1
|
McCallion O, Cross AR, Brook MO, Hennessy C, Ferreira R, Trzupek D, Mulley WR, Kumar S, Soares M, Roberts IS, Friend PJ, Lombardi G, Wood KJ, Harden PN, Hester J, Issa F. Regulatory T cell therapy is associated with distinct immune regulatory lymphocytic infiltrates in kidney transplants. MED 2025; 6:100561. [PMID: 39731908 DOI: 10.1016/j.medj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Adoptive transfer of autologous regulatory T cells (Tregs) is a promising therapeutic strategy aimed at enabling immunosuppression minimization following kidney transplantation. In our phase 1 clinical trial of Treg therapy in living donor renal transplantation, the ONE Study (ClinicalTrials.gov: NCT02129881), we observed focal lymphocytic infiltrates in protocol kidney transplant biopsies that are not regularly seen in biopsies of patients receiving standard immunosuppression. METHODS We present 7 years of follow-up data on patients treated with adoptive Treg therapy early post-transplantation who exhibited focal lymphocytic infiltrates on a 9-month protocol biopsy. We phenotyped their adoptively transferred and peripherally circulating Treg compartments using CITE-seq and investigated the focal lymphocytic infiltrates with spatial proteomic and transcriptomic technologies. FINDINGS Graft survival rates were not significantly different between Treg-treated patients and the control reference group. None of the Treg-treated patients experienced clinical rejection episodes or developed de novo donor-specific antibodies, and three of ten successfully reduced their immunosuppression to tacrolimus monotherapy. All Treg-treated patients who underwent a protocol biopsy 9 months post-transplantation exhibited focal lymphocytic infiltrates. Spatial profiling analysis revealed prominent CD20+ B cell and regulatory (IKZF2, IL10, PD-L1, TIGIT) signatures within cell-therapy-associated immune infiltrates, distinct from the pro-inflammatory myeloid signature associated with rejection biopsies. CONCLUSIONS We demonstrate for the first time that immune cell infiltrates in transplanted kidneys can occur following adoptive Treg therapy in humans, potentially facilitating within-graft T:B cell interactions that promote local immune regulation. FUNDING This work was funded by the 7th EU Framework Programme, grant/award no. 260687, and the National Institute for Health Research (NIHR).
Collapse
Affiliation(s)
- Oliver McCallion
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amy R Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Matthew O Brook
- Department of Renal Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LH, UK
| | - Conor Hennessy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ricardo Ferreira
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Dominik Trzupek
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - William R Mulley
- Department of Nephrology, Monash Medical Centre & Department of Medicine, Monash University, Clayton, VIC 3168, Australia
| | - Sandeep Kumar
- Advanced Therapy Manufacturing (GMP) Unit, Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK
| | - Maria Soares
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Ian S Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, London SE1 9RT, UK
| | - Kathryn J Wood
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Paul N Harden
- Department of Renal Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LH, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
2
|
Sommerer C, Schröter I, Gruneberg K, Schindler D, Morath C, Renders L, Einecke G, Guthoff M, Heemann U, Schnitzler P, Zeier M, Giese T. Transplant centers' prophylaxis and monitoring strategies: a key determinant of current herpes and polyomavirus incidences - results from the DZIF kidney transplant cohort. BMC Nephrol 2025; 26:218. [PMID: 40307706 PMCID: PMC12045003 DOI: 10.1186/s12882-025-04084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Herpes- and polyomaviruses are major opportunistic pathogens after renal transplantation. Despite established guidelines, there is limited data on transplant centers' prophylaxis and monitoring strategies and centers' adherence to these guidelines and their impact on infection rates and patient outcomes. METHODS This multicenter cohort study, conducted by the German Center for Infection Research, included 1035 kidney transplant recipients from five centers (01/2014-02/2021), focusing on herpes- and polyomavirus viremia within the first year and adherence to prophylaxis strategies. RESULTS Among 1035 recipients, 26.6% developed herpes- or polyomavirus viremia, predominantly Cytomegalovirus (CMV, 14.3%) and BK-virus (BKV, 13.2%). BKV monitoring frequency was below guideline recommendations. Deviations from guidelines were most common in CMV D-/R- (34.6% with prophylaxis) and D-/R + groups (37.3% without prophylaxis), doubling CMV-incidence in D-/R+ (28.9% vs. 12.5%, p < 0.01). In D+/R - group, six-month-prophylaxis reduced CMV-incidence compared to three months (22.5% vs. 38.4%, p < 0.01). Breakthrough-viremia was most commonly observed in D+/R - recipients who received a six-month-prophylaxis. Overall, viremia was associated with higher incidence of acute rejection (31.9% vs. 17.6%, p < 0.01), with most CMV-viremias occurring after rejection. CMV-viremia was associated with a higher risk of bacterial infection (HR = 1.77, [1.03;3.02]). Other herpesviruses were associated with a quadrupled risk for fungal infection (HR = 4.34, [1.03;18.30]) and the non-administration of CMV-prophylaxis (HR = 0.22, [0.11;0.47]). Graft survival and mortality were unaffected within the first year. CONCLUSION Clinical variability in guideline implementation drives high herpes- and polyomavirus infection rates with suboptimal outcomes. Future guidelines should focus on differentiated risk stratification to address breakthrough, post-prophylaxis, and post-rejection CMV, and include protocols for the early detection of secondary infections.
Collapse
Affiliation(s)
- Claudia Sommerer
- Nephrology, University Hospital Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Heidelberg, Germany.
| | - Iris Schröter
- Nephrology, University Hospital Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Katrin Gruneberg
- Nephrology, University Hospital Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Daniela Schindler
- Department of Nephrology, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Christian Morath
- Nephrology, University Hospital Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Rheumatology, University Medical Centre Göttingen, Göttingen, Germany
| | - Martina Guthoff
- Department of Diabetology, Endocrinology, Nephrology, University Hospital Tuebingen, Tuebingen, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Martin Zeier
- Nephrology, University Hospital Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Thomas Giese
- Department of Immunology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
3
|
Schweizer R, Kamat P, Klein HJ, Kollar B, Waldner M, Stölzl K, Lehner F, Salemi S, Bode P, Eberli D, Taddeo A, Plock JA. Donor adipose-derived stromal cells are vasoprotectant but unable to revert acute rejection in rodent vascularized composite allotransplants. Front Immunol 2025; 16:1581599. [PMID: 40356930 PMCID: PMC12066311 DOI: 10.3389/fimmu.2025.1581599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background Vascularized composite allotransplantation is successful in reconstruction of major defects of the upper extremity and face. Both rejection and vascular damage seriously endanger the outcome. The role of adipose-derived stromal cells (ASCs) in suppressing acute rejection of composite allotransplants and their short-term protective effects on vessels remains widely unexplored. Methods Systemic and local donor-derived ASCs (CD45-CD29+CD90+) versus FK-506 administration was evaluated for reversal of acute rejection and vascular alterations in fully mismatched rat hind-limb transplants. Results ASC administration upon grade II rejection significantly delayed but did not suppress progression to grade III rejection (7.6 ± 1.0 days systemic, 7.1 ± 1.1 days local vs. no cell therapy 2.9 ± 1 days; p<0.01, n=38 animals). Pro-inflammatory cytokine blood levels significantly increased in controls from grade II to grade III rejection, whereas ASC significantly lowered the levels for G-CSF, MIP-1α, MIP-3α, IL-1α, IL-1β, IL-18, and Rantes (p<0.05). Local and systemic PKH-26-labeled ASCs homed to the allograft and reversed intragraft vascular alterations in arterioles of rejecting skin and muscle, similarly to FK-506-treated controls (p<0.01). Conclusions Although systemic and local ASC therapy reduces progression of acute rejection in vascularized composite allotransplantation, it is not able to revert rejection without additional immunosuppressive therapy. However, graft vasculitis during acute rejection is significantly reduced after cytotherapy.
Collapse
Affiliation(s)
- Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| | - Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger J. Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Branislav Kollar
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Waldner
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klara Stölzl
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabienne Lehner
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Souzan Salemi
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Bode
- Department of Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adriano Taddeo
- Department of Plastic Surgery and Hand Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Jan A. Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
- Transplantation Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Wolner L, William-Olsson J, Podesser BK, Zuckermann A, Pilat N. Tolerogenic Therapies in Cardiac Transplantation. Int J Mol Sci 2025; 26:3968. [PMID: 40362208 PMCID: PMC12072115 DOI: 10.3390/ijms26093968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Heart transplantation remains the gold-standard treatment for end-stage heart failure, yet long-term graft survival is hindered by chronic rejection and the morbidity and mortality caused by lifelong immunosuppression. While advances in medical and device-based therapies have reduced the overall need for transplantation, patients who ultimately require a transplant often present with more advanced disease and comorbidities. Recent advances in tolerance-inducing strategies offer promising avenues to improve allograft acceptance, while minimizing immunosuppressive toxicity. This review explores novel approaches aiming to achieve long-term immunological tolerance, including co-stimulation blockade, mixed chimerism, regulatory T-cell (Treg) therapies, thymic transplantation, and double-organ transplantation. These strategies seek to promote donor-specific unresponsiveness and mitigate chronic rejection. Additionally, expanding the donor pool remains a critical challenge in addressing organ shortages. Innovations such as ABO-incompatible heart transplantation are revolutionizing the field by increasing donor availability and accessibility. In this article, we discuss the mechanistic basis, clinical advancements, and challenges of these approaches, highlighting their potential to transform the future of heart transplantation with emphasis on clinical translation.
Collapse
Affiliation(s)
- Laurenz Wolner
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Johan William-Olsson
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Zuckermann
- Department of Cardiac and Thoracic Aortic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Nina Pilat
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Department of Cardiac and Thoracic Aortic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Hsieh WC, Hsu TS, Wu KW, Lai MZ. Therapeutic application of regulatory T cell in osteoarthritis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00083-0. [PMID: 40300967 DOI: 10.1016/j.jmii.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Regulatory T cells (Tregs) are the specific T cell population that suppress inflammatory immunity. Independent of their inhibitory activities, Tregs exhibit unique capacity to repair tissue damage. Rapid progresses are made in the processing and engineering of Tregs for clinical applications. Tregs have been used in the treatment of autoimmune diseases, transplantation rejection and graft-versus-host disease. Osteoarthritis is one of the major diseases that affect at least 600 million people worldwide. Osteoarthritis is characterized by physical erosion of cartilage, accompanied with chronic and low-grade inflammation. Tregs possess abilities to increase osteoclast differentiation and bone resorption, repair bone physical damage, and increase bone mass. Tregs are therefore candidate therapeutics for osteoarthritis for both inflammation resolution and tissue repairing. In this review, we will summarize the recent development in using Tregs in immunotherapy, and the potential of using Tregs in osteoarthritis.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kuan-Wen Wu
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Ma L, Fink J, Yao K, McDonald-Hyman C, Dougherty P, Koehn B, Blazar BR. Immunoregulatory iPSC-derived non-lymphoid progeny in autoimmunity and GVHD alloimmunity. Stem Cells 2025; 43:sxaf011. [PMID: 40103180 DOI: 10.1093/stmcls/sxaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Non-lymphoid immunoregulatory cells, including mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs), regulatory macrophages (Mregs), and tolerogenic dendritic cells (Tol-DCs), play critical roles in maintaining immune homeostasis. However, their therapeutic application in autoimmune diseases and graft-versus-host disease (GVHD) has received comparatively less attention. Induced pluripotent stem cells (iPSCs) offer a promising platform for cell engineering, enabling superior quality control, scalable production, and large-scale in vitro expansion of iPSC-derived non-lymphoid immunoregulatory cells. These advances pave the way for their broader application in autoimmune disease and GVHD therapy. Recent innovations in iPSC differentiation protocols have facilitated the generation of these cell types with functional characteristics akin to their primary counterparts. This review explores the unique features and generation processes of iPSC-derived non-lymphoid immunoregulatory cells, their therapeutic potential in GVHD and autoimmune disease, and their progress toward clinical translation. It emphasizes the phenotypic and functional diversity within each cell type and their distinct effects on disease modulation. Despite these advancements, challenges persist in optimizing differentiation efficiency, ensuring functional stability, and bridging the gap to clinical application. By synthesizing current methodologies, preclinical findings, and translational efforts, this review underscores the transformative potential of iPSC-derived non-lymphoid immunoregulatory cells in advancing cell-based therapies for alloimmune and autoimmune diseases.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Jordan Fink
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Ke Yao
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Cameron McDonald-Hyman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Phillip Dougherty
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
7
|
Montgomery L, Larbi A. Monitoring Immune Responses to Vaccination: A Focus on Single-Cell Analysis and Associated Challenges. Vaccines (Basel) 2025; 13:420. [PMID: 40333304 PMCID: PMC12030821 DOI: 10.3390/vaccines13040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Monitoring the immune response to vaccination encompasses both significant challenges and promising opportunities for scientific advancement. The primary challenge lies in the inherent complexity and interindividual variability of immune responses, influenced by factors including age, genetic background, and prior immunological history. This variability necessitates the development of sophisticated, highly sensitive assays capable of accurately quantifying immune parameters such as antibody titers, T-cell responses, and cytokine profiles. Furthermore, the temporal dynamics of the immune response require comprehensive longitudinal studies to elucidate the durability and quality of vaccine-induced immunity. Challenges of this magnitude pave the way for immunological research advancements and diagnostic methodologies. Cutting-edge monitoring techniques, such as high-throughput sequencing and advanced flow cytometry, enable deeper insights into the mechanistic underpinnings of vaccine efficacy and contribute to the iterative design of more effective vaccines. Additionally, the integration of analytical tools holds the potential to predict immune responses and tailor personalized vaccination strategies. This will be addressed in this review to provide insight for enhancing public health outcomes and fortifying preparedness against future infectious disease threats.
Collapse
Affiliation(s)
- LaToya Montgomery
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, Brea, CA 92821, USA;
| | - Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, Brea, CA 92821, USA;
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
8
|
Sun N, Wang C, Edwards W, Wang Y, Lu XL, Gu C, McLennan S, Shangaris P, Qi P, Mastronicola D, Scottà C, Lombardi G, Chiappini C. Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416066. [PMID: 40231643 DOI: 10.1002/advs.202416066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Regulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.
Collapse
Affiliation(s)
- Ningjia Sun
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cong Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
- Wenzhou Eye Valley Innovation Center, Eye Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - William Edwards
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yikai Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Xiangrong L Lu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Samuel McLennan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Panicos Shangaris
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- School of Life Course & Population Sciences, 10th Floor North Wing, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, SE1 7EH, UK
| | - Peng Qi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Daniela Mastronicola
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
9
|
Tran GT, Bedi S, Rakesh P, Verma ND, Carter N, Robinson CM, Al-Atiyah R, Hall BM, Hodgkinson SJ. Autoantigen and IL-2 activated CD4 +CD25 +T regulatory cells are induced to express CD8 and are autoantigen specific in inhibiting experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 404:578611. [PMID: 40228404 DOI: 10.1016/j.jneuroim.2025.578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP) is a self-limiting disease model of multiple sclerosis. CD4+CD25+Foxp3+T cells play a role in limiting autoimmune disease but treatment with antigen naïve CD4+CD25+ cells does not reduce EAE. This study examined if in vitro activation by MBP and rIL-2 induced CD4+CD25+Foxp3+ cells that could inhibit EAE. Culture of CD4+CD8-CD25+cells from naïve rats with MBP and rIL-2 induced activated Treg that reduced the severity of clinical EAE and infiltration of CD8+T cells and macrophage into brain stem. CD4+CD25+T cells activated by an irrelevant autoantigen and rIL-2 did not suppress EAE. Resting CD4+CD25+T cells activated by autoantigen and rIL-2 have mRNA for Infgr, Il12rb2, Il5 but not Tbet, Gata3, Ilr5ra or Ifng. These changes in mRNA expression are the markers of Ts1 cells. A proportion of CD4+CD8-CD25+ cells activated by MBP/rIL-2 were induced to express CD8α, CD8β and CD62L. Depletion of CD4+CD8α+CD25+ cells removed the capacity of MBP and rIL-2 activated CD4+CD25+T cells to suppress EAE. This study demonstrated that in vitro activation of CD4+CD8-CD25+ cells by MBP/rIL-2 induced relevant antigen-specific Treg within days, which expressed CD8α, CD8β and CD62L with a Ts1 phenotype and that had greater potency than freshly isolated antigen naive CD4+CD25+Treg in suppressing clinical severity of EAE and immune inflammation in CNS. These findings may guide development of antigen-specific Treg for therapy.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Sukhandep Bedi
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Prateek Rakesh
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Ranje Al-Atiyah
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
10
|
Durgam SS, Rosado-Sánchez I, Yin D, Speck M, Mojibian M, Sayin I, Hynes GE, Alegre ML, Levings MK, Chong AS. CAR Treg synergy with anti-CD154 promotes infectious tolerance and dictates allogeneic heart transplant acceptance. JCI Insight 2025; 10:e188624. [PMID: 40197364 PMCID: PMC11981628 DOI: 10.1172/jci.insight.188624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025] Open
Abstract
Successful allograft-specific tolerance induction would eliminate the need for daily immunosuppression and improve posttransplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific chimeric antigen receptors (CAR Tregs) is a promising strategy but, as monotherapy, cannot prolong survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57BL/6 recipients, we showed that HLA-A2-specific CAR (A2.CAR) Tregs were able to synergize with a low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited donor-specific T cell, B cell, and antibody responses and promoted a substantial increase in endogenous FOXP3+ Tregs with indirect donor specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FOXP3- A2.CAR T cells preferentially accumulated in rejecting allografts, and endogenous donor-specific responses were not controlled. This study therefore provides evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity toward allograft tolerance.
Collapse
Affiliation(s)
- Samarth S. Durgam
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dengping Yin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Sayin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Grace E. Hynes
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Stark H, Ho QY, Cross A, Alessandrini A, Bertaina A, Brennan D, Busque S, Demetris A, Devey L, Fruhwirth G, Fuchs E, Friend P, Geissler E, Guillonneau C, Hester J, Isaacs J, Jaeckel E, Kawai T, Lakkis F, Leventhal J, Levings M, Levitsky J, Lombardi G, Martinez-Llordella M, Mathew J, Moreau A, Reinke P, Riella LV, Sachs D, Fueyo AS, Schreeb K, Sykes M, Tang Q, Thomson A, Tree T, Trzonkowski P, Uchida K, Veale J, Weiner J, Wekerle T, Issa F. Meeting Report: The Sixth International Sam Strober Workshop on Clinical Immune Tolerance. Transplantation 2025; 109:569-579. [PMID: 39800883 DOI: 10.1097/tp.0000000000005311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Affiliation(s)
- Helen Stark
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Quan Yao Ho
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Palo Alto, CA
| | - Anthony Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, PA
| | - Luke Devey
- Quell Therapeutics, Translation and Innovation Hub, London, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ed Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuo Kawai
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Fadi Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Leventhal
- Comprehensive Transplant Center at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, UK
| | | | - James Mathew
- Departments of Surgery and Microbiology-Immunology, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Aurélie Moreau
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Petra Reinke
- Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David Sachs
- Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, MA
- Medical School, Harvard University, Boston, MA
- Columbia Center of Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Departments of Medicine, Surgery, and Microbiology and Immunology, Columbia University, New York, NY
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, University of California, San Francisco, CA
| | - Angus Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Piotr Trzonkowski
- Medical University of Gdansk, Department of Medical Immunology, Gdansk, Poland
| | - Koichiro Uchida
- Juntendo University Center for Immunotherapy and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeffrey Veale
- Department of Urology, University of California, Los Angeles, CA
| | - Josh Weiner
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Zhang B, Gong G, He Y, Liu J, Wang B, Li Y, Fang J, Zhao Z, Guo J. Regulatory T cells engineered with polyphenol-functionalized immunosuppressant nanocomplexes for rebuilding periodontal hard tissue under inflammation-challenged microenvironment. Biomaterials 2025; 315:122961. [PMID: 39549440 DOI: 10.1016/j.biomaterials.2024.122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/23/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Global aging heightens the risk of oral disorders, among which periodontitis is the major cause of tooth loss in the aging population. The regeneration of damaged periodontal hard tissue is highly challenging due to the existence of the refractory local inflammation. Owing to the potent anti-inflammatory capabilities, regulatory T cells hold great promise in immunotherapies for tissue regeneration. However, the transferred regulatory T cells can alter their phenotypes and functions in local inflammatory milieu, significantly impairing their therapeutic efficacy. Herein, we introduce a novel regulatory T cell-based nanobiohybrid system bearing polyphenol-functionalized rapamycin nanocomplexes. The sustained in situ release of immunosuppressant rapamycin from the cell-attached nanocomplexes maintains the anti-inflammatory phenotype of regulatory T cells in the inflammatory milieu. The synergistic actions of the anti-inflammatory cytokines secreted and the immunosuppressant released guide a pro-resolving polarization of macrophages and enhance osteogenic differentiation of bone marrow-derived stromal cells. The stabilized phenotype of the regulatory T cells dramatically promoted the resolution of periodontal inflammation and the repair of the hard tissue (alveolar bone) in vivo. Overall, these studies highlight a potent regulatory T cell-based nanobiohybrid therapy to treat periodontitis by modulating periodontal immune microenvironment.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
13
|
Valentín-Quiroga J, Zarauza-Santoveña A, López-Collazo E, Ferreira LMR. Chimeric anti-HLA antibody receptor engineered human regulatory T cells suppress alloantigen-specific B cells from pre-sensitized transplant recipients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645777. [PMID: 40236118 PMCID: PMC11996358 DOI: 10.1101/2025.03.27.645777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Organ transplantation is a lifesaving procedure, with 50,000 transplants happening every year in the United States. However, many patients harbor antibodies and B cells directed against allogeneic human leukocyte antigen (HLA) molecules, notably HLA-A2, greatly decreasing their likelihood of receiving a compatible organ. Moreover, antibody-mediated rejection is a significant contributor to chronic transplant rejection. Current strategies to desensitize patients non- specifically target circulating antibodies and B cells, resulting in poor efficacy and complications. Regulatory T cells (Tregs) are immune cells dedicated to suppressing specific immune responses by interacting with both innate and adaptive immune cells. Here, we genetically modified human Tregs with a chimeric anti-HLA antibody receptor (CHAR) consisting of an extracellular HLA-A2 protein fused to a CD28-CD3zeta intracellular signaling domain, driving Treg activation upon recognition of anti-HLA-A2 antibodies on the surface of alloreactive B cells. We find that HLA-A2 CHAR Tregs get activated specifically by anti-HLA-A2 antibody-producing cells. Of note, HLA-A2 CHAR activation does not negatively affect Treg stability, as measured by expression of the Treg lineage transcription factors FOXP3 and HELIOS. Interestingly, HLA-A2 CHAR Tregs are not cytotoxic towards anti-HLA-A2 antibody-producing cells, unlike HLA-A2 CHAR modified conventional CD4 + T cells. Importantly, HLA-A2 CHAR Tregs recognize and significantly suppress high affinity IgG antibody production by B cells from HLA-A2 sensitized patients. Altogether, our results provide proof-of-concept of a new strategy to specifically inhibit alloreactive B cells to desensitize transplant recipients.
Collapse
|
14
|
Meier RPH, Ben Nasr M, Fife BT, Finger EB, Fiorina P, Luo X, Bromberg JS. Best practices in islet transplantation in mice. Am J Transplant 2025:S1600-6135(25)00137-6. [PMID: 40089068 DOI: 10.1016/j.ajt.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Islet transplantation in mice serves as a crucial preclinical model for understanding alloimmune and autoimmune mechanisms, optimizing immunosuppressive strategies, and developing novel therapies for diabetes. This review provides a comprehensive overview of best practices in murine islet transplantation, including diabetes induction models, technical aspects of islet transplantation, and criteria for transplant graft and rejection. We discuss the immunological challenges posed by major histocompatibility complex disparities, the impact of various transplantation sites, and the limitations of murine models in translating findings to clinical settings. Special emphasis is placed on emerging strategies such as stem cell-derived insulin-producing cells, immune tolerance induction, and alternative transplantation sites. Although mouse models have significantly advanced our understanding of diabetes and β-cell replacement, their inherent differences from human physiology necessitate careful interpretation of findings. The review also highlights novel imaging modalities, immunosuppressive protocols, and biomarkers for graft monitoring, underscoring the need for further refinement of these models to bridge the gap between experimental research and clinical application. By standardizing methodologies and addressing translational limitations, murine islet transplantation studies remain a key model in transplantation and can continue to shape the future of β-cell replacement therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian T Fife
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Puga Yung GL, Wakley T, Kouklas A, Seebach JD. Dendritic Cells in Xenotransplantation: Shaping the Cellular Immune Response Toward Tolerance. Xenotransplantation 2025; 32:e70037. [PMID: 40243284 PMCID: PMC12005074 DOI: 10.1111/xen.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/18/2025]
Abstract
The molecular barriers that cause acute xenograft rejection have been identified and addressed by generating genetically modified (GM) animals, knocked out for specific xenoantigens (xenoAgs), and expressing regulatory molecules for both complement and coagulation pathways among others. The focus of xenotransplantation research now lies in delayed xenograft rejection. Dendritic cells (DC) are a specific subpopulation of professional antigen-presenting cells (APC) that play a crucial role in the context of organ transplantation. DCs, originating from both the xenograft and the recipient, have the capacity to present xenoAgs to the recipient's immune system via their respective major histocompatibility complex (MHC) molecules leading to rejection. These processes are known as direct and indirect presentation, respectively. However, under certain microenvironmental conditions, DC develops into anti-inflammatory regulatory cells that can induce immunological tolerance. The purpose of this review is to summarize current knowledge on the general characteristics and functions of DC from species relevant to xenotransplantation, specifically humans, non-human primates (NHP), and pigs. It will also cover the process of xenoAg presentation, different methods for generating DC with regulatory properties in vitro, and finally, discuss the current strategies for using regulatory DC to improve xenograft acceptance by inducing tolerance.
Collapse
Affiliation(s)
- Gisella L. Puga Yung
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Tom Wakley
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Athanasios Kouklas
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Jörg D. Seebach
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
17
|
Chan MMY, Sadeghi-Alavijeh O, Evans RDR, Davenport A, Nitsch D. The future of nephrology in 2050. Future Healthc J 2025; 12:100236. [PMID: 40236931 PMCID: PMC11998293 DOI: 10.1016/j.fhj.2025.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/17/2025]
Abstract
As medicine advances at an unprecedented pace, the field of nephrology is poised for transformative change. By 2050, breakthroughs in kidney disease prevention, dialysis, transplantation, and omics-driven precision medicine could redefine patient care and outcomes. Here, we share our perspectives on the challenges faced and how changes in health policy, emerging technologies, novel therapies, and data-driven approaches might shape the future of nephrology. From innovative dialysis solutions to xenotransplantation and AI-powered diagnostics, we explore the possibilities that could revolutionise kidney health in the decades to come.
Collapse
Affiliation(s)
- Melanie MY Chan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | | | - Rhys DR Evans
- UCL Centre for Kidney and Bladder Health, University College London, London, UK
| | - Andrew Davenport
- UCL Centre for Kidney and Bladder Health, University College London, London, UK
| | - Dorothea Nitsch
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
18
|
Leung ML, Barrett‐Chan E, Levings MK, Vercauteren S, Blydt‐Hansen TD. Evaluating Activated Regulatory T Cells as a Biomarker of Chronic Allograft Inflammation in Pediatric Kidney Transplant Recipients. Pediatr Transplant 2025; 29:e70041. [PMID: 39924341 PMCID: PMC11807789 DOI: 10.1111/petr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND There is a need for noninvasive immunological biomarkers that can identify stable kidney allograft immune quiescence to inform individualized immunosuppression. METHODS We conducted a cross-sectional, pilot cohort study evaluating the relative abundance of regulatory T cells (Tregs) to effector T-cell (Teff) populations as a surrogate marker of long-term graft tolerance. We obtained fresh peripheral blood mononuclear cell samples from stable pediatric kidney transplant recipients, most with recent surveillance biopsies to identify the presence or absence of chronic inflammation. Tregs were sub-phenotyped as naïve, memory, and activated Tregs (aTreg). Treg/Teff ratios were modeled for association with chronic inflammation and in the context of potential clinical features. RESULTS Twenty-seven patient samples were included on standard immunosuppression (tacrolimus, mycophenolate, and prednisone) with a mean age of 9.2 ± 5.0 years, at 30.2 ± 21.7 months posttransplant. The ratio of aTreg (FOXP3++CD45RA-) to Th17 cells (CD4+IL-17+) was significantly greater in patients without inflammation than in patients with graft inflammation (p < 0.01). Similarly, there was a trend toward greater aTreg/CD4+ T cells and aTreg/CD8+ Teff in patients without inflammation (p = 0.05 and 0.09, respectively). There was no significant association for inflammation with naïve or memory Treg/Teff ratios. Multiple logistic regression with all three aTreg/Teff ratios modeled allograft inflammation with high sensitivity and specificity (AUC = 0.83, 95% CI 0.67-0.98). CONCLUSIONS The proportion of peripheral blood aTregs/Teff cells in this pilot cohort of stable pediatric kidney transplant recipients was associated with immune quiescence. These data support further investigation into aTreg/Teff monitoring to inform precision immunosuppressive treatment.
Collapse
Affiliation(s)
- Macyn L. Leung
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ella Barrett‐Chan
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Megan K. Levings
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Suzanne Vercauteren
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Tom D. Blydt‐Hansen
- BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
19
|
Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M, Campione E, Della-Morte D, Tisone G, Anselmo A, Novelli G, Bernardini S, Terrinoni A. Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview. Int J Mol Sci 2025; 26:1960. [PMID: 40076585 PMCID: PMC11900248 DOI: 10.3390/ijms26051960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Kidney transplantation is currently the treatment of choice for patients with end-stage kidney diseases. Although significant advancements in kidney transplantation have been achieved over the past decades, the host's immune response remains the primary challenge, often leading to potential graft rejection. Effective management of the immune response is essential to ensure the long-term success of kidney transplantation. To address this issue, immunosuppressives have been developed and are now fully integrated into the clinical management of transplant recipients. However, the considerable inter- and intra-patient variability in pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs represents the primary cause of graft rejection. This variability is primarily attributed to the polymorphic nature (genetic heterogeneity) of genes encoding xenobiotic-metabolizing enzymes, transport proteins, and, in some cases, drug targets. These genetic differences can influence drug metabolism and distribution, leading to either toxicity or reduced efficacy. The main objective of the present review is to report an historical overview of the pharmacogenetics of immunosuppressants, shedding light on the most recent findings and also suggesting how relevant is the research and investment in developing validated NGS-based commercial panels for pharmacogenetic profiling in kidney transplant recipients. These advancements will enable the implementation of precision medicine, optimizing immunosuppressive therapies to improve graft survival and kidney transplanted patient outcomes.
Collapse
Affiliation(s)
- Riccardo Belardi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Matteo Baldetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Silvia Velocci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Elena Campione
- Dermatology Unit, Policlinico Tor Vergata, System Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Tisone
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Alessandro Anselmo
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| |
Collapse
|
20
|
Geissler EK, Sawitzki B. Is operational tolerance induction finally safe and feasible for some kidney transplant recipients: a breakthrough to a new horizon? Am J Transplant 2025:S1600-6135(25)00096-6. [PMID: 39993571 DOI: 10.1016/j.ajt.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Affiliation(s)
- Edward K Geissler
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany.
| | - Birgit Sawitzki
- Berlin Institute of Health (BIH) @ Charité University Medicine, Center of Immunomics, Berlin, Germany; Si-M/"Der Simulierte Mensch", Technische Universität Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Holle J, Reitmeir R, Behrens F, Singh D, Schindler D, Potapenko O, McParland V, Anandakumar H, Kanzelmeyer N, Sommerer C, Hartleif S, Andrassy J, Heemann U, Neuenhahn M, Forslund-Startceva SK, Gerhard M, Oh J, Wilck N, Löber U, Bartolomaeus H. Gut microbiome alterations precede graft rejection in kidney transplantation patients. Am J Transplant 2025:S1600-6135(25)00093-0. [PMID: 39978595 DOI: 10.1016/j.ajt.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease, with graft survival critically affected by the recipient's immune response. The role of the gut microbiome in modulating this immune response remains underexplored. Our study investigates how microbiome alterations might associate with allograft rejection by analyzing the gut microbiome using 16S rRNA gene amplicon sequencing of a multicenter prospective study involving 562 samples from 245 individuals of which 217 received KT. Overall, gut microbiome composition showed gradual recovery post-KT, mirroring CKD-to-health transition as indicated by an increase of Shannon diversity. Prior to graft rejection, we observed a decrease in microbial diversity and SCFA-producing taxa. Functional analysis highlighted a decreased potential for SCFA production in patients preceding the rejection event, validated by quantitative PCR for the production potential of propionate and butyrate. Post-rejection analysis revealed normalization of these microbiome features. Comparison to published microbiome signatures from CKD patients demonstrated a partial overlap of the microbiome alterations preceding graft rejection with the alterations typically found in CKD. Our findings suggest that alterations in gut microbiome composition and function may precede and influence KT rejection, suggesting potential implications as biomarkers or for early therapeutic microbiome-targeting interventions.
Collapse
Affiliation(s)
- Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of General Pediatrics and Hematology/Oncology, University Children's Hospital, University Hospital Tübingen, Tübingen, Germany.
| | - Rosa Reitmeir
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dharmesh Singh
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Daniela Schindler
- German Center for Infection Research (DZIF), Partner Site Braunschweig, Germany
| | - Olena Potapenko
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Children's Hospital, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover, Germany
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Germany
| | - Steffen Hartleif
- Paediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Joachim Andrassy
- German Center for Infection Research (DZIF), Partner Site München, Germany; Klinik für Allgemeine, Viszeral, und Transplantationschirurgie, Klinikum der Universität München, Munich, Germany
| | - Uwe Heemann
- German Center for Infection Research (DZIF), Partner Site München, Germany; Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Michael Neuenhahn
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Gerhard
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hendrik Bartolomaeus
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| |
Collapse
|
22
|
Van den Bos J, Janssens I, Vermeulen M, Dams A, De Reu H, Peeters S, Faghel C, Ouaamari YE, Wens I, Cools N. The Efficiency of Brain-Derived Neurotrophic Factor Secretion by mRNA-Electroporated Regulatory T Cells Is Highly Impacted by Their Activation Status. Eur J Immunol 2025; 55:e202451005. [PMID: 39703060 PMCID: PMC11830389 DOI: 10.1002/eji.202451005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA+ Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF). Kinetics of BDNF expression and secretion were explored. Treg activation state was assessed by checking the expression of activation markers CD69, CD71, and CD137. Our findings show that only activated Tregs secrete BDNF post-genetic engineering, even though both activated and resting Tregs express BDNF intracellularly. Notably, the mTOR pathway and CD137 are implicated in the regulation of protein secretion in activated Tregs, indicating a complex interplay of signalling pathways. This study contributes to understanding the mechanisms governing protein expression and secretion in engineered Tregs, offering insights for optimizing cell-based therapies and advancing immune regulation strategies.
Collapse
Affiliation(s)
- Jasper Van den Bos
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Ibo Janssens
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Morgane Vermeulen
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Amber Dams
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Hans De Reu
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Flow Cytometry and Sorting Core Facility (FACSUA)University of AntwerpAntwerpBelgium
| | - Stefanie Peeters
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Carole Faghel
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Yousra El Ouaamari
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Inez Wens
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Nathalie Cools
- Laboratory of Experimental HematologyVaccine and Infections Disease Institute (VAXINFECTIO)Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Flow Cytometry and Sorting Core Facility (FACSUA)University of AntwerpAntwerpBelgium
| |
Collapse
|
23
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Avalos-de Leon CG, Thomson AW. Regulatory Immune Cell-derived Exosomes: Modes of Action and Therapeutic Potential in Transplantation. Transplantation 2025:00007890-990000000-00994. [PMID: 39865513 DOI: 10.1097/tp.0000000000005309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties. Twenty years ago, it was first reported that donor-derived exosomes could extend the survival of transplanted organs in rodents. Recent studies have revealed that regulatory immune cells, such as regulatory myeloid cells (dendritic cells, macrophages, or myeloid-derived suppressor cells), regulatory T cells, or mesenchymal stem/stromal cells can suppress graft rejection via exosomes that express a cargo of immunosuppressive molecules. These include cell surface molecules that interact with adaptive immune cell receptors, immunoregulatory enzymes, and micro- and long noncoding RNAs that can regulate inflammatory gene expression via posttranscriptional changes and promote tolerance through promotion of regulatory T cells. This overview analyzes the diverse molecules and mechanisms that enable regulatory immune cell-derived exosomes to modulate alloimmunity and promote experimental transplant tolerance. We also discuss the potential benefits and limitations of their application as therapeutic entities in organ transplantation.
Collapse
Affiliation(s)
- Cindy G Avalos-de Leon
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
25
|
Papa-Gobbi R, Stringa P, Gentilini MV, Ivanoff I, Machuca M, Arreola NM, Serradilla J, Estefanía-Fernández K, Talayero P, Velayos M, Sánchez—Zapardiel E, Gondolesi G, Andrés-Moreno A, Rumbo M, Hernández-Oliveros F. Low regulatory T-cells frequency is associated with graft rejection after small bowel transplantation: Clinical and experimental evidence. PLoS One 2025; 20:e0307534. [PMID: 39854413 PMCID: PMC11761612 DOI: 10.1371/journal.pone.0307534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/07/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs. graft responses after ITx. Thus, we investigated the association of Tregs with allograft outcomes in pediatric patients and in an experimental model of small bowel transplantation. METHODS Treg frequency in human samples was analyzed by Flow cytometry (CD4+CD25highCD127-, blood samples) and immunohistochemistry (FoxP3, graft samples). Experimental allogenic-heterotopic small bowel transplantation was performed in rats and animals divided into 3 groups: non-immunosuppressant treatment, rapamycin (2 mg/kg), and tacrolimus (0.6 mg/kg) treatment. Acute cellular rejection (ACR) was diagnosed based on clinical and histological findings, graft gene expression of pro- and anti-inflammatory mediators assessed by RT-qPCR, serum IL-6 and IL-10 levels by Luminex, and Treg frequency analyzed by flow cytometry (CD4+CD25highFoxP3+). RESULTS Blood samples from patients undergoing ACR exhibited a significant reduction in the Treg number compared to those with normo-functional grafts. Similarly, a diminished number of FoxP3+ cells was observed in mucosa samples with ACR. In the experimental model, rapamycin-treated animals displayed clinical and histological findings resembling those not receiving immunosuppression treatment. Notably, ACR correlated with a high CD8/CD4 ratio, loss of T-cell chimerism, mRNA upregulation of pro-inflammatory genes and diminished graft Treg frequency. In contrast, tacrolimus treatment prevented ACR and facilitate blood and graft Treg expansion. Remarkably, recipients who achieved Treg expansion within the graft remained free of ACR even after discontinuation of the immunosuppressant treatment and this phenomenon was associated with increased levels of serum IL-10. CONCLUSION Our clinical and experimental findings underscore the association between Treg frequency and graft rejection after ITx, advocating for strategies that promote their expansion within the gut mucosa to enhance long-term outcomes.
Collapse
Affiliation(s)
- Rodrigo Papa-Gobbi
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Pablo Stringa
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Maria Virginia Gentilini
- Intestinal Failure, Rehabilitation and Transplant Unit, University Hospital Foundation Favaloro; Institute of Translational Medicine, Transplantation and Bioengineering (ImeTTyB), University Favaloro-CONICET, Buenos Aires, Argentina
| | - Ivana Ivanoff
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Nidia Monserrat Arreola
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Javier Serradilla
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Karla Estefanía-Fernández
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - María Velayos
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | | | - Gabriel Gondolesi
- Intestinal Failure, Rehabilitation and Transplant Unit, University Hospital Foundation Favaloro; Institute of Translational Medicine, Transplantation and Bioengineering (ImeTTyB), University Favaloro-CONICET, Buenos Aires, Argentina
| | - Ane Andrés-Moreno
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Martin Rumbo
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández-Oliveros
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
26
|
Esendagli D, Mastromarino MG, Valverde Zúñiga A, Migliore M, Meloni F. ERS Congress 2024: highlights from the Thoracic Surgery and Lung Transplantation Assembly. ERJ Open Res 2025; 11:01046-2024. [PMID: 39872383 PMCID: PMC11770695 DOI: 10.1183/23120541.01046-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025] Open
Abstract
Assembly 8, which includes groups 8.01 Thoracic surgery and 8.02 Lung transplantation, arranged many interesting sessions for #ERSCongress 2024, and we highlight some of them in this article https://bit.ly/3AgC5Yv.
Collapse
Affiliation(s)
- Dorina Esendagli
- Baskent University, School of Medicine, Chest Diseases Department, Ankara, Turkey
| | - Maria Giovanna Mastromarino
- University Hospital of Pisa, Division of Thoracic Surgery, Cardiac, Thoracic and Vascular Department, Pisa, Italy
| | - Adriana Valverde Zúñiga
- University of Costa Rica, Hospital Calderon Guardia, Department of Respirology, San José, Costa Rica
| | - Marcello Migliore
- Program of Minimally Invasive Thoracic Surgery and New Technologies, Policlinic Hospital, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- Thoracic Surgery and Lung Transplantation, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Federica Meloni
- Department of Cardio-Thoracic and Vascular Sciences, University of Padova and AOPD, Padua, Italy
| |
Collapse
|
27
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2025; 40:39-52. [PMID: 39278988 PMCID: PMC11584488 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
28
|
Kurt AS, Ruiz P, Landmann E, Elgosbi M, Kan Fung T, Kodela E, Londoño MC, Correa DM, Perpiñán E, Lombardi G, Safinia N, Martinez-Llordella M, Sanchez-Fueyo A. Conferring alloantigen specificity to regulatory T cells: A comparative analysis of cell preparations undergoing clinical development in transplantation. Am J Transplant 2025; 25:38-47. [PMID: 39299674 DOI: 10.1016/j.ajt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Conferring alloantigen-specificity to ex vivo expanded CD4+CD25+FOXP3+ regulatory T cells (Tregs) increases their capacity to counteract effector alloimmune responses following adoptive transfer into transplant recipients. Three strategies are currently undergoing clinical development, which involve the following: (1) expanding Tregs in the presence of donor B cells (donor alloantigen-reactive [DAR] Tregs); (2) culturing Tregs with donor cells in the presence of costimulation blockade (CSB-Tregs); and (3) transducing Tregs with an human leukocyte antigen A2-specific chimeric antigen receptor (CAR-Tregs). Our goal in this study was to assess the relative potency of each of these manufactured Treg products both in vitro and in vivo. When compared with polyclonal Tregs, all 3 manufacturing strategies increased the precursor frequency of alloreactive Tregs, and this was proportional to the overall in vitro immunosuppressive properties of the cell products. Accordingly, CAR-Tregs, which contained the highest frequency of donor-reactive Tregs, exhibited the strongest suppressive effects on a cell-per-cell basis. Similarly, in an in vivo mouse model of graft-vs-host disease, infusion of CAR-Tregs conferred a significantly longer recipient survival than any other Treg product. Our results highlighting the alloantigen-reactivity and associated immunosuppressive properties of different manufactured Treg products have implications for the mechanistic interpretation of currently ongoing clinical trials in transplantation.
Collapse
Affiliation(s)
- Ada Sera Kurt
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Paula Ruiz
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Emmanuelle Landmann
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marwa Elgosbi
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Tsz Kan Fung
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Elisavet Kodela
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | | | - Diana Marin Correa
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Elena Perpiñán
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK; Quell Therapeutics, London, UK
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK.
| |
Collapse
|
29
|
Yang J, Peng T, Xu H, He Y, Wei Q, Dong H. The potential roles of pelvic lymph node dissection in patients with prostate cancer: obtaining deeper understandings based on current clinical evidence. Int J Surg 2025; 111:1659-1661. [PMID: 38954661 PMCID: PMC11745628 DOI: 10.1097/js9.0000000000001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Jie Yang
- School of Pharmacy, Chengdu University
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ting Peng
- School of Pharmacy, Chengdu University
| | - Hang Xu
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yujiao He
- School of Pharmacy, Chengdu University
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | | |
Collapse
|
30
|
Kim GR, Nam KH, Choi JM. Belatacept and regulatory T cells in transplantation: synergistic strategies for immune tolerance and graft survival. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:326-340. [PMID: 39690903 PMCID: PMC11732762 DOI: 10.4285/ctr.24.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Calcineurin inhibitors (CNIs) have been a cornerstone in solid organ transplantation for many years; however, their prolonged use is linked to significant adverse effects, most notably nephrotoxicity. Belatacept, a modified version of cytotoxic T lymphocyte antigen-4 immunoglobulin with increased binding affinity for its ligand, has emerged as a viable alternative to traditional CNIs due to its lower toxicity profile. Despite these benefits, belatacept is associated with a higher rate of acute rejection, which presents a challenge for long-term graft survival. This review reevaluates the limitations of belatacept in achieving long-term acceptance of transplants and highlights the importance of regulatory T (Treg) cells in maintaining immune tolerance and preventing graft rejection. Additionally, it discusses the potential benefits of combining therapies that boost Treg cells with belatacept to increase the effectiveness of immunosuppression and improve graft outcomes.
Collapse
Affiliation(s)
- Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
31
|
Han JW, Park SH. Advancing immunosuppression in liver transplantation: the role of regulatory T cells in immune modulation and graft tolerance. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:257-272. [PMID: 39696994 PMCID: PMC11732766 DOI: 10.4285/ctr.24.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Prolonged immunosuppressive therapy in liver transplantation (LT) is associated with significant adverse effects, such as nephrotoxicity, metabolic complications, and heightened risk of infection or malignancy. Regulatory T cells (Tregs) represent a promising target for inducing immune tolerance in LT, with the potential to reduce or eliminate the need for life-long immunosuppression. This review summarizes current knowledge on the roles of Tregs in LT, highlighting their mechanisms and the impact of various immunosuppressive agents on Treg stability and function. The liver's distinct immunological microenvironment, characterized by tolerogenic antigen-presenting cells and high levels of interleukin (IL)-10 and transforming growth factor-β, positions this organ as an ideal setting for Treg-mediated tolerance. We discuss Treg dynamics in LT, their association with rejection risk, and their utility as biomarkers of transplant outcomes. Emerging strategies, including the use of low-dose calcineurin inhibitors with mammalian target of rapamycin inhibitors, adoptive Treg therapy, and low-dose IL-2, aim to enhance Treg function while providing sufficient immunosuppression. Thus, the future of LT involves precision medicine approaches that integrate Treg monitoring with tailored immunosuppressive protocols to optimize long-term outcomes for LT recipients.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
32
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High-affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. Mol Ther Methods Clin Dev 2024; 32:101385. [PMID: 39687729 PMCID: PMC11647616 DOI: 10.1016/j.omtm.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28-activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFN-γ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Salybekov AA, Kinzhebay A, Kobayashi S. Cell therapy in kidney diseases: advancing treatments for renal regeneration. Front Cell Dev Biol 2024; 12:1505601. [PMID: 39723242 PMCID: PMC11669058 DOI: 10.3389/fcell.2024.1505601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), pose a significant global health challenge, with high morbidity and mortality rates driven by rising prevalence of risk factors such as diabetes and hypertension. Current therapeutic strategies are often limited, prompting the exploration of advanced cell therapies as potential solutions. This review provides a comprehensive overview of the state of cell therapies in kidney disease, tracing the progression from preclinical studies to clinical applications. Recent studies highlited that cell-based interventions offer kidney-protective properties through mechanisms such as paracrine signaling, immune modulation, and direct tissue integration, demonstrating potential in both AKI and CKD settings. Despite promising results, challenges remain in optimizing cell therapy protocols, including cell sourcing, delivery methods, and long-term outcomes. Finally, the review addresses on efforts to enhance cell function, optimize dosing, and refine delivery techniques to improve clinical outcomes in kidney disease management.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana, Kazakhstan
| | - Aiman Kinzhebay
- Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana, Kazakhstan
| | - Shuzo Kobayashi
- Kidney Diseases and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
34
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Liu S, Zahorchak AF, Dobrowolski SF, Metes DM, Thomson AW, Abdelsamed HA. Epigenetic signature of human vitamin D3 and IL-10 conditioned regulatory DCs. Sci Rep 2024; 14:28748. [PMID: 39567586 PMCID: PMC11579388 DOI: 10.1038/s41598-024-79299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
During differentiation of precursor cells into their destination cell type, cell fate decisions are enforced by a broad array of epigenetic modifications, including DNA methylation, which is reflected by the transcriptome. Thus, regulatory dendritic cells (DCregs) acquire specific epigenetic programs and immunomodulatory functions during their differentiation from monocytes. To define the epigenetic signature of human DCregs generated in vitamin D3 (vitD3) and IL-10 compared to immune stimulatory DCs (sDCs), we measured levels of DNA methylation by whole genome bisulfite sequencing (WGBS). Distinct DNA methylation patterns were acquired by DCregs compared to sDCs. These patterns were located mainly in transcriptional regulatory regions. Associated genes were enriched in STAT3-signaling and valine catabolism in DCregs; conversely, pro-inflammatory pathways, e.g. pattern recognition receptor signaling, were enriched in sDCs. Further, DCreg differentially-methylated regions (DMRs) were enriched in binding motifs specific to the immunomodulatory transcription factor Krueppel-like factor 11 (KLF11), while activator protein-1 (AP-1) (Fos:Jun) transcription factor-binding motifs were enriched in sDC DMRs. Using publicly-available data-sets, we defined a common epigenetic signature shared between DCregs generated in vitD3 and IL-10, or dexamethasone or vitD3 alone. These insights may help pave the way for design of epigenetic-based approaches to enhance the production of DCregs as effective therapeutic agents.
Collapse
Affiliation(s)
- Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Alan F Zahorchak
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | | | - Diana M Metes
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angus W Thomson
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Immunology Center of Georgia, Augusta University, Augusta, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA.
| |
Collapse
|
36
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Brook MO, Hennessy C, Hester J, Hammad S, Alzhrani A, Rombach I, Dutton S, Lombardi G, Wood KJ, Friend P, Harden PN, Issa F. Late Treatment With Autologous Expanded Regulatory T-cell Therapy After Alemtuzumab Induction Is Safe and Facilitates Immunosuppression Minimization in Living Donor Renal Transplantation. Transplantation 2024; 108:2278-2286. [PMID: 38845088 PMCID: PMC7616465 DOI: 10.1097/tp.0000000000005065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND The TWO Study (Transplantation Without Overimmunosuppression) aimed to investigate a novel approach to regulatory T-cell (Treg) therapy in renal transplant patients, using a delayed infusion protocol at 6 mo posttransplant to promote a Treg-skewed lymphocyte repopulation after alemtuzumab induction. We hypothesized that this would allow safe weaning of immunosuppression to tacrolimus alone. The COVID-19 pandemic led to the suspension of alemtuzumab use, and therefore, we report the unique cohort of 7 patients who underwent the original randomized controlled trial protocol. This study presents a unique insight into Treg therapy combined with alemtuzumab and is therefore an important proof of concept for studies in other diseases that are considering lymphodepletion. METHODS Living donor kidney transplant recipients were randomized to receive autologous polyclonal Treg at week 26 posttransplantation, coupled with weaning doses of tacrolimus, (Treg therapy arm) or standard immunosuppression alone (tacrolimus and mycophenolate mofetil). Primary outcomes were patient survival and rejection-free survival. RESULTS Successful cell manufacturing and cryopreservation until the 6-mo infusion were achieved. Patient and transplant survival was 100%. Acute rejection-free survival was 100% in the Treg-treated group at 18 mo after transplantation. Although alemtuzumab caused a profound depletion of all lymphocytes, including Treg, after cell therapy infusion, there was a transient increase in peripheral Treg numbers. CONCLUSIONS The study establishes that delayed autologous Treg therapy is both feasible and safe, even 12 mo after cell production. The findings present a new treatment protocol for Treg therapy, potentially expanding its applications to other indications.
Collapse
Affiliation(s)
- Matthew O. Brook
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Conor Hennessy
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Salim Hammad
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, United Kingdom
| | - Alaa Alzhrani
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Ines Rombach
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, United Kingdom
| | - Susan Dutton
- Oxford Clinical Trials Research Unit, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, United Kingdom
| | - Kathryn J. Wood
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Peter Friend
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Paul N. Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fadi Issa
- Translational Research Immunology Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Maltzman JS. Forced Revision Can Still Inform-Lessons and Questions From the "Original" TWO Study. Transplantation 2024; 108:2164-2165. [PMID: 38845093 PMCID: PMC11518647 DOI: 10.1097/tp.0000000000005064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Jonathan S Maltzman
- Department of Medicine, Stanford University, Palo Alto, CA
- Geriatric Research and Education Clinical Center, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
39
|
Durgam SS, Rosado-Sánchez I, Yin D, Speck M, Mojibian M, Sayin I, Hynes GE, Alegre ML, Levings MK, Chong AS. CAR Treg synergy with anti-CD154 mediates infectious tolerance to dictate heart transplant outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614149. [PMID: 39386649 PMCID: PMC11463638 DOI: 10.1101/2024.09.20.614149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Successful allograft specific tolerance induction would eliminate the need for daily immunosuppression and improve post-transplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific Chimeric Antigen Receptors (CAR-Tregs) is a promising strategy, but as monotherapy, cannot prolong the survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57Bl/6 recipients, we show that HLA-A2-specific (A2) CAR Tregs was able to synergize with low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited endogenous non-A2 donor- specific T cell, B cell and antibody responses, and promoted a significant increase in endogenous FoxP3 + Tregs with indirect donor-specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FoxP3 neg A2.CAR T cells preferentially accumulated in rejecting allografts and endogenous donor-specific responses were not controlled. This study therefore provides the first evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity towards allograft tolerance.
Collapse
|
40
|
Rui X, Calderon FA, Wobma H, Gerdemann U, Albanese A, Cagnin L, McGuckin C, Michaelis KA, Naqvi K, Blazar BR, Tkachev V, Kean LS. Human OX40L-CAR-T regs target activated antigen-presenting cells and control T cell alloreactivity. Sci Transl Med 2024; 16:eadj9331. [PMID: 39413160 PMCID: PMC11789419 DOI: 10.1126/scitranslmed.adj9331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Regulatory T cells (Tregs) make major contributions to immune homeostasis. Because Treg dysfunction can lead to both allo- and autoimmunity, there is interest in correcting these disorders through Treg adoptive transfer. Two of the central challenges in clinically deploying Treg cellular therapies are ensuring phenotypic stability and maximizing potency. Here, we describe an approach to address both issues through the creation of OX40 ligand (OX40L)-specific chimeric antigen receptor (CAR)-Tregs under the control of a synthetic forkhead box P3 (FOXP3) promoter. The creation of these CAR-Tregs enabled selective Treg stimulation by engagement of OX40L, a key activation antigen in alloimmunity, including both graft-versus-host disease and solid organ transplant rejection, and autoimmunity, including rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus. We demonstrated that OX40L-CAR-Tregs were robustly activated in the presence of OX40L-expressing cells, leading to up-regulation of Treg suppressive proteins without induction of proinflammatory cytokine production. Compared with control Tregs, OX40L-CAR-Tregs more potently suppressed alloreactive T cell proliferation in vitro and were directly inhibitory toward activated monocyte-derived dendritic cells (DCs). We identified trogocytosis as one of the central mechanisms by which these CAR-Tregs effectively decrease extracellular display of OX40L, resulting in decreased DC stimulatory capacity. OX40L-CAR-Tregs demonstrated an enhanced ability to control xenogeneic graft-versus-host disease compared with control Tregs without abolishing the graft-versus-leukemia effect. These results suggest that OX40L-CAR-Tregs may have wide applicability as a potent cellular therapy to control both allo- and autoimmune diseases.
Collapse
Affiliation(s)
- Xianliang Rui
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Francesca Alvarez Calderon
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Holly Wobma
- Harvard Medical School, Boston, MA 02115, USA
- Division of Immunology, Boston Children’s Hospital, Boston, MA 02215, USA
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Albanese
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lorenzo Cagnin
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Kisa Naqvi
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leslie S. Kean
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Heinl PV, Graulich E, Weigmann B, Wangorsch A, Ose R, Bellinghausen I, Khatri R, Raker VK, Scheurer S, Vieths S, Saloga J, Steinbrink K. IL-10-modulated dendritic cells from birch pollen- and hazelnut-allergic patients facilitate Treg-mediated allergen-specific and cross-reactive tolerance. Allergy 2024; 79:2826-2839. [PMID: 39073174 DOI: 10.1111/all.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Approximately 70% of individuals allergic to birch pollen (Bet v 1.01 [Bet]) develop a secondary food allergy (e.g., hazelnut: Cor a 1.04 [Cor]), due to allergen cross-reactivity. However, standard immunotherapy for type I allergies often does not improve the food allergy sufficiently. We analyzed the allergen-specific and cross-reactive suppressive capacity of primary human regulatory T cells (Treg) induced by autologous IL-10-modulated dendritic cells (IL-10 DC) in vitro and in vivo. METHODS CD4+ T cells of patients with birch pollen and associated hazelnut allergies were differentiated into Bet-specific or non-specific induced Treg (iTreg). After Bet- or Cor-specific restimulation the phenotype, proliferation, and suppressive capacity of iTreg subsets were analyzed. iTreg function was further investigated in humanized mouse models of airway and intestinal allergy, generated by engraftment of peripheral blood mononuclear cells from allergic donors into immunodeficient animals. RESULTS After IL-10 DC priming and allergen-specific restimulation (Bet or Cor), non-specific control iTreg remained anergic, whereas Bet-specific iTreg proliferated extensively and exhibited a regulatory phenotype (enhanced expression of CTLA-4, PD-1, TNFR2, IL-10). Accordingly, activated Bet-specific iTreg displayed a high capacity to suppress Bet- and Cor-induced responder Th2 cell responses in vitro, indicating induction of both allergen-specific (birch) and cross-reactive tolerance (hazelnut). In vivo, the beneficial effect of Bet-specific iTreg was verified in humanized mouse models of allergic airway and intestinal inflammation, resulting in reduced allergen-induced clinical symptoms, and immune responses. CONCLUSION Human IL-10 DC-induced iTreg facilitate allergen-specific and cross-reactive tolerance. Therefore, they are potential candidates for regulatory cell therapy in allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Patricia Vanessa Heinl
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Edith Graulich
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Benno Weigmann
- Department of Internal Medicine, University Hospital Erlangen, University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Robert Ose
- Department of Dermatology, University Medical Center of the Johannes, Gutenberg-University, Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes, Gutenberg-University, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center of the Johannes, Gutenberg-University, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institute, Langen, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes, Gutenberg-University, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
42
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
43
|
Huang CH, Chen WY, Chen RF, Ramachandran S, Liu KF, Kuo YR. Cell therapies and its derivatives as immunomodulators in vascularized composite allotransplantation. Asian J Surg 2024; 47:4251-4259. [PMID: 38704267 DOI: 10.1016/j.asjsur.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wei Yu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Savitha Ramachandran
- Department of Plastic and Reconstructive Surgery, Singapore General Hospital, Singapore.
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
44
|
Zhang P, Wang Y, Jiang J, Yang C, Liu X, Lei T, Meng X, Yang J, Ding P, Chen J, Li Q. Macrophage manufacturing and engineering with 5'-Cap1 and N1-methylpseudouridine-modified mRNA. Mol Ther Methods Clin Dev 2024; 32:101307. [PMID: 39229455 PMCID: PMC11369376 DOI: 10.1016/j.omtm.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Macrophage-based cell therapeutics is an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfilling their therapeutic potential. Here, we establish a robust macrophage-manufacturing platform (Mo-Mac) and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages while the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes, and hematopoietic stem cells. This analysis also guided the development of flow-cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophages facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage-manufacturing process and indicate that macrophages can be engineered by versatile mRNA technology to achieve therapeutic goals.
Collapse
Affiliation(s)
- Peixuan Zhang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yantai Wang
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinfeng Jiang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Yang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xianxia Liu
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Tingjun Lei
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Xiangjun Meng
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Jihong Yang
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Ping Ding
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jie Chen
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
45
|
Anft M, Meyer F, Czygan S, Seibert FS, Rohn BJ, Tsimas F, Viebahn R, Westhoff TH, Stervbo U, Babel N, Zgoura P. Propionic acid supplementation promotes the expansion of regulatory T cells in patients with end-stage renal disease but not in renal transplant patients. FRONTIERS IN TRANSPLANTATION 2024; 3:1404740. [PMID: 39328339 PMCID: PMC11425579 DOI: 10.3389/frtra.2024.1404740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
In a previous study, we showed an anti-inflammatory effect of propionic acid supplementation in dialysis patients. The present study intends to analyze the effect of propionic acid on the chronic inflammatory state and T-cell composition in kidney transplant patients compared to dialysis patients. A total of 10 dialysis patients and 16 kidney transplant patients under immunosuppressive standard triple immunosuppressive therapy received 2 × 500 mg propionic acid per day for 30 days. The cellular immune system was analyzed before and after the propionic acid supplementation and 30-90 days thereafter as a follow-up. We measured the main immune cell types and performed an in-depth characterization of T cells including regulatory T cells (Tregs), B cells, and dendritic cells. In addition, we assessed the functional activity and antigenic responsiveness by analysis of third-party antigen-specific T cells after their stimulation by recall (tetanus diphtheria vaccine) antigen. In dialysis patients, we observed an expansion of CD25highCD127- Tregs after propionic acid intake. In contrast, the same supplementation did not result in any expansion of Tregs in transplant patients under immunosuppressive therapy. We also did not observe any changes in the frequencies of the main immune cell subsets except for CD4+/CD8+ distribution with an increase of CD4+ T cells and decrease of CD8+ T cells in the transplant population. Our data suggest that dietary supplements containing propionate might have a beneficial effect decreasing systemic inflammation in dialysis patients through Treg expansion. However, this effect was not observed in transplant patients, which could be explained by counteracting effect of immunosuppressive drugs preventing Treg expansion.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Fabian Meyer
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Department of Anesthesiology, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Sirin Czygan
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Felix S. Seibert
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Benjamin J. Rohn
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Fotios Tsimas
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
| |
Collapse
|
46
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
47
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
48
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
49
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Alhosseini MN, Ebadi P, Karimi MH, Migliorati G, Cari L, Nocentini G, Heidari M, Soleimanian S. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: A review of the strengths and limitations. Transpl Immunol 2024; 85:102069. [PMID: 38844002 DOI: 10.1016/j.trim.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
In the last decade, cell therapies have revolutionized the treatment of some diseases, earning the definition of being the "third pillar" of therapeutics. In particular, the infusion of regulatory T cells (Tregs) is explored for the prevention and control of autoimmune reactions and acute/chronic allograft rejection. Such an approach represents a promising new treatment for autoimmune diseases to recover an immunotolerance against autoantigens, and to prevent an immune response to alloantigens. The efficacy of the in vitro expanded polyclonal and antigen-specific Treg infusion in the treatment of a large number of autoimmune diseases has been extensively demonstrated in mouse models. Similarly, experimental work documented the efficacy of Treg infusions to prevent acute and chronic allograft rejections. The Treg therapy has shown encouraging results in the control of type 1 diabetes (T1D) as well as Crohn's disease, systemic lupus erythematosus, autoimmune hepatitis and delaying graft rejection in clinical trials. However, the best method for Treg expansion and the advantages and pitfalls with the different types of Tregs are not fully understood in terms of how these therapeutic treatments can be applied in the clinical setting. This review provides an up-to-date overview of Treg infusion-based treatments in autoimmune diseases and allograft transplantation, the current technical challenges, and the highlights and disadvantages of this therapeutic approaches."
Collapse
Affiliation(s)
| | - Padideh Ebadi
- Islamic Azad University, Department of Biochemistry, Kazerun, Iran
| | | | - Graziella Migliorati
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Luigi Cari
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Giuseppe Nocentini
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|