use
- Reactive Oxygen Species/metabolism
- Recurrence
Collapse
Affiliation(s)
- Tomasz Skorski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
28
|
Wei F, Xie Y, Tao L, Tang D. Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation. Cell Signal 2010; 22:1783-9. [PMID: 20637859 DOI: 10.1016/j.cellsig.2010.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 01/01/2023]
Abstract
The MEK-ERK pathway plays a role in DNA damage response (DDR). This has been thoroughly studied by modulating MEK activation. However, much less has been done to directly examine the contributions of ERK1 and ERK2 kinases to DDR. Etoposide induces G2/M arrest in a variety of cell lines, including MCF7 cells. DNA damage-induced G2/M arrest depends on the activation of the protein kinase ataxia-telangiectasia mutated (ATM). ATM subsequently activates CHK2 by phosphorylating CHK2 threonine 68 (T68) and CHK2 inactivates CDC25C via phosphorylation of its serine 216 (S216), resulting in G2/M arrest. To determine the contribution of ERK1 and ERK2 to etoposide-induced G2/M arrest, we individually knocked-down ERK1 and ERK2 in MCF7 cells using specific small interfering RNA (siRNA). Knockdown of either kinases significantly reduced ATM activation in response to etoposide treatment, and thereby attenuated phosphorylation of the ATM substrates, including the S139 of H2AX (gammaH2AX), p53 S15, and CHK2 T68. Consistent with these observations, knockdown of either ERK1 or ERK2 reduced etoposide-induced CDC25C S216 phosphorylation and significantly compromised etoposide-induced G2/M arrest in MCF7 cells. Taken together, we demonstrated that both ERK1 and ERK2 kinases play a role in etoposide-induced G2/M arrest by facilitating activation of the ATM pathway. These observations suggest that a cellular threshold level of ERK kinase activity is required for the proper checkpoint activation in MCF7 cells.
Collapse
Affiliation(s)
- Fengxiang Wei
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Nucleosomes, complexes of DNA and histone proteins, are released from dying and stressed cells into the blood circulation. Concentrations of circulating nucleosomes in plasma and serum are frequently found to be elevated in various cancers, and also in such acute conditions as stroke, trauma, and sepsis as well as in autoimmune diseases. The first part of this review focuses on the structural and functional properties of nucleosomes, the potential sources of nucleosome release into the circulation, the metabolism of circulating nucleosomes, and their pathophysiological role in disease. It goes on to describe the relevance of circulating nucleosomes in the diagnosis and prognosis of non-malignant conditions such as sepsis, stroke, and autoimmune disease. Finally, it describes the clinical value of nucleosomes in the diagnosis, staging, prognosis, and monitoring of therapy in cancer; in particular, their potential as a new diagnostic tool for the early estimation of response to cytotoxic cancer therapy is emphasized.
Collapse
|
30
|
Singh KP, Kumari R, Pevey C, Jackson D, DuMond JW. Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett 2009; 279:84-92. [PMID: 19232459 DOI: 10.1016/j.canlet.2009.01.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 11/19/2022]
Abstract
Epidemiological and experimental studies have shown that cadmium is carcinogenic to human and experimental animals, however, the mechanism of cadmium-induced carcinogenesis is not clear. The aberrant expression of cell cycle and DNA repair genes resulting in increased cell proliferation and genomic instability are the characteristic features of cancer cells. The purpose of this study was to determine if exposure to cadmium can perturb cell proliferation/survival and causes genomic instability in TM3 cells, a mouse testicular Leydig cell line. The results of this study revealed that short-duration exposure to lower doses of cadmium significantly increase the growth of TM3 cells, whereas, higher doses are toxic and cause cell death. The long duration exposure to higher doses of cadmium, however, results in increased cell survival and acquisition of apoptotic resistance. Gene expression analysis by real-time PCR revealed increased expression of the anti-apoptotic gene Bcl-2, whereas decreased expression of pro-apoptotic gene Bax. Decreased expression of genes for maintenance of DNA methylation, DNMT1, and DNA repair, OGG1 and MYH, was also observed in cells exposed to cadmium for 24h. The random amplified polymorphic DNA (RAPD) assay revealed genomic instability in cells with chronic exposure to cadmium. The findings of this study indicate that mouse testicular Leydig cells adapt to chronic cadmium exposure by increasing cell survival through increased expression of Bcl-2, and decreased expression of Bax. The increased proliferation of cells with genomic instability may result in malignant transformation, and therefore, could be a viable mechanism for cadmium-induced cancers.
Collapse
Affiliation(s)
- Kamaleshwar P Singh
- Department of Biology, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, United States.
| | | | | | | | | |
Collapse
|
31
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
32
|
Mao X, Young BD, Chaplin T, Shipley J, Lu YJ. Subtle genomic alterations and genomic instability revealed in diploid cancer cell lines. Cancer Lett 2008; 267:49-54. [PMID: 18407410 DOI: 10.1016/j.canlet.2008.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/27/2008] [Accepted: 03/03/2008] [Indexed: 11/20/2022]
Abstract
To investigate if genomic instability exists in tumors with cytogenetically normal karyotypes, we analyzed four diploid cancer cell lines A204, CAL51, CH1 and SK-UT-1B. We detected subtle genomic changes in all four cell lines. More of these alterations were found in A204 and CH1 than in the microsatellite unstable lines CAL51 and SK-UT-1B. The number of de novo, non-clonal chromosome rearrangements was also significantly higher in CH1 than CAL51 and SK-UT-1B (p=0.001). This study reveals multiple genomic abnormalities in tumors with near normal karyotypes and suggests that genomic instability may be essential in cancer development.
Collapse
Affiliation(s)
- Xueying Mao
- Centre of Medical Oncology, Institute of Cancer, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
33
|
Salim EI, Morimura K, Menesi A, El-Lity M, Fukushima S, Wanibuchi H. Elevated oxidative stress and DNA damage and repair levels in urinary bladder carcinomas associated with schistosomiasis. Int J Cancer 2008; 123:601-8. [PMID: 18478569 DOI: 10.1002/ijc.23547] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To cast light on mechanisms underlying development of urothelial carcinomas (UCs) of the urinary bladder associated with Schistosomiasis, we immunohistochemically analyzed the relationship between oxidative stress markers, DNA single strand breaks (ssDNA) which could also measure the levels of base damage and apoptosis in DNA, and expression of DNA repair genes with levels of nitric oxide synthases in bladder carcinomas of Egyptian patients with or without Schistosoma hematobium infection. Marked elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels was found in squamous cell carcinomas and UCs associated with Schistosomiasis when compared with non-Schistosomal carcinomas. This was accompanied by strong over expression of the DNA-repair genes, 8-oxoguanine-DNA-glycosylase and apurinic/apyrimidinic endonuclease, as well as increased formation levels of ssDNA. Expression levels of inducible nitric oxide synthase (iNOS) which is known to be indirectly related to oxidative stress was higher in Schistosomal than in the non-Schistosomal carcinomas. However, expression of endothelial nitric oxide synthase was slightly stronger in non-Schistosomal than in the Schistosomal carcinomas. In conclusion, these findings suggest a strong correlation between Schistosoma haematobium infection and increased levels of oxidative stress accompanied by a continuous DNA damage and repair in UCs, all directly correlating with elevated iNOS.
Collapse
Affiliation(s)
- Elsayed I Salim
- Department of Pathology, Osaka City University Medical School, Abeno-Ku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Noel EE, Perry J, Chaplin T, Mao X, Cazier JB, Joel SP, Oliver RTD, Young BD, Lu YJ. Identification of genomic changes associated with cisplatin resistance in testicular germ cell tumor cell lines. Genes Chromosomes Cancer 2008; 47:604-13. [PMID: 18384131 DOI: 10.1002/gcc.20564] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Since the introduction of cisplatin into the clinic, the treatment of patients with a variety of solid tumors including testicular germ cell tumors, ovarian and lung cancers, has dramatically improved. One of the main causes for therapeutic failure in these malignancies is the development of drug resistance. Testicular germ cell tumors (TGCTs), the most common malignancy in young men, exhibit extreme sensitivity to cisplatin-based chemotherapy, making them an ideal model for investigating the mechanisms of cisplatin chemo-sensitivity and resistance. TGCT development and pathogenesis have been well studied but little is known about the genetic background in chemo-resistant cases. We investigated genomic differences between three TGCT parental cell lines and their cisplatin resistant derivatives. Using 10K single nucleotide polymorphism (SNP) microarray analysis, we identified two small chromosomal regions with consistent copy number changes across all three pairs of resistant cell lines. These were an 8.7 Mb region at 6q26-27, which displayed consistent copy number gain and a 0.3 Mb deletion involving 4 SNPs at 10p14. Both the chromosomal gain and loss were confirmed by fluorescence in situ hybridization. The significance of these regions should be further investigated as they may contain key genes involved in the development of chemo- resistance to cisplatin-based treatment in TGCTs and other cancers.
Collapse
Affiliation(s)
- Elodie E Noel
- Medical Oncology Centre, Institute of Cancer, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang J, Liang J, Wu H, Yuan W, Wen Y, Song Y, Jiang L. A facile method of shielding from UV damage by polymer photonic crystals. POLYM INT 2008. [DOI: 10.1002/pi.2376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Kouzminova EA, Kuzminov A. Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol 2008; 68:202-15. [PMID: 18312272 DOI: 10.1111/j.1365-2958.2008.06149.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is growing evidence that spontaneous chromosomal fragmentation, one of the main contributors to genetic instability, is intimately linked to DNA replication. In particular, we proposed before that uracil incorporation in DNA triggers chromosomal fragmentation due to replication fork collapse at uracil-excision intermediates. We tested predictions of this model at the chromosomal level in the dut mutants of Escherichia coli, by determining the relationship between DNA replication and patterns of fragmentation in defined chromosomal segments. Here we show that the uracil-DNA-triggered chromosomal fragmentation: (i) has a gradient that parallels the replication gradient, (ii) shows polarity within defined segments pointing towards replication origins and (iii) reorganizes to match induced replication gradients, confirming its dynamic pattern. Unexpectedly, these fragmentation patterns not only support the replication fork collapse model, but also reveal another mechanism of the replication-dependent chromosomal fragmentation triggered by uracil excision.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
37
|
Conti C, Herrick J, Bensimon A. Unscheduled DNA replication origin activation at inserted HPV 18 sequences in a HPV-18/MYC amplicon. Genes Chromosomes Cancer 2007; 46:724-34. [PMID: 17444495 DOI: 10.1002/gcc.20448] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oncogene amplification is a critical step leading to tumorigenesis, but the underlying mechanisms are still poorly understood. Despite data suggesting that DNA replication is a major source of genomic instability, little is known about replication origin usage and replication fork progression in rearranged regions. Using a single DNA molecule approach, we provide here the first study of replication kinetics on a previously characterized MYC/papillomavirus (HPV18) amplicon in a cervical cancer. Using this amplicon as a model, we investigated the role DNA replication control plays in generating amplifications in human cancers. The data reveal severely perturbed DNA replication kinetics in the amplified region when compared with other regions of the same genome. It was found that DNA replication is initiated from both genomic and viral sequences, resulting in a higher median frequency of origin firings. In addition, it was found that the higher initiation frequency was associated with an equivalent increase in the number of stalled replication forks. These observations raise the intriguing possibility that unscheduled replication origin activation at inserted HPV-18 viral DNA sequences triggers DNA amplification in this cancer cell line and the subsequent overexpression of the MYC oncogene.
Collapse
Affiliation(s)
- Chiara Conti
- Genomic Vision, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | |
Collapse
|
38
|
DuMond JW, Singh KP. Gene expression changes and induction of cell proliferation by chronic exposure to arsenic of mouse testicular Leydig cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1150-4. [PMID: 17558810 DOI: 10.1080/15287390701252758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arsenic is an important environmental carcinogen that affects millions of people worldwide through contaminated water supplies. Chronic exposure of arsenic has been shown to induce malignant transformation of mammalian cells; however, the mechanism underlying arsenic-induced carcinogenesis is not clear. The (1) induction in the cell proliferation, (2) decrease in DNA repair capacity resulting in the accumulation of mutations, and (3) changes in the DNA methylation patterns affecting regulation of genes are hallmarks of cancer development. Thus, the purpose of this study was to determine whether long-term exposure of both low and high concentrations of arsenic can perturb cell proliferation, DNA repair, and the maintenance of DNA methylation status in TM3 cells, an immortalized Leydig cell derived from normal mouse testis. The effect of arsenic on cell proliferation was determined by cell count data, and arsenic-induced gene expression changes were measured by quantitative real-time polymerase chain reduction (PCR). The results this study revealed a concentration-dependent induction of cell proliferation by arsenic. Increased expression of cell proliferation marker genes (PCNA, CyclinD1) and DNA methylation (DNA Methyl Transferase I) and decreased expression of genes for DNA repair (DNA Polymerase beta, ERCC6) with lower concentrations of arsenic was also observed. Thus, the findings of this study are novel, as they indicate a mechanism for arsenic-induced cancers. This is based on the observed increase in cell proliferation and decrease in the capacity of cells to maintain its genomic stability. Our study provides the evidence that arsenic may play a role in the etiology of testicular cancer.
Collapse
Affiliation(s)
- James W DuMond
- Department of Biology, Texas Southern University, Houston, Texas 77004, USA.
| | | |
Collapse
|
39
|
Liu QZ, Jiang GF, He Y, Wang XR, Zhou JW, Zhuang ZX. Arsenite-induced alterations in Ku70-deficient cells: a model to study genotoxic effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:938-46. [PMID: 17479409 DOI: 10.1080/15287390701290253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
As one of three subunits of DNA-dependent protein kinase (DNA-PK), Ku70 protein plays an important role in repair of DNA double-strand breaks (DNA DSB). To further understand the functions of Ku70 protein and the mechanisms underlying arsenite-induced genotoxic effects, the effects of Ku70 deficiency were examined. The Ku70-deficient cell line HLFK and null vector cell line HLFC were established after recombinant plasmid of Ku70 gene antisense RNA and null pEGFP-C1 vector were transferred into human embryo lung fibroblasts (HLF) cells. Experiments were undertaken to detect DNA DSB damage by neutral single-cell gel electrophoresis assay (SCGE), chromosomal alterations by micronucleus test, and cell cycle progression by flow cytometry in HLFC and HLFK cells treated with control, 1, 2.5, 5, or 10 microM sodium arsenite for 2, 4, or 24 h, respectively. Western blot analysis results showed that Ku70 protein content in HLFK cells decreased to 38% of those in HLFC cells. The median lethal concentrations (LC50) of sodium arsenite to HLFC and HLFK cells for 24 h were 27.38 microM and 21.80 microM, respectively. Results of neutral SCGE assay showed that there were concentration-dependent increases in tail length of DNA DSB, in percent of cells with DNA DSB tails, and in severity of DNA DSB damage in HLFK and HLFC cells. The increases in these indices in HLFK cells were significantly higher than those found in HLFC cells exposed to similar amounts of metal. The ability of DNA DSB to repair in HLFK cells was less than that seen in HLFC cells. Sodium arsenite produced concentration-dependent elevation in micronuclei and abnormal nuclei formation. The Ku70-deficiency enhanced the susceptibility to chromosomal alterations induced by sodium arsenite. Low concentrations of sodium arsenite induced cell arrest at G1; however, at high concentrations of metal this G1 arrest effect disappeared. These results suggested that Ku70 protein plays an important role in repair of DNA DSB damage and for maintainance of genome stability.
Collapse
Affiliation(s)
- Qi-Zhan Liu
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Dubrova YE. Genomic instability in the offspring of irradiated parents: Facts and interpretations. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406100048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Abstract
Eukaryotic cells, from yeast to man, possess evolutionarily conserved mechanisms to accurately and efficiently repair the overwhelming majority of DNA damage, thereby ensuring genomic integrity. Important repair pathways include base excision repair, nucleotide excision repair, mismatch repair, non-homologous end-joining, and homologous recombination. Defects in DNA repair processes generally result in susceptibility to cancer and, often, abnormalities in multiple organ systems. While signal transduction pathways have been intensely studied, epigenetic changes occurring in response to DNA damage are rapidly increasing in importance. Effective radiation and chemotherapy sensitization could result from selective inhibition of DNA repair in tumor cells. DNA damage repair is a dynamic field of research where the fruits of basic research often have important clinical implications.
Collapse
Affiliation(s)
- Johnny Kao
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
42
|
Fan C, Quan R, Feng X, Gillis A, He L, Matsumoto ED, Salama S, Cutz JC, Kapoor A, Tang D. ATM activation is accompanied with earlier stages of prostate tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1090-7. [PMID: 16997395 DOI: 10.1016/j.bbamcr.2006.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/11/2006] [Accepted: 08/16/2006] [Indexed: 12/24/2022]
Abstract
The ATM (ataxia telangiectasia mutated) kinase plays an essential role in maintaining genome integrity by coordinating cell cycle arrest, apoptosis, and DNA damage repair. Phosphorylation of ATM at serine 1981 (ATMpSer1981) by DNA damage activates ATM, which subsequently phosphorylates H2AX Ser139 (gammaH2AX), Chk2 Thr68 (Chk2pThr68), and p53 Ser15 (p53pSer15). To determine the role of the ATM pathway in prostate cancer tumorigenesis, we have analyzed 35 primary prostate cancer specimens for ATMpSer1981 (ATM activation), Chk2pThr68, gammaH2AX, and p53pSer15 by immunohistochemistry (IHC) in normal glands, prostatic intraepithelial neoplasias (PINs), and carcinomas. Increases in the intensities of ATMpSer1981, Chk2pThr68, and gammaH2AX and in the percentage of cells that are positive for ATMpSer1981, Chk2pThr68, or gammaH2AX were observed in PINs (p<0.001) compared to normal prostatic glands and carcinoma. However, this pattern of immunostaining was not seen for p53pSer15. Thus, ATM and Chk2 are specifically activated in PINs. As PINs are generally regarded as precursors of prostatic carcinoma, our results suggest that ATM and Chk2 activation at earlier stages of prostate tumorigenesis suppresses tumor progression, with attenuation of ATM activation leading to cancer progression.
Collapse
Affiliation(s)
- Catherine Fan
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wade M, Wahl GM. c-Myc, genome instability, and tumorigenesis: the devil is in the details. Curr Top Microbiol Immunol 2006; 302:169-203. [PMID: 16620029 DOI: 10.1007/3-540-32952-8_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The c-myc oncogene acts as a pluripotent modulator of transcription during normal cell growth and proliferation. Deregulated c-myc activity in cancer can lead to excessive activation of its downstream pathways, and may also stimulate changes in gene expression and cellular signaling that are not observed under non-pathological conditions. Under certain conditions, aberrant c-myc activity is associated with the appearance of DNA damage-associated markers and karyotypic abnormalities. In this chapter, we discuss mechanisms by which c-myc may be directly or indirectly associated with the induction of genomic instability. The degree to which c-myc-induced genomic instability influences the initiation or progression of cancer is likely to depend on other factors, which are discussed herein.
Collapse
Affiliation(s)
- M Wade
- Gene Expression Lab, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
44
|
Motegi A, Kuntz K, Majeed A, Smith S, Myung K. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1424-33. [PMID: 16449653 PMCID: PMC1367189 DOI: 10.1128/mcb.26.4.1424-1433.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.
Collapse
Affiliation(s)
- Akira Motegi
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Hong IS, Ding H, Greenberg MM. Oxygen independent DNA interstrand cross-link formation by a nucleotide radical. J Am Chem Soc 2006; 128:485-91. [PMID: 16402835 PMCID: PMC1752237 DOI: 10.1021/ja0563657] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 5-(2'-Deoxyuridinyl)methyl radical (1) was independently generated from three photochemical precursors and is the first example of a DNA radical that forms interstrand cross-links. Oxygen labeling experiments support generation of 1 by all precursors. Interstrand cross-links are produced upon irradiation of DNA containing any of the precursors. Cross-linking occurs via reaction with the opposing 2'-deoxyadenosine and is independent of O(2). The independence of cross-link formation on O(2) is explained by kinetic analysis, which shows that the radical reacts reversibly with O(2). Examination of the effects of glutathione on cross-link formation under anaerobic conditions suggests that adoption of the syn-conformation by 1 is the rate-limiting step in the process. Interstrand cross-link formation is reversible in the presence of a good nucleophile. The stability of the interstrand cross-link suggests that the isolated molecule is a rearrangement product of that formed in solution. The rearrangement is a consequence of the isolation procedure but also occurs slowly in solution. Oxygen independent cross-link formation may be useful for the purposeful damage of DNA in hypoxic tumor cells, where O(2) is deficient.
Collapse
Affiliation(s)
- In Seok Hong
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
46
|
Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108:319-27. [PMID: 16527898 PMCID: PMC1895841 DOI: 10.1182/blood-2005-07-2815] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in the BCR/ABL kinase domain play a major role in resistance to imatinib mesylate (IM). We report here that BCR/ABL kinase stimulates reactive oxygen species (ROS), which causes oxidative DNA damage, resulting in mutations in the kinase domain. The majority of mutations involved A/T-->G/C and G/C-->A/T transitions, a phenotype detected previously in patients, which encoded clinically relevant amino acid substitutions, causing IM resistance. This effect was reduced in cells expressing BCR/ABL(Y177F) mutant, which does not elevate ROS. Inhibition of ROS in leukemia cells by the antioxidants pyrrolidine dithiocarbamate (PDTC), N-acetylcysteine (NAC), and vitamin E (VE) decreased the mutagenesis rate and frequency of IM resistance. Simultaneous administration of IM and an antioxidant exerted better antimutagenic effect than an antioxidant alone. Therefore, inhibition of ROS should diminish mutagenesis and enhance the effectiveness of IM.
Collapse
Affiliation(s)
- Mateusz Koptyra
- Department of Microbiology and Immunology, School of Medicine and the Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ming Z, Dong H, Zhong Q, Grevelding CG, Jiang M. The effect of a mutagen (N-methyl-N-nitro-N-nitrosoguanidine) on cultured cells from adult Schistosoma japonicum. Parasitol Res 2005; 98:430-7. [PMID: 16385406 DOI: 10.1007/s00436-005-0083-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/07/2005] [Indexed: 11/26/2022]
Abstract
The transforming effect of N-methyl-N-nitro-N-nitrosoguanidine (MNNG) on cultured cells from Schistosoma japonicum (S. japonicum) was studied using mono-factor and orthogonal tests. Under the influence of MNNG, cultured cells grew well, and cell survival time was more than 246 days in low-serum medium. When treated with 3 mug/ml MNNG for 48 h, the number of dividing cells increased significantly as determined by bright-field and scanning electron microscopy (SEM). Under these conditions, abundant microvilli, ruffles, microridges, papillae and blebs were observed on the surface of the induced cells. Treatment with MNNG may overcome existing limitations to get continually proliferating schistosome cells and open the possibility to immortalize isolated cells.
Collapse
Affiliation(s)
- Zhenping Ming
- Department of Medical Parasitology and Research Laboratory of Schistosomiasis, Wuhan University School of Medicine, Wuhan, Hubei Province, 430071, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Waghmare SK, Bruschi CV. Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast 2005; 22:625-39. [PMID: 16034824 DOI: 10.1002/yea.1226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In Saccharomyces cerevisiae, aneuploidy is well tolerated and stable. We analysed whether the induced loss of a disomic chromosome favours endo-reduplication of the remaining chromosome or the cells prefer to retain the acquired euploidy. Chromosome VIII disomes and trisomes were tagged with GFP (green fluorescent protein), DsRed (red fluorescent protein) and BFP (blue fluorescent protein) integrated at the thr1 locus, using our newly designed STIK (specific targeted integration of kanamycin resistance-associated, non-selectable DNA) plasmid system. A knockout cassette for centromere 8 was constructed with the hygromycin-B marker, which was transformed into the strains. The transformants lost sensitivity to hygromycin, thereby indicating the event of centromere replacement. Quantitative PCR and Southern analysis were performed for chromosome VIII copy number determination by probing the markers located on both the right (ARG4 and THR1) and left (GUT1) arm whereas, for chromosome V, markers such as HIS1, located on right arm, and URA3, on left arm, were used. The loss of an extranumerary chromosome VIII in a disome and trisome leads to stable euploidy. Furthermore, in a wild-type diploid, deletion of a copy of chromosome VIII, leads to monosomy, and restoration of euploidy after 22 generations, by reduplication of chromosome VIII, and consequent loss of heterozygosis (LOH). However, chromosome V knockouts in chromosome VIII trisome, still showed LOH and duplication of chromosome V, with return to the original aneuploid condition. These results suggest that yeast cells could control the integrity of their genetic complement acting at the individual chromosome level.
Collapse
Affiliation(s)
- Sanjeev K Waghmare
- Microbiology Group, International Centre for Genetic Engineering and Biotechnology, AREA Science Park--W, Padriciano-99, I-34012 Trieste, Italy
| | | |
Collapse
|
49
|
Wu D, Chen B, Parihar K, He L, Fan C, Zhang J, Liu L, Gillis A, Bruce A, Kapoor A, Tang D. ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function. Oncogene 2005; 25:1153-64. [PMID: 16186792 DOI: 10.1038/sj.onc.1209148] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although Erk kinase has been recently reported to function in the DNA damage response, the mechanism governing this process is unknown. We report here that hydroxyurea (HU) activates Erk via MEK1, a process that is sensitized by a constitutively active MEK1 (MEK1Q56P) and attenuated by a dominant-negative MEK1 (MEK1K97M). While ectopic MEK1Q56P sensitized HU-induced S-phase arrest, inhibition of Erk activation via U0126, PD98059, and MEK1K97M attenuated the arrest, and thereby enhanced cells to HU-induced toxicity. Taken together, we demonstrate an important contribution of Erk to the activation of the S-phase DNA damage checkpoint. This can be attributed to Erk's regulatory role in modulating ATR function. Inhibition of Erk activation with U0126/PD98059 and MEK1K97M substantially reduced HU-induced ATR nuclear foci, leading to a dramatic reduction of gammaH2AX and its nuclear foci. Reduction of MEK1 function by a small interference RNA (siRNA) MEK1 and ectopic MEK1K97M significantly decreased HU-induced gammaH2AX. Conversely, ectopic MEK1Q56P enhanced gammaH2AX foci. Furthermore, immunofluorescent and cell fractioning experiments revealed cytosolic and nuclear localization of ATR. HU treatment caused the redistribution of ATR from the cytosol to the nucleus, a process that is inhibited by U0126. Collectively, we show that Erk kinase modulates HU-initiated DNA damage response by regulating ATR function.
Collapse
Affiliation(s)
- D Wu
- Father Sean O'Sullivan Research Institute, St Joseph's Hospital, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
van Tilborg AAG, Al Allak B, Velthuizen SCJM, de Vries A, Kros JM, Avezaat CJJ, de Klein A, Beverloo HB, Zwarthoff EC. Chromosomal instability in meningiomas. J Neuropathol Exp Neurol 2005; 64:312-22. [PMID: 15835267 DOI: 10.1093/jnen/64.4.312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Approximately 60% of sporadic meningiomas are caused by inactivation of the NF2 tumor suppressor gene on chromosome 22. No causative gene is known for the remaining 40%. Cytogenetic analysis shows that meningiomas caused by inactivation of the NF2 gene can be divided into tumors that show monosomy 22 as the sole abnormality and tumors with a more complex karyotype. Meningiomas not caused by the NF2 gene usually have a diploid karyotype. Here we report that, besides the clonal chromosomal aberrations, the chromosome numbers in many meningiomas varied from one metaphase spread to the other, a feature that is indicative of chromosomal instability. Unexpectedly and regardless of genotype, a subgroup of tumors was observed with an average number of 44.9 chromosomes and little variation in the number of chromosomes per metaphase spread. In addition, a second subgroup was recognized with a hyperdiploid number of chromosomes (average 48.5) and considerable variation in numbers per metaphase. However, this numerical instability resulted in a clonal karyotype with chromosomal gains and losses in addition to loss of chromosome 22 only in meningiomas caused by inactivation of the NF2 gene. In cultured cells of all tumor groups, bi- and multinucleated cells were seen, as well as anaphase bridges, residual chromatid strings, multiple spindle poles, and unseparated chromatids, suggesting defects in the mitotic apparatus or kinetochore. Thus, we conclude that even a benign and slow-growing tumor like a meningioma displays chromosomal instability.
Collapse
|