1
|
Dowgier G, Hobbs A, Greenwood D, Shawe-Taylor M, Stevenson-Leggett P, Bazire J, Penn R, Harvey R, Libri V, Kassiotis G, Gamblin S, Lewis NS, Williams B, Swanton C, Gandhi S, Bauer DLV, Carr EJ, Wall EC, Wu MY. Accurate evaluation of live-virus microneutralisation for SARS-CoV-2 variant JN.1 in the assessment of vaccination and therapeutics. Vaccine 2025; 54:126960. [PMID: 40056806 DOI: 10.1016/j.vaccine.2025.126960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
Emerging SARS-CoV-2 variants require rapid assessments of pathogenicity and evasion of existing immunity to inform policy. A crucial component of these assessments is accurate estimation of serum neutralising antibody titres using cultured live virus isolates. Here, we report a comparison of culture methods for Omicron sub-variant JN.1 and the subsequent evaluation of neutralising antibody titres (nAbTs) in recipients of BNT162b2-XBB.1.5 monovalent and the ancestral/BA.4/5 containing bivalent vaccines. We compared culture of JN.1 in either Vero V1 cells or Caco-2 cells, finding culture in Vero V1 either resulted in low-titre stocks or induced crucial mutations at the Spike furin cleavage site (FCS). Using sequence-clean culture stocks generated in Caco-2 cells, we assessed serum samples from 71 healthy adults eligible for a COVID-19 vaccination given as a 5th dose booster in the UK: all participants had detectable nAbs against JN.1 prior to vaccination, with baseline/pre-existing nAbTs between both vaccine groups comparable (p = 0.240). However, nAbTs against JN.1 post-vaccination were 2.6-fold higher for recipients of the monovalent XBB.1.5 vaccine than the BA.4/5 bivalent vaccine (p < 0.001). Further, at clinically relevant concentrations the therapeutic monoclonal antibody Sotrovimab marginally maintains neutralisation of JN.1. Regular re-appraisal of methods and policy outcomes as new variants arise is required to ensure robust data are used to underpin future severity assessments and vaccine strain selection decisions.
Collapse
Affiliation(s)
- Giulia Dowgier
- COVID Surveillance Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Agnieszka Hobbs
- COVID Surveillance Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - David Greenwood
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility,United Kingdom
| | - Marianne Shawe-Taylor
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility,United Kingdom
| | - Phoebe Stevenson-Leggett
- COVID Surveillance Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - James Bazire
- COVID Surveillance Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Rebecca Penn
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Ruth Harvey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Vincenzo Libri
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility,United Kingdom
| | - George Kassiotis
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Steve Gamblin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Nicola S Lewis
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility,United Kingdom; University College London, London, United Kingdom
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; University College London, London, United Kingdom
| | - Sonia Gandhi
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; University College London, London, United Kingdom
| | - David L V Bauer
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Genotype-to-Phenotype 2 Consortium (G2P2-UK), United Kingdom
| | - Edward J Carr
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; University College London, London, United Kingdom
| | - Emma C Wall
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility,United Kingdom; Research Department of Infection, Division of Infection and Immunity, University College London, United Kingdom
| | - Mary Y Wu
- COVID Surveillance Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
2
|
Russell TW, Townsley H, Hellewell J, Gahir J, Shawe-Taylor M, Greenwood D, Hodgson D, Hobbs A, Dowgier G, Penn R, Sanderson T, Stevenson-Leggett P, Bazire J, Harvey R, Fowler AS, Miah M, Smith C, Miranda M, Bawumia P, Mears HV, Adams L, Hatipoglu E, O'Reilly N, Warchal S, Ambrose K, Strange A, Kelly G, Kjar S, Papineni P, Corrah T, Gilson R, Libri V, Kassiotis G, Gamblin S, Lewis NS, Williams B, Swanton C, Gandhi S, Beale R, Wu MY, Bauer DLV, Carr EJ, Wall EC, Kucharski AJ. Real-time estimation of immunological responses against emerging SARS-CoV-2 variants in the UK: a mathematical modelling study. THE LANCET. INFECTIOUS DISEASES 2025; 25:80-93. [PMID: 39276782 DOI: 10.1016/s1473-3099(24)00484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing. METHODS Our Bayesian hierarchical model of antibody kinetics estimated neutralising-antibody trajectories against a panel of SARS-CoV-2 variants quantified with a live virus microneutralisation assay and informed by individual-level COVID-19 vaccination and SARS-CoV-2 infection histories. Antibody titre trajectories were modelled with a piecewise linear function that depended on the key biological quantities of an initial titre value, time the peak titre is reached, set-point time, and corresponding rates of increase and decrease for gradients between two timing parameters. All process parameters were estimated at both the individual level and the population level. We analysed data from participants in the University College London Hospitals-Francis Crick Institute Legacy study cohort (NCT04750356) who underwent surveillance for SARS-CoV-2 either through asymptomatic mandatory occupational health screening once per week between April 1, 2020, and May 31, 2022, or symptom-based testing between April 1, 2020, and Feb 1, 2023. People included in the Legacy study were either Crick employees or health-care workers at three London hospitals, older than 18 years, and gave written informed consent. Legacy excluded people who were unable or unwilling to give informed consent and those not employed by a qualifying institution. We segmented data to include vaccination events occurring up to 150 days before the emergence of three variants of concern: delta, BA.2, and XBB 1.5. We split the data for each wave into two categories: real-time and retrospective. The real-time dataset contained neutralising-antibody titres collected up to the date of emergence in each wave; the retrospective dataset contained all samples until the next SARS-CoV-2 exposure of each individual, whether vaccination or infection. FINDINGS We included data from 335 participants in the delta wave analysis, 223 (67%) of whom were female and 112 (33%) of whom were male (median age 40 years, IQR 22-58); data from 385 participants in the BA.2 wave analysis, 271 (70%) of whom were female and 114 (30%) of whom were male (41 years, 22-60); and data from 248 participants in the XBB 1.5 wave analysis, 191 (77%) of whom were female, 56 (23%) of whom were male, and one (<1%) of whom preferred not to say (40 years, 21-59). Overall, we included 968 exposures (vaccinations) across 1895 serum samples in the model. For the delta wave, we estimated peak titre values as 490·0 IC50 (95% credible interval 224·3-1515·9) for people with no previous infection and as 702·4 IC50 (300·8-2322·7) for people with a previous infection before omicron; the delta wave did not include people with a previous omicron infection. For the BA.2 wave, we estimated peak titre values as 858·1 IC50 (689·8-1363·2) for people with no previous infection, 1020·7 IC50 (725·9-1722·6) for people with a previous infection before omicron, and 1422·0 IC50 (679·2-3027·3) for people with a previous omicron infection. For the XBB 1.5 wave, we estimated peak titre values as 703·2 IC50 (415·0-3197·8) for people with no previous infection, 1215·9 IC50 (511·6-7338·7) for people with a previous infection before omicron, and 1556·3 IC50 (757·2-7907·9) for people with a previous omicron infection. INTERPRETATION Our study shows the feasibility of real-time estimation of antibody kinetics before SARS-CoV-2 variant emergence. This estimation is valuable for understanding how specific combinations of SARS-CoV-2 exposures influence antibody kinetics and for examining how COVID-19 vaccination-campaign timing could affect population-level immunity to emerging variants. FUNDING Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK Research and Innovation, UK Medical Research Council, Francis Crick Institute, and Genotype-to-Phenotype National Virology Consortium.
Collapse
Affiliation(s)
- Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Hermaleigh Townsley
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Joel Hellewell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Joshua Gahir
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Marianne Shawe-Taylor
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Agnieszka Hobbs
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Giulia Dowgier
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Phoebe Stevenson-Leggett
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - James Bazire
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | - Emine Hatipoglu
- Cancer Immunology Unit, Research Department of Haematology, University College London, London, UK
| | | | | | | | | | | | | | - Padmasayee Papineni
- Department of Infectious Diseases, London Northwest University Healthcare NHS Trust, London, UK
| | - Tumena Corrah
- Department of Infectious Diseases, London Northwest University Healthcare NHS Trust, London, UK
| | - Richard Gilson
- Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Vincenzo Libri
- National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK; Cancer Immunology Unit, Research Department of Haematology, University College London, London, UK
| | - George Kassiotis
- Francis Crick Institute, London, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London, UK
| | | | | | - Bryan Williams
- National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Charles Swanton
- Francis Crick Institute, London, UK; Cancer Immunology Unit, Research Department of Haematology, University College London, London, UK
| | - Sonia Gandhi
- Francis Crick Institute, London, UK; Cancer Immunology Unit, Research Department of Haematology, University College London, London, UK
| | | | | | | | - Edward J Carr
- Francis Crick Institute, London, UK; Centre for Kidney and Bladder Health, Division of Medicine, University College London, London, UK
| | - Emma C Wall
- Francis Crick Institute, London, UK; National Institute for Health Research Biomedical Research Centre and Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK; Research Department of Infection, University College London, London, UK
| | - Adam J Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Wall N, Lamerton R, Ashford F, Perez-Toledo M, Jasiulewicz A, Banham GD, Newby ML, Faustini SE, Richter AG, Selvaskandan H, Billany RE, Adenwalla SF, Henderson IR, Crispin M, Graham-Brown M, Harper L, Cunningham AF. Distinct Neutralising and Complement-Fixing Antibody Responses Can Be Induced to the Same Antigen in Haemodialysis Patients After Immunisation with Different Vaccine Platforms. Vaccines (Basel) 2024; 13:7. [PMID: 39852786 PMCID: PMC11768972 DOI: 10.3390/vaccines13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Generalised immune dysfunction in chronic kidney disease, especially in patients requiring haemodialysis (HD), significantly enhances the risk of severe infections. Vaccine-induced immunity is typically reduced in HD populations. The SARS-CoV-2 pandemic provided an opportunity to examine the magnitude and functionality of antibody responses in HD patients to a previously unencountered antigen-Spike (S)-glycoprotein-after vaccination with different vaccine platforms (viral vector (VV); mRNA (mRV)). Methods: We compared the total and functional anti-S antibody responses (cross-variant neutralisation and complement binding) in 187 HD patients and 43 healthy controls 21-28 days after serial immunisation. Results: After 2 doses of the same vaccine, HD patients had anti-S antibody levels and a complement binding capacity comparable to controls. However, 2 doses of mRV induced greater polyfunctional antibody responses than VV (defined by the presence of both complement binding and cross-variant neutralisation activity). Interestingly, an mRV boost after 2 doses of VV significantly enhanced antibody functionality in HD patients without a prior history of SARS-CoV-2 infection. Conclusions: HD patients can generate near-normal, functional antigen-specific antibody responses following serial vaccination to a novel antigen. Encouragingly, exploiting immunological memory by using mRNA vaccines and boosting may improve the success of vaccination strategies in this vulnerable patient population.
Collapse
Affiliation(s)
- Nadezhda Wall
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Rachel Lamerton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Fiona Ashford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Aleksandra Jasiulewicz
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gemma D. Banham
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sian E. Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alex G. Richter
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Roseanne E. Billany
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Sherna F. Adenwalla
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Matthew Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, University of Leicester, Leicester LE1 7RH, UK
| | - Lorraine Harper
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Wang Z, Shi Z, Liao X, Quan G, Dong H, Zhao P, Zhou Y, Shi N, Wang J, Wu Y, Qiao C, Li XY, Zhang R, Wang Z, Wang T, Gao X, Feng J, Luo L. Broad-Spectrum Engineered Multivalent Nanobodies Against SARS-CoV-1/2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402975. [PMID: 39373693 PMCID: PMC11615778 DOI: 10.1002/advs.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 Omicron sublineages escape most preclinical/clinical neutralizing antibodies in development, suggesting that previously employed antibody screening strategies are not well suited to counteract the rapid mutation of SARS-CoV-2. Therefore, there is an urgent need to screen better broad-spectrum neutralizing antibody. In this study, a comprehensive approach to design broad-spectrum inhibitors against both SARS-CoV-1 and SARS-CoV-2 by leveraging the structural diversity of nanobodies is proposed. This includes the de novo design of a fully human nanobody library and the camel immunization-based nanobody library, both targeting conserved epitopes, as well as the development of multivalent nanobodies that bind nonoverlapping epitopes. The results show that trivale B11-E8-F3, three nanobodies joined tandemly in trivalent form, have the broadest spectrum and efficient neutralization activity, which spans from SARS-CoV-1 to SARS-CoV-2 variants. It is also demonstrated that B11-E8-F3 has a very prominent preventive and some therapeutic effect in animal models of three authentic viruses. Therefore, B11-E8-F3 has an outstanding advantage in preventing SARS-CoV-1/SARS-CoV-2 infections, especially in immunocompromised populations or elderly people with high-risk comorbidities.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhuangzhuang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Guiqi Quan
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Hui Dong
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yangyihua Zhou
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jie Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yahui Wu
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xin ying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ran Zhang
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
5
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
6
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
7
|
Lin MR, Huang CG, Chiu CH, Chen CJ. Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines (Basel) 2024; 12:1057. [PMID: 39340088 PMCID: PMC11435596 DOI: 10.3390/vaccines12091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the reactogenicity and immunogenicity of various SARS-CoV-2 vaccines and compare their protective effects against COVID-19 among healthcare workers (HCWs) during the Omicron outbreak in Taiwan. METHODS Conducted from March 2021 to July 2023, this prospective observational study included healthy HCWs without prior COVID-19 immunization. Participants chose between adenovirus-vectored (AstraZeneca), mRNA (Moderna, BioNTech-Pfizer), and protein-based (Medigen, Novavax) vaccines. Blood samples were taken at multiple points to measure neutralizing antibody (nAb) titers, and adverse events (AEs) were recorded via questionnaires. RESULTS Of 710 HCWs, 668 (94.1%) completed three doses, and 290 (40.8%) received a fourth dose during the Omicron outbreak. AEs were more common with AstraZeneca and Moderna vaccines, while Medigen caused fewer AEs. Initial nAb titers were highest with Moderna but waned over time regardless of the vaccine. Booster doses significantly increased nAb titers, with the highest levels observed in Moderna BA1 recipients. The fourth dose significantly reduced COVID-19 incidence, with Moderna BA1 being the most effective. CONCLUSIONS Regular booster doses, especially with mRNA and adjuvant-protein vaccines, effectively enhance nAb levels and reduce infection rates, providing critical protection for frontline HCWs during variant outbreaks.
Collapse
Affiliation(s)
- Min-Ru Lin
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Lees JA, Russell TW, Shaw LP, Hellewell J. Recent approaches in computational modelling for controlling pathogen threats. Life Sci Alliance 2024; 7:e202402666. [PMID: 38906676 PMCID: PMC11192964 DOI: 10.26508/lsa.202402666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
In this review, we assess the status of computational modelling of pathogens. We focus on three disparate but interlinked research areas that produce models with very different spatial and temporal scope. First, we examine antimicrobial resistance (AMR). Many mechanisms of AMR are not well understood. As a result, it is hard to measure the current incidence of AMR, predict the future incidence, and design strategies to preserve existing antibiotic effectiveness. Next, we look at how to choose the finite number of bacterial strains that can be included in a vaccine. To do this, we need to understand what happens to vaccine and non-vaccine strains after vaccination programmes. Finally, we look at within-host modelling of antibody dynamics. The SARS-CoV-2 pandemic produced huge amounts of antibody data, prompting improvements in this area of modelling. We finish by discussing the challenges that persist in understanding these complex biological systems.
Collapse
Affiliation(s)
- John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Joel Hellewell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
9
|
Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, Ribeiro G, Martins AJ, Barros CRDS, Elias MC, Sampaio SC, Slavov SN, Rodrigues ES, Santos EV, Covas DT, Kashima S, Brassaloti RA, Petry B, Clemente LG, Coutinho LL, Assato PA, da Silva da Costa FA, Grotto RMT, Poleti MD, Lesbon JCC, Mattos EC, Fukumasu H, Giovanetti M, Alcantara LCJ, Souza-Neto JA, Rahal P, Araújo JP, Spilki FR, Althouse BM, Vasilakis N, Nogueira ML. Dynamic clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2 variants. NPJ Vaccines 2024; 9:145. [PMID: 39127725 DOI: 10.1038/s41541-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Botucatu, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Selcetta, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
| | - Jayme A Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas StateUniversity, Manhattan, KS, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Information School, University of Washington, Seattle, WA, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Nel I, Ithayakumar A, Blumenthal N, Duneton C, Khourouj VGE, Viala J, Dollfus C, Baudouin V, Guilmin-Crepon S, Theodorou I, Carcelain G. Strategies to determine positive anti-SARS-CoV-2 memory T lymphocyte response during the evolution of an epidemic. J Immunol Methods 2024; 531:113712. [PMID: 38906414 DOI: 10.1016/j.jim.2024.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
During SARS-CoV-2 pandemic, the assessment of immune protection of people at risk of severe infection was an important goal. The appearance of VOCs (Variant of Concern) highlighted the limits of evaluating immune protection through the humoral response. While the humoral response partly loses its neutralizing activity, the anti-SARS-CoV-2 memory T cell response strongly cross protects against VOCs becoming an indispensable tool to assess immune protection. We compared two techniques available in laboratory to evaluate anti-SARS-CoV-2 memory T cell response in a cohort of infected or vaccinated patients with different levels of risk to develop a severe disease: the ELISpot assay and the T-Cell Lymphocyte Proliferation Assay respectively exploring IFNγ production and cell proliferation. We showed that the ELISpot assay detected more anti-Spike memory T cell response than the Lymphocyte Proliferation Assay. We next observed that the use of two different suppliers as antigenic source in the ELISpot assay did not affect the detection of anti-Spike memory T cell response. Finally, we explored a new approach for defining the positivity threshold, using unsupervised mixed Gaussian modeling, challenging the traditional ROC curve used by the supplier. That will be helpful in endemic situation where it could be difficult to recruit "negative" patients.
Collapse
Affiliation(s)
- Isabelle Nel
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France
| | | | | | - Charlotte Duneton
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France; Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | | | - Jérôme Viala
- Department of Pediatric Gastroenterology, Robert-Debré Hospital, APHP, Paris, France
| | - Catherine Dollfus
- Pediatric Hematology and Oncology Department, Trousseau Hospital, APHP, Paris, France
| | - Véronique Baudouin
- Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | - Sophie Guilmin-Crepon
- Clinical Epidemiology Unit, Inserm CIC-EC 1426, Robert-Debré Hospital, APHP, Paris, France
| | | | - Guislaine Carcelain
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France.
| |
Collapse
|
11
|
Zhang X, Zhang L, Li H, Xu Y, Meng L, Liang G, Wang B, Liu L, Guan T, Guo C, He Y. Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein. BIOSENSORS 2024; 14:332. [PMID: 39056608 PMCID: PMC11274545 DOI: 10.3390/bios14070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The demand for accurate and efficient immunoassays calls for the development of precise, high-throughput analysis methods. This paper introduces a novel approach utilizing a weak measurement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak measurement is a precise quantum measurement method that amplifies the weak value of a system in the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous analysis of multiple samples, we have developed a chip with six flow channels capable of conducting six immunoassays concurrently. We can perform real-time immunoassay to determine the binding characteristics of spike protein and antibody through real-time analysis of the flow channel images and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the need for intricate nano processes. The spike protein concentration and relative intensity curve were fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation approach to account for slight variations in detection sensitivity across different flow channels, the present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring molecular-specific binding processes and differentiating binding capacities.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lizhong Zhang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Han Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Yang Xu
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Lingqin Meng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Gengyu Liang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Bei Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
| | - Le Liu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Tian Guan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Cuixia Guo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.Z.); (H.L.); (Y.X.); (L.M.); (G.L.); (B.W.); (T.G.); (Y.H.)
- Jilin Fuyuan Guan Food Group Joint Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
12
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
13
|
Goodyear CS, Patel A, Barnes E, Willicombe M, Siebert S, de Silva TI, Snowden JA, Lim SH, Bowden SJ, Billingham L, Richter A, Carroll M, Carr EJ, Beale R, Rea D, Parry H, Pirrie S, Lim Z, Satsangi J, Dunachie SJ, Cook G, Miller P, Basu N, Gilmour A, Hodgkins AM, Evans L, Hughes A, Longet S, Meacham G, Yong KL, A'Hearne MJ, Koh MBC, Burns SO, Orchard K, Paterson C, McIlroy G, Murray SM, Thomson T, Dimitriadis S, Goulston L, Miller S, Keillor V, Prendecki M, Thomas D, Kirkham A, McInnes IB, Kearns P. Immunogenicity of third dose COVID-19 vaccine strategies in patients who are immunocompromised with suboptimal immunity following two doses (OCTAVE-DUO): an open-label, multicentre, randomised, controlled, phase 3 trial. THE LANCET. RHEUMATOLOGY 2024; 6:e339-e351. [PMID: 38734019 DOI: 10.1016/s2665-9913(24)00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING Medical Research Council, Blood Cancer UK.
Collapse
Affiliation(s)
- Carl S Goodyear
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Amit Patel
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Stefan Siebert
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Sheffield, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Sean H Lim
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Sarah J Bowden
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex Richter
- Clinical Immunology Service, University of Birmingham, Edgbaston, Birmingham, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Daniel Rea
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Helen Parry
- Department of Haematology, University Hospitals Birmingham NHS Foundations Trust, Birmingham, UK
| | - Sarah Pirrie
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Zixiang Lim
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Gordon Cook
- National Institute for Health Research Leeds MIC, University of Leeds, Leeds, UK
| | - Paul Miller
- British Society of Blood and Marrow Transplantation and Cellular Therapy, Guy's Hospital, London, UK
| | - Neil Basu
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ashley Gilmour
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Marie Hodgkins
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Lili Evans
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ana Hughes
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, CNRS, Lyon, France
| | - Georgina Meacham
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kwee L Yong
- Cancer Institute, Department of Haematology, University College London, London, UK
| | | | - Mickey B C Koh
- Infection and Immunity Clinical Academic Group, St George's, University of London and Department of Haematology, St George's Hospital NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- Clinical Immunology, Royal Free Hospital, Hampstead, London, UK; Institute of Immunity and Transplantation, University College London, Hampstead, London, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Caron Paterson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Graham McIlroy
- Department of Haematology, University Hospitals Birmingham NHS Foundations Trust, Birmingham, UK
| | - Sam M Murray
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tina Thomson
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | | | - Lyndsey Goulston
- National Institute of Health Research, Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Samantha Miller
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Victoria Keillor
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - David Thomas
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Amanda Kirkham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Iain B McInnes
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Edgbaston, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Tomezsko PJ, Ford CT, Meyer AE, Michaleas AM, Jaimes R. Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. FRONTIERS IN BIOINFORMATICS 2024; 4:1397968. [PMID: 38855143 PMCID: PMC11157076 DOI: 10.3389/fbinf.2024.1397968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
Collapse
Affiliation(s)
| | - Colby T. Ford
- Tuple LLC, Charlotte, NC, United States
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, United States
- University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, United States
| | | | | | - Rafael Jaimes
- MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|
15
|
Nakamura N, Kobashi Y, Kim KS, Park H, Tani Y, Shimazu Y, Zhao T, Nishikawa Y, Omata F, Kawashima M, Yoshida M, Abe T, Saito Y, Senoo Y, Nonaka S, Takita M, Yamamoto C, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Jeong YD, Tatematsu D, Akao M, Sato Y, Iwanami S, Fujita Y, Wakui M, Aihara K, Kodama T, Shibuya K, Iwami S, Tsubokura M. Modeling and predicting individual variation in COVID-19 vaccine-elicited antibody response in the general population. PLOS DIGITAL HEALTH 2024; 3:e0000497. [PMID: 38701055 PMCID: PMC11068210 DOI: 10.1371/journal.pdig.0000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/14/2024] [Indexed: 05/05/2024]
Abstract
As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.
Collapse
Affiliation(s)
- Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Science System Simulation, Pukyong National University, Busan, South Korea
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Tokyo, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Toshiki Abe
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Yuki Senoo
- Medical Governance Research Institute, Tokyo, Japan
| | - Saori Nonaka
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yong Dam Jeong
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Daiki Tatematsu
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Marwa Akao
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Shibuya
- Soma Medical Center of Vaccination for COVID-19, Fukushima, Japan
- Tokyo Foundation for Policy Research, Tokyo, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
- Medical Governance Research Institute, Tokyo, Japan
- Minamisoma Municipal General Hospital, Fukushima, Japan
| |
Collapse
|
16
|
Kumar DS, Prasanth K, Bhandari A, Kumar Jha V, Naveen A, Prasanna M. Innovations and Challenges in the Development of COVID-19 Vaccines for a Safer Tomorrow. Cureus 2024; 16:e60015. [PMID: 38854201 PMCID: PMC11162516 DOI: 10.7759/cureus.60015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.
Collapse
Affiliation(s)
- Devika S Kumar
- Research, Panimalar Medical College Hospital and Research Institute, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Ashni Bhandari
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Vivek Kumar Jha
- Department of Audiology and Speech Language Pathology, Shree Guru Gobind Singh Tricentenary (SGT) University, Haryana, IND
| | - Avula Naveen
- Pharmacology and Therapeutics, All India Institute Of Medical Science Bilaspur, Bilaspur, IND
| | - Muthu Prasanna
- Pharmaceutics, Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Institutions, Villupuram, IND
| |
Collapse
|
17
|
Shengule S, Alai S, Bhandare S, Patil S, Gautam M, Mangaonkar B, Gupta S, Shaligram U, Gairola S. Validation and Suitability Assessment of Multiplex Mesoscale Discovery Immunogenicity Assay for Establishing Serological Signatures Using Vaccinated, Non-Vaccinated and Breakthrough SARS-CoV-2 Infected Cases. Vaccines (Basel) 2024; 12:433. [PMID: 38675815 PMCID: PMC11053742 DOI: 10.3390/vaccines12040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are multi-targeted and variable over time. Multiplex quantitative serological assays are needed to provide accurate and robust seropositivity data for the establishment of serological signatures during vaccination and or infection. We describe here the validation and evaluation of an electro-chemiluminescence (ECL)-based Mesoscale Discovery assay (MSD) for estimation of total and functional IgG relative to SARS-CoV-2 spike, nucleocapsid and receptor binding (RBD) proteins in human serum samples to establish serological signatures of SARS-CoV-2 natural infection and breakthrough cases. The 9-PLEX assay was validated as per ICH, EMA, and US FDA guidelines using a panel of sera samples, including the NIBSC/WHO reference panel (20/268). The assay demonstrated high specificity and selectivity in inhibition assays, wherein the homologous inhibition was more than 85% and heterologous inhibition was below 10%. The assay also met predetermined acceptance criteria for precision (CV < 20%), accuracy (70-130%) and dilutional linearity. The method's applicability to serological signatures was demonstrated using sera samples (n = 45) representing vaccinated, infected and breakthrough cases. The method was able to establish distinct serological signatures and thus provide a potential tool for seroprevalence of SARS-CoV-2 during vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunil Gairola
- Clinical Bioanalytical Department, Serum Institute of India Pvt. Ltd., Pune 411028, India; (S.S.); (S.A.); (M.G.); (U.S.)
| |
Collapse
|
18
|
Luo S, Xiong D, Tang B, Liu B, Zhao X, Duan L. Evaluating mAbs binding abilities to Omicron subvariant RBDs: implications for selecting effective mAb therapies. Phys Chem Chem Phys 2024; 26:11414-11428. [PMID: 38591159 DOI: 10.1039/d3cp05893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bangyu Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
19
|
Davenport A. Does native vitamin D, or active vitamin D modulate the neutralising antibody responses to COVID-19 vaccination in haemodialysis patients? Int J Artif Organs 2024; 47:251-259. [PMID: 38561893 DOI: 10.1177/03913988241241204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Several studies have reported that patients with low levels of Vitamin D3 have impaired responses to vaccination, including COVID-19 vaccines, so we reviewed the response to COVID-19 vaccination in haemodialysis patients, who typically have reduced Vitamin D3 levels. METHODS The inhibitory antibody (IC50) responses to several COVID-19 variants following vaccination in a cohort of United Kingdom haemodialysis patients receiving two vaccinations between March 2021 and May 2021 were reviewed. RESULTS A total of 183 haemodialysis patients, 65.5% male, mean age 65.6 ± 14.1 years, 46.4% diabetic, 42.1% white ethnicity, body mass index 26.9 ± 6.5 kg/m2 dialysis vintage 36.2 (18.3-69.3) months were studied. Following the first vaccination, the median IgG microneutralisation IC50 response was undetectable for all variants (wild-type, alpha, beta and delta). Follow-up after the second vaccination showed that the microneutralisation response to all variants increased and was greater for the wild-type variant compared to alpha, beta and delta, all p < 0.001, There were no differences comparing the IC50 responses according to 25-Vitamin D3 levels, and the prescription of activated Vitamin D. Although patients who had previously tested positive for COVID-19 prescribed higher doses of alfacalcidol had higher seroprotection responses to the alpha (χ2 = 15, p = 0.002) and beta variants. (χ2 = 13, p = 0.005). CONCLUSIONS The response to COVID-19 vaccination was reduced in our elderly haemodialysis patients compared to younger less frail patients, however there was no overall demonstrable effect of either 25-Vitamin D3 levels or the prescription of activated forms of Vitamin D on the immune response following vaccination against COVID-19, unless patients had previously tested positive for COVID-19.
Collapse
Affiliation(s)
- Andrew Davenport
- UCL Centre for Kidney & Bladder Health, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
20
|
Oktavianthi S, Lages AC, Kusuma R, Kurniasih TS, Trimarsanto H, Andriani F, Rustandi D, Meriyanti T, Yusuf I, Malik SG, Jo J, Suriapranata I. Whole-Genome Sequencing and Mutation Analyses of SARS-CoV-2 Isolates from Indonesia. Pathogens 2024; 13:279. [PMID: 38668234 PMCID: PMC11053823 DOI: 10.3390/pathogens13040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/29/2024] Open
Abstract
The SARS-CoV-2 infection that caused the COVID-19 pandemic has become a significant public health concern. New variants with distinct mutations have emerged, potentially impacting its infectivity, immune evasion capacity, and vaccine response. A whole-genome sequencing study of 292 SARS-CoV-2 isolates collected from selected regions of Indonesia between January and October 2021 was performed to identify the distribution of SARS-CoV-2 variants and common mutations in Indonesia. During January-April 2021, Indonesian lineages B.1.466.2 and B.1.470 dominated, but from May 2021, Delta's AY.23 lineage outcompeted them. An analysis of 7515 published sequences from January 2021 to June 2022 revealed a decline in Delta in November 2021, followed by the emergence of Omicron variants in December 2021. We identified C241T (5'UTR), P314L (NSP12b), F106F (NSP3), and D614G (Spike) mutations in all sequences. The other common substitutions included P681R (76.4%) and T478K (60%) in Spike, D377Y in Nucleocapsid (61%), and I82T in Membrane (60%) proteins. Breakthrough infection and prolonged viral shedding cases were associated with Delta variants carrying the Spike T19R, G142D, L452R, T478K, D614G, P681R, D950N, and V1264L mutations. The dynamic of SARS-CoV-2 variants in Indonesia highlights the importance of continuous genomic surveillance in monitoring and identifying potential strains leading to disease outbreaks.
Collapse
Affiliation(s)
- Sukma Oktavianthi
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Aksar Chair Lages
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Rinaldy Kusuma
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Tri Shinta Kurniasih
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
- Menzies School of Health Research, Charles Darwin University, Darwin 0811, Australia
| | - Febi Andriani
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - David Rustandi
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Tandry Meriyanti
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Irawan Yusuf
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Safarina G. Malik
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Juandy Jo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Ivet Suriapranata
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| |
Collapse
|
21
|
Townsley H, Gahir J, Russell TW, Greenwood D, Carr EJ, Dyke M, Adams L, Miah M, Clayton B, Smith C, Miranda M, Mears HV, Bailey C, Black JRM, Fowler AS, Crawford M, Wilkinson K, Hutchinson M, Harvey R, O’Reilly N, Kelly G, Goldstone R, Beale R, Papineni P, Corrah T, Gilson R, Caidan S, Nicod J, Gamblin S, Kassiotis G, Libri V, Williams B, Gandhi S, Kucharski AJ, Swanton C, Bauer DLV, Wall EC. COVID-19 in non-hospitalised adults caused by either SARS-CoV-2 sub-variants Omicron BA.1, BA.2, BA.4/5 or Delta associates with similar illness duration, symptom severity and viral kinetics, irrespective of vaccination history. PLoS One 2024; 19:e0294897. [PMID: 38512960 PMCID: PMC10956747 DOI: 10.1371/journal.pone.0294897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/11/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (β = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION NCT04750356.
Collapse
Affiliation(s)
- Hermaleigh Townsley
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Joshua Gahir
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Timothy W. Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Matala Dyke
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Murad Miah
- The Francis Crick Institute, London, United Kingdom
| | | | - Callie Smith
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Chris Bailey
- The Francis Crick Institute, London, United Kingdom
| | - James R. M. Black
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | | | | | | | | | - Ruth Harvey
- The Francis Crick Institute, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | | | - Gavin Kelly
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | | | - Tumena Corrah
- London Northwest University Healthcare NHS Trust, London, United Kingdom
| | - Richard Gilson
- Camden and North West London NHS Community Trust, London, United Kingdom
| | - Simon Caidan
- The Francis Crick Institute, London, United Kingdom
| | - Jerome Nicod
- The Francis Crick Institute, London, United Kingdom
| | | | - George Kassiotis
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - Vincenzo Libri
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Sonia Gandhi
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - David L. V. Bauer
- The Francis Crick Institute, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | - Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| |
Collapse
|
22
|
Bok S, Shum J, Lee M. Path analysis of perceived disease vulnerability, COVID-19 fear, and lower vaccine hesitancy within the context of protection motivation theory. Heliyon 2024; 10:e25889. [PMID: 38390175 PMCID: PMC10881856 DOI: 10.1016/j.heliyon.2024.e25889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
COVID-19 vaccinations have demonstrated effectiveness in reducing severe infections. However, vaccine hesitancy posed a major public health hurdle to combat the COVID-19 pandemic. Online spread of vaccine conspiracy beliefs generated unwarranted mistrust and resistance to vaccines. While numerous studies have explored the factors influencing vaccine hesitancy, there remains a lack of comprehensive understanding regarding the interplay between perceived disease vulnerability, COVID-19 fear, and vaccine hesitancy. Protection motivation theory posits citizens will evaluate perceived threats and take actions to mitigate potential harm. With a large U.S. sample, path analysis demonstrated individuals' perceived disease vulnerability was associated with lower vaccine hesitancy. Greater perceived disease vulnerability was associated with higher COVID-19 fear. Greater COVID-19 fear was associated with lower vaccine hesitancy. Greater vaccine conspiracy beliefs associated with higher vaccine hesitancy. However, in the presence of perceived vulnerability to disease, vaccine conspiracy beliefs associated with higher fear of COVID-19 and thereby lower vaccine hesitancy. We found under circumstances of higher perceived vulnerability to disease and fear of COVID-19, vaccine conspiratorial believers were less vaccine hesitant. We discuss how public health messaging can highlight personal risks to contracting COVID-19 to appeal to those who self-identify as disease prone, but may have reservations about vaccines because of misinformation. Successfully combating diseases entails reaching and gaining cooperation from misbelievers because misinformation is expected to continue in the digital age. By understand individual differences to vaccine hesitancy, it can help increase vaccinations and prevent severe illnesses in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Stephen Bok
- Department of Marketing, College of Business and Economics, California State University, East Bay, United States
| | - James Shum
- School of Accounting, Golden Gate University, San Francisco, United States
| | - Maria Lee
- Department of Urban Planning and Public Policy, University of California, Irvine, United States
| |
Collapse
|
23
|
Hsu FC, Pan LC, Huang YF, Yang CH, Shiu MN, Lin HJ. A Dynamic Model for Estimating the Retention Duration of Neutralizing Antibody Titers After Vaccination in a COVID-19 Convalescent Population. J Infect Dis 2024; 229:398-402. [PMID: 37798128 DOI: 10.1093/infdis/jiad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
We measured neutralizing antibodies (nAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a cohort of 235 convalescent patients (representing 384 analytic samples). They were followed for up to 588 days after the first report of onset in Taiwan. A proposed Bayesian approach was used to estimate nAb dynamics in patients postvaccination. This model revealed that the titer reached its peak (1819.70 IU/mL) by 161 days postvaccination and decreased to 154.18 IU/mL by day 360. Thus, the nAb titers declined in 6 months after vaccination. Protection, against variant B.1.1.529 (ie, Omicron) may only occur during the peak period.
Collapse
Affiliation(s)
- Fang-Chi Hsu
- Research Center for Epidemic Prevention and One Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-Chern Pan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| | - Yen-Fang Huang
- Research Center for Epidemic Prevention and One Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Preparedness and Emerging Infectious Diseases, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Chin-Hui Yang
- Division of Acute Infectious Diseases, Taiwan Centers for Disease Control, Taipei, Taiwan
- Department of Infectious Disease, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ming-Neng Shiu
- Research Center for Epidemic Prevention and One Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Ju Lin
- School of Social Work, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Department of Mental Health and Addiction Services, Hartford, Connecticut, USA
| |
Collapse
|
24
|
Banho CA, de Carvalho Marques B, Sacchetto L, Sepedro Lima AK, Pereira Parra MC, Jeronimo Lima AR, Ribeiro G, Jorge Martins A, dos Santos Barros CR, Carolina Elias M, Coccuzzo Sampaio S, Nanev Slavov S, Strazza Rodrigues E, Vieira Santos E, Tadeu Covas D, Kashima S, Augusto Brassaloti R, Petry B, Gaspar Clemente L, Lehmann Coutinho L, Akemi Assato P, da Silva da Costa FA, Souza-Neto JA, Maria Tommasini Grotto R, Daiana Poleti M, Cristina Chagas Lesbon J, Chicaroni Mattos E, Fukumasu H, Giovanetti M, Carlos Junior Alcantara L, Rahal P, Pessoa Araújo JF, Althouse BM, Vasilakis N, Lacerda Nogueira M. Dynamic clade transitions and the influence of vaccine rollout on the spatiotemporal circulation of SARS-CoV-2 variants in São Paulo, Brazil. RESEARCH SQUARE 2024:rs.3.rs-3788142. [PMID: 38343798 PMCID: PMC10854302 DOI: 10.21203/rs.3.rs-3788142/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Jayme A. Souza-Neto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Fernando Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM
- Information School, University of Washington, Seattle, WA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
25
|
Hall VJ, Insalata F, Foulkes S, Kirwan P, Sparkes D, Atti A, Cole M, de Lacy E, Price L, Corrigan D, Brown CS, Islam J, Charlett A, Hopkins S. Effectiveness of BNT162b2 mRNA vaccine third doses and previous infection in protecting against SARS-CoV-2 infections during the Delta and Omicron variant waves; the UK SIREN cohort study September 2021 to February 2022. J Infect 2024; 88:30-40. [PMID: 37926119 DOI: 10.1016/j.jinf.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Third doses of COVID-19 vaccines were widely deployed following the primary vaccine course waning and the emergence of the Omicron-variant. We investigated protection from third-dose vaccines and previous infection against SARS-CoV-2 infection during Delta-variant and Omicron-variant (BA.1 & BA.2) waves in our frequently PCR-tested cohort of healthcare-workers. Relative effectiveness of BNT162b2 third doses and infection-acquired immunity was assessed by comparing the time to PCR-confirmed infection in boosted participants with those with waned dose-2 protection (≥254 days after dose-2), by primary series vaccination type. Follow-up time was divided by dominant circulating variant: Delta 07 September 2021 to 30 November 2021, Omicron 13 December 2021t o 28 February 2022. We used a Cox regression model with adjustment/stratification for demographic characteristics and staff-type. We explored protection associated with vaccination, infection and both. We included 19,614 participants, 29% previously infected. There were 278 primary infections (4 per 10,000 person-days of follow-up) and 85 reinfections (0.8/10,000 person-days) during the Delta period and 2467 primary infections (43/10,000 person-days) and 881 reinfections (33/10,000) during the Omicron period. Relative Vaccine Effectiveness (VE) 0-2 months post-3rd dose (3rd dose) (3-doses BNT162b2) in the previously uninfected cohort against Delta infections was 63% (95% Confidence Interval (CI) 40%-77%) and was lower (35%) against Omicron infection (95% CI 21%-47%). The relative VE of 3rd dose (heterologous BNT162b2) was greater for primary course ChAdOX1 recipients, with VE 0-2 months post-3rd dose over ≥68% higher for both variants. Third-dose protection waned rapidly against Omicron, with no significant difference between two and three BNT162b2 doses observed after 4-months. Previous infection continued to provide additional protection against Omicron (67% (CI 56%-75%) 3-6 months post-infection), but this waned to about 25% after 9-months, approximately three times lower than against Delta. Infection rates surged with Omicron emergence. Third doses of BNT162b2 vaccine provided short-term protection, with rapid waning against Omicron infections. Protection associated with infections incurred before Omicron was markedly diminished against the Omicron wave. Our findings demonstrate the complexity of an evolving pandemic with the potential emergence of immune-escape variants and the importance of continued monitoring.
Collapse
Affiliation(s)
- Victoria J Hall
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Ferdinando Insalata
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom; Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Sarah Foulkes
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Peter Kirwan
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom; MRC Biostatistics Unit, University of Cambridge, Institute of Public Health, Forvie Site, Robinson Way, Cambridge CB2 0SR, United Kingdom.
| | - Dominic Sparkes
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Ana Atti
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Michelle Cole
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Elen de Lacy
- Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff CF10 4BZ, United Kingdom.
| | - Lesley Price
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, United Kingdom; Public Health Scotland, Gyle Square 1 South Gyle Crescent, Edinburgh EH12 9EB, United Kingdom.
| | - Diane Corrigan
- Public Health Agency Northern Ireland, Unit 12-22 Linenhall Street, Belfast BT2 8BS, United Kingdom.
| | - Colin S Brown
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Jasmin Islam
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Andre Charlett
- UK Health Security Agency, UK Health Security Agency, Nobel House, 17 Smith Square, London, SW1P 3JR.
| | - Susan Hopkins
- UK Health Security Agency, UK Health Security Agency, Nobel House, 17 Smith Square, London, SW1P 3JR.
| |
Collapse
|
26
|
Carr EJ, Dowgier G, Greenwood D, Herman LS, Hobbs A, Ragno M, Stevenson-Leggett P, Gahir J, Townsley H, Harvey R, Bailey C, Fowler AS, Miah M, Smith C, Miranda M, Bawumia P, Mears HV, Adams L, Hatipoglu E, O'Reilly N, Warchal S, Sawyer C, Ambrose K, Strange A, Kelly G, Beale R, Papineni P, Corrah T, Gilson R, Gamblin S, Kassiotis G, Libri V, Williams B, Swanton C, Gandhi S, Bauer DLV, Wall E, Wu MY. SARS-CoV-2 mucosal neutralising immunity after vaccination. THE LANCET. INFECTIOUS DISEASES 2024; 24:e4-e5. [PMID: 38070528 DOI: 10.1016/s1473-3099(23)00705-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Edward J Carr
- UCL Department of Renal Medicine, Royal Free Hospital, Rowland Hill Street, London, UK; The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | | | | | | | - Joshua Gahir
- The Francis Crick Institute, London NW1 1AT, UK; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK
| | | | - Ruth Harvey
- Worldwide Influenza Centre, London NW1 1AT, UK
| | | | | | - Murad Miah
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | | | - Lorin Adams
- Worldwide Influenza Centre, London NW1 1AT, UK
| | - Emine Hatipoglu
- The Francis Crick Institute, London NW1 1AT, UK; University College London, London, UK
| | | | | | | | | | - Amy Strange
- The Francis Crick Institute, London NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- The Francis Crick Institute, London NW1 1AT, UK; The Francis Crick Institute, London NW1 1AT, UK; Genotype-to-Phenotype UK National Virology Consortium, London, UK
| | | | - Tumena Corrah
- London Northwest University Healthcare NHS Trust, London, UK
| | - Richard Gilson
- Central and North West London NHS Foundation Trust, London, UK; University College London, London, UK
| | | | - George Kassiotis
- The Francis Crick Institute, London NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London, UK
| | - Vincenzo Libri
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK; University College London, London, UK
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK; University College London, London, UK
| | - Charles Swanton
- The Francis Crick Institute, London NW1 1AT, UK; University College London, London, UK
| | - Sonia Gandhi
- The Francis Crick Institute, London NW1 1AT, UK; University College London, London, UK
| | - David L V Bauer
- The Francis Crick Institute, London NW1 1AT, UK; Genotype-to-Phenotype UK National Virology Consortium, London, UK
| | - Emma Wall
- The Francis Crick Institute, London NW1 1AT, UK; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK
| | - Mary Y Wu
- COVID Surveillance Unit, London NW1 1AT, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
27
|
Russell TW, Townsley H, Abbott S, Hellewell J, Carr EJ, Chapman LAC, Pung R, Quilty BJ, Hodgson D, Fowler AS, Adams L, Bailey C, Mears HV, Harvey R, Clayton B, O’Reilly N, Ngai Y, Nicod J, Gamblin S, Williams B, Gandhi S, Swanton C, Beale R, Bauer DLV, Wall EC, Kucharski AJ. Combined analyses of within-host SARS-CoV-2 viral kinetics and information on past exposures to the virus in a human cohort identifies intrinsic differences of Omicron and Delta variants. PLoS Biol 2024; 22:e3002463. [PMID: 38289907 PMCID: PMC10826969 DOI: 10.1371/journal.pbio.3002463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024] Open
Abstract
The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.
Collapse
Affiliation(s)
- Timothy W. Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hermaleigh Townsley
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Sam Abbott
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joel Hellewell
- European Molecular Biology Laboratory-European Bioinformatics Institute, Cambridge, United Kingdom
| | - Edward J. Carr
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Lloyd A. C. Chapman
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Lancaster University, Bailrigg, Lancaster, United Kingdom
| | - Rachael Pung
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Billy J. Quilty
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Lorin Adams
- The Francis Crick Institute, London, United Kingdom
| | - Chris Bailey
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Ruth Harvey
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Yenting Ngai
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Jerome Nicod
- The Francis Crick Institute, London, United Kingdom
| | | | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- University College London, London, United Kingdom
| | - Sonia Gandhi
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK), London, United Kingdom
| | - David L. V. Bauer
- The Francis Crick Institute, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK), London, United Kingdom
| | - Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- University College London, London, United Kingdom
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
28
|
Zhang L, Cao H, Medlin K, Pearson J, Aristotelous AC, Chen A, Wessler T, Forest MG. Computational Modeling Insights into Extreme Heterogeneity in COVID-19 Nasal Swab Data. Viruses 2023; 16:69. [PMID: 38257769 PMCID: PMC10820884 DOI: 10.3390/v16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Throughout the COVID-19 pandemic, an unprecedented level of clinical nasal swab data from around the globe has been collected and shared. Positive tests have consistently revealed viral titers spanning six orders of magnitude! An open question is whether such extreme population heterogeneity is unique to SARS-CoV-2 or possibly generic to viral respiratory infections. To probe this question, we turn to the computational modeling of nasal tract infections. Employing a physiologically faithful, spatially resolved, stochastic model of respiratory tract infection, we explore the statistical distribution of human nasal infections in the immediate 48 h of infection. The spread, or heterogeneity, of the distribution derives from variations in factors within the model that are unique to the infected host, infectious variant, and timing of the test. Hypothetical factors include: (1) reported physiological differences between infected individuals (nasal mucus thickness and clearance velocity); (2) differences in the kinetics of infection, replication, and shedding of viral RNA copies arising from the unique interactions between the host and viral variant; and (3) differences in the time between initial cell infection and the clinical test. Since positive clinical tests are often pre-symptomatic and independent of prior infection or vaccination status, in the model we assume immune evasion throughout the immediate 48 h of infection. Model simulations generate the mean statistical outcomes of total shed viral load and infected cells throughout 48 h for each "virtual individual", which we define as each fixed set of model parameters (1) and (2) above. The "virtual population" and the statistical distribution of outcomes over the population are defined by collecting clinically and experimentally guided ranges for the full set of model parameters (1) and (2). This establishes a model-generated "virtual population database" of nasal viral titers throughout the initial 48 h of infection of every individual, which we then compare with clinical swab test data. Support for model efficacy comes from the sampling of infection dynamics over the virtual population database, which reproduces the six-order-of-magnitude clinical population heterogeneity. However, the goal of this study is to answer a deeper biological and clinical question. What is the impact on the dynamics of early nasal infection due to each individual physiological feature or virus-cell kinetic mechanism? To answer this question, global data analysis methods are applied to the virtual population database that sample across the entire database and de-correlate (i.e., isolate) the dynamic infection outcome sensitivities of each model parameter. These methods predict the dominant, indeed exponential, driver of population heterogeneity in dynamic infection outcomes is the latency time of infected cells (from the moment of infection until onset of viral RNA shedding). The shedding rate of the viral RNA of infected cells in the shedding phase is a strong, but not exponential, driver of infection. Furthermore, the unknown timing of the nasal swab test relative to the onset of infection is an equally dominant contributor to extreme population heterogeneity in clinical test data since infectious viral loads grow from undetectable levels to more than six orders of magnitude within 48 h.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Han Cao
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Medlin
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason Pearson
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Simulations Plus, Inc., 6 Davis Dr., Durham, NC 27709, USA
| | | | - Alexander Chen
- Department of Mathematics, California State University, Dominguez Hills, CA 90747, USA
| | - Timothy Wessler
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - M. Gregory Forest
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Applied Physical Sciences and Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Alshukairi AN, Al-Qahtani AA, Obeid DA, Dada A, Almaghrabi RS, Al-Abdulkareem MA, Alahideb BM, Alsanea MS, Alsuwairi FA, Alhamlan FS. Molecular Epidemiology of SARS-CoV-2 and Clinical Manifestations among Organ Transplant Recipients with COVID-19. Viruses 2023; 16:25. [PMID: 38257726 PMCID: PMC10819349 DOI: 10.3390/v16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 01/24/2024] Open
Abstract
RNA viruses, including SARS-CoV-2, rely on genetic mutation as a major evolutionary mechanism, leading to the emergence of variants. Organ transplant recipients (OTRs) may be particularly vulnerable to such mutations, making it crucial to monitor the spread and evolution of SARS-CoV-2 in this population. This cohort study investigated the molecular epidemiology of SARS-CoV-2 by comparing the SARS-CoV-2 whole genome, demographic characteristics, clinical conditions, and outcomes of COVID-19 illness among OTRs (n = 19) and non-OTRs with (n = 38) or without (n = 30) comorbid conditions. Most patients without comorbidities were female, whereas most OTRs were male. Age varied significantly among the three groups: patients with comorbidities were the oldest, and patients without comorbidities were the youngest. Whole-genome sequencing revealed that OTRs with mild disease had higher numbers of unusual mutations than patients in the other two groups. Additionally, OTRs who died had similar spike monoclonal antibody resistance mutations and 3CLpro mutations, which may confer resistance to nirmatrelvir, ensitrelvir, and GC37 therapy. The presence of those unusual mutations may impact the severity of COVID-19 illness in OTRs by affecting the virus's ability to evade the immune system or respond to treatment. The higher mutation rate in OTRs may also increase the risk of the emergence of new virus variants. These findings highlight the importance of monitoring the genetic makeup of SARS-CoV-2 in all immunocompromised populations and patients with comorbidity.
Collapse
Affiliation(s)
- Abeer N. Alshukairi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah 21362, Saudi Arabia; (A.N.A.); (A.D.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia;
| | - Ahmed A. Al-Qahtani
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia;
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
| | - Dalia A. Obeid
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (D.A.O.); (R.S.A.)
| | - Ashraf Dada
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah 21362, Saudi Arabia; (A.N.A.); (A.D.)
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (D.A.O.); (R.S.A.)
| | - Maha A. Al-Abdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
| | - Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
| | - Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
| | - Fatimah S. Alhamlan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia;
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (M.A.A.-A.); (B.M.A.); (M.S.A.); (F.A.A.)
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
30
|
Lee IJ, Lan YH, Wu PY, Wu YW, Chen YH, Tseng SC, Kuo TJ, Sun CP, Jan JT, Ma HH, Liao CC, Liang JJ, Ko HY, Chang CS, Liu WC, Ko YA, Chen YH, Sie ZL, Tsung SI, Lin YL, Wang IH, Tao MH. A receptor-binding domain-based nanoparticle vaccine elicits durable neutralizing antibody responses against SARS-CoV-2 and variants of concern. Emerg Microbes Infect 2023; 12:2149353. [PMID: 36395071 PMCID: PMC9793938 DOI: 10.1080/22221751.2022.2149353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.
Collapse
Affiliation(s)
- I-Jung Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yan-Wei Wu
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hung Chen
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-An Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zong-Lin Sie
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mi-Hua Tao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan, Mi-Hua Tao Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei115, Taiwan
| |
Collapse
|
31
|
Li H, Li Y, Liu J, Liu J, Han J, Yang L. Vaccination reduces viral load and accelerates viral clearance in SARS-CoV-2 Delta variant-infected patients. Ann Med 2023; 55:419-427. [PMID: 36862600 PMCID: PMC9991402 DOI: 10.1080/07853890.2023.2166681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate vaccine effectiveness in relieving symptoms in patients with the SARS-CoV-2 delta (B.1.617.2) variant. METHODS In this retrospective study, 31 patients did not receive any vaccine (non-vaccination, NV), 21 patients received 1-dose of inactivated vaccine (one-dose vaccination, OV), and 60 patients received at least 2-dose inactivated vaccine (two-dose vaccination, TV). The baseline data, clinical outcomes and vaccination information were collected and analyzed. RESULTS Patients in the OV group were younger than those in the other two groups (p = 0.001), but there was no significant difference in any of the other baseline data among the three groups. The TV group showed higher IgG antibody levels and cycle threshold values of SARS-CoV-2 than the NV and OV groups (p < 0.01), and time to peak viral load was shorter in the TV group (3.5 ± 2.3 d) than in the NV (4.8 ± 2.8 d) and OV groups (4.8 ± 2.9 d, p = 0.03). The patients in the TV group (18%) showed a higher recovery rate without drug therapy (p < 0.001). Viral clearance time and hospital stay were significantly shorter in the TV group than in the NV and OV groups (p < 0.01), and there were no significant differences in these parameters between the OV and NV groups, but IgG values were higher in the OV group (p = 0.025). No severe complications occurred in this study. CONCLUSIONS Our results suggest that 2-dose vaccination can reduce viral load and accelerate viral clearance in patients with the delta variant and enhance the protection afforded by IgG antibodies in vivo.Key MessagesIn this study, our results shows that two-dose vaccination can reduce viral loads and accelerate viral clearance, and two-dose vaccination enhance the protection of IgG antibodies in vivo; however, one-dose vaccination did not confer protective effectiveness.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanzi Li
- Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianlin Liu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianfeng Han
- Department of Administrative Office, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Yang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Administrative Office, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Atti A, Insalata F, Carr EJ, Otter AD, Foulkes S, Wu MY, Cole MJ, Linley E, Semper A, Brooks T, Hopkins S, Charlett A, Beale R, Hall V. Antibody correlates of protection against Delta infection after vaccination: A nested case-control within the UK-based SIREN study. J Infect 2023; 87:420-427. [PMID: 37689394 DOI: 10.1016/j.jinf.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES To investigate serological correlates of protection against SARS-CoV-2 B.1.617.2 (Delta) infection after two vaccinations. METHODS We performed a case-control study, where cases were Delta infections after the second vaccine dose and controls were vaccinated, never infected participants, matched by age, gender and region. Sera were tested for anti-SARS-CoV-2 Spike antibody levels (anti-S) and neutralising antibody titres (nAbT), using live virus microneutralisation against Ancestral, Delta and Omicron (BA.1, B.1.1.529). We modelled the decay of anti-S and nAbT for both groups, inferring levels at matched calendar times since the second vaccination. We assessed differences in inferred antibody titres between groups and used conditional logistic regression to explore the relationship between titres and odds of infection. RESULTS In total, 130 sequence-confirmed Delta cases and 318 controls were included. Anti-S and Ancestral nAbT decayed similarly between groups, but faster in cases for Delta nAbT (p = 0.02) and Omicron nAbT (p = 0.002). At seven days before infection, controls had higher anti-S levels (p < 0.0001) and nAbT (p < 0.0001; all variants) at matched calendar time. A two-fold increase in anti-S levels was associated with a 29% ([95% CI 14-42%]; p = 0.001) reduction in odds of Delta infection. Delta nAbT>40 were associated with reduced odds of Delta infection (89%, [69-96%]; p < 0.0001), with additional benefits for titres >100 (p = 0.009) and >400 (p = 0.007). CONCLUSIONS We have identified correlates of protection against SARS-CoV-2 Delta, with potential implications for vaccine deployment, development, and public health response.
Collapse
Affiliation(s)
- Ana Atti
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK.
| | - Ferdinando Insalata
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Edward J Carr
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK; The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; UCL Dept of Renal Medicine, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ashley D Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sarah Foulkes
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Mary Y Wu
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Covid Surveillance Unit, The Francis Crick Institute, London, UK
| | - Michelle J Cole
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Ezra Linley
- UK Health Security Agency, Manchester Royal Infirmary, Oxford Road, Manchester M139WL, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Susan Hopkins
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Andre Charlett
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Rupert Beale
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; UCL Dept of Renal Medicine, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Genotype-to-Phenotype UK National Virology Consortium (G2P-UK), UK
| | - Victoria Hall
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| |
Collapse
|
33
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Fryer HA, Hartley GE, Edwards ESJ, Varese N, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. COVID-19 Adenoviral Vector Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize Omicron BA.2 and BA.5 Variants. J Clin Immunol 2023; 43:1506-1518. [PMID: 37322095 PMCID: PMC10499924 DOI: 10.1007/s10875-023-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Collapse
Affiliation(s)
- Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Woelfel S, Dütschler J, König M, Dulovic A, Graf N, Junker D, Oikonomou V, Krieger C, Truniger S, Franke A, Eckhold A, Forsch K, Koller S, Wyss J, Krupka N, Oberholzer M, Frei N, Geissler N, Schaub P, Albrich WC, Friedrich M, Schneiderhan-Marra N, Misselwitz B, Korte W, Bürgi JJ, Brand S. STAR SIGN study: Evaluation of COVID-19 vaccine efficacy against the SARS-CoV-2 variants BQ.1.1 and XBB.1.5 in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:678-691. [PMID: 37571863 DOI: 10.1111/apt.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Vaccine-elicited immune responses are impaired in patients with inflammatory bowel disease (IBD) treated with anti-TNF biologics. AIMS To assess vaccination efficacy against the novel omicron sublineages BQ.1.1 and XBB.1.5 in immunosuppressed patients with IBD. METHODS This prospective multicentre case-control study included 98 biologic-treated patients with IBD and 48 healthy controls. Anti-spike IgG concentrations and surrogate neutralisation against SARS-CoV-2 wild-type, BA.1, BA.5, BQ.1.1, and XBB.1.5 were measured at two different time points (2-16 weeks and 22-40 weeks) following third dose vaccination. Surrogate neutralisation was based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Primary outcome was surrogate neutralisation against tested SARS-CoV-2 sublineages. Secondary outcomes were proportions of participants with insufficient surrogate neutralisation, impact of breakthrough infection, and correlation of surrogate neutralisation with anti-spike IgG concentration. RESULTS Surrogate neutralisation against all tested sublineages was reduced in patients with IBD who were treated with anti-TNF biologics compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.001) at visit 1. Anti-TNF therapy (odds ratio 0.29 [95% CI 0.19-0.46]) and time since vaccination (0.85 [0.72-1.00]) were associated with low, and mRNA-1273 vaccination (1.86 [1.12-3.08]) with high wild-type surrogate neutralisation in a β-regression model. Accordingly, higher proportions of patients treated with anti-TNF biologics had insufficient surrogate neutralisation against omicron sublineages at visit 1 compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.015). Surrogate neutralisation against all tested sublineages decreased over time but was increased by breakthrough infection. Anti-spike IgG concentrations correlated with surrogate neutralisation. CONCLUSIONS Patients with IBD who are treated with anti-TNF biologics show impaired neutralisation against novel omicron sublineages BQ.1.1 and XBB.1.5 and may benefit from prioritisation for future variant-adapted vaccines.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU Munich), Munich, Germany
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Joel Dütschler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Marius König
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Nicole Graf
- Clinical Trials Unit, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Vasileios Oikonomou
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Krieger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Samuel Truniger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annett Franke
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annika Eckhold
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Kristina Forsch
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Seraina Koller
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Nicola Frei
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nora Geissler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Peter Schaub
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | - Stephan Brand
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
36
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
37
|
Zhou Y, Zhao X, Jiang Y, Lin DJ, Lu C, Wang Y, Le S, Li R, Yan J. A Mechanical Assay for the Quantification of Anti-RBD IgG Levels in Finger-Prick Whole Blood. ACS Sens 2023; 8:2986-2995. [PMID: 37582229 PMCID: PMC10464602 DOI: 10.1021/acssensors.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A large portion of the global population has been vaccinated with various vaccines or infected with SARS-CoV-2, the virus that causes COVID-19. The resulting IgG antibodies that target the receptor binding domain (RBD) of SARS-CoV-2 play a vital role in reducing infection rates and severe disease outcomes. Different immune histories result in the production of anti-RBD IgG antibodies with different binding affinities to RBDs of different variants, and the levels of these antibodies decrease over time. Therefore, it is important to have a low-cost, rapid method for quantifying the levels of anti-RBD IgG in decentralized testing for large populations. In this study, we describe a 30 min assay that allows for the quantification of anti-RBD IgG levels in a single drop of finger-prick whole blood. This assay uses force-dependent dissociation of nonspecifically absorbed RBD-coated superparamagnetic microbeads to determine the density of specifically linked microbeads to a protein A-coated transparent surface through anti-RBD IgGs, which can be measured using a simple light microscope and a low-magnification lens. The titer of serially diluted anti-RBD IgGs can be determined without any additional sample processing steps. The limit of detection for this assay is 0.7 ± 0.1 ng/mL referenced to the CR3022 anti-RBD IgG. The limits of the technology and its potential to be further developed to meet the need for point-of-care monitoring of immune protection status are discussed.
Collapse
Affiliation(s)
- Yu Zhou
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Xiaodan Zhao
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
| | - Yanqige Jiang
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | | | - Chen Lu
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Yinan Wang
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Shimin Le
- Department
of Physics, Xiamen University, Xiamen361005, P. R. China
| | - Rong Li
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
38
|
Proust A, Queval CJ, Harvey R, Adams L, Bennett M, Wilkinson RJ. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J Neuroinflammation 2023; 20:184. [PMID: 37537664 PMCID: PMC10398935 DOI: 10.1186/s12974-023-02861-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Although mainly causing a respiratory syndrome, numerous neurological symptoms have been identified following of SARS-CoV-2 infection. However, how the virus affects the brain and how the mutations carried by the different variants modulate those neurological symptoms remain unclear. METHODS We used primary human pericytes, foetal astrocytes, endothelial cells and a microglial cell line to investigate the effect of several SARS-CoV-2 variants of concern or interest on their functional activities. Cells and a 3D blood-brain barrier model were infected with the wild-type form of SARS-CoV-2, Alpha, Beta, Delta, Eta, or Omicron (BA.1) variants at various MOI. Cells and supernatant were used to evaluate cell susceptibility to the virus using a microscopic assay as well as effects of infection on (i) cell metabolic activity using a colorimetric MTS assay; (ii) viral cytopathogenicity using the xCELLigence system; (iii) extracellular glutamate concentration by fluorometric assay; and (iv) modulation of blood-brain barrier permeability. RESULTS We demonstrate that productive infection of brain cells is SARS-CoV-2 variant dependent and that all the variants induce stress to CNS cells. The wild-type virus was cytopathic to all cell types except astrocytes, whilst Alpha and Beta variants were only cytopathic for pericytes, and the Omicron variant cytopathic for endothelial cells and pericytes. Lastly wild-type virus increases blood-brain barrier permeability and all variants, except Beta, modulate extracellular glutamate concentration, which can lead to excitotoxicity or altered neurotransmission. CONCLUSIONS These results suggest that SARS-CoV-2 is neurotropic, with deleterious consequences for the blood-brain barrier integrity and central nervous system cells, which could underlie neurological disorders following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alizé Proust
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Christophe J Queval
- High Throughput Screening Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Bennett
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| |
Collapse
|
39
|
Patil R, Palkar S, Mishra A, Patil R, Arankalle V. Variable neutralizing antibody responses to 10 SARS-CoV-2 variants in natural infection with wild- type (B.1) virus, Kappa (B.1.617.1), and Delta (B.1.617.2) variants and COVISHIELD vaccine immunization in India: utility of the MSD platform. Front Immunol 2023; 14:1181991. [PMID: 37342350 PMCID: PMC10277512 DOI: 10.3389/fimmu.2023.1181991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
For the efficacy of COVID-19 vaccines, emergence of variants accumulating immune-escape mutations remains a major concern. We analyzed the anti-variant (n = 10) neutralization activity of sera from COVID-19 patients infected with Wuhan (B.1), Kappa, and Delta variants and COVISHIELD vaccine recipients with (prepositives) or without (prenegatives) prior antibody positivity using V- PLEX ACE2 Neutralization Kit from MSD. MSD and PRNT50 correlated well (r = 0.76-0.83, p < 0.0001). Despite the least antibody positivity in Kappa patients, anti-variant neutralizing antibody (Nab) levels in the responders were comparable with Delta patients. Vaccinees sampled at 1 month (PD2-1) and 6 months (PD2-6) post-second dose showed the highest seropositivity and Nab levels against the Wuhan strain. At PD2-1, the responder rate was variant-dependent and 100% respectively in prenegatives and prepositives. Nab levels against B.1.135.1, B.1.620, B.1.1.7+E484K (both groups), AY.2 (prenegatives), and B.1.618 (prepositives) were lower than that of Wuhan. At PD2-6, positivity decreased to 15.6%-68.8% in the prenegatives; 3.5%-10.7% of prepositives turned negative for the same four variants. As against the decline in Nab levels in 9/10 variants (prenegatives), a further reduction was seen against the same four variants in the prepositives. These variants possess immune-evasion-associated mutations in the RBD/S region. In conclusion, our data show that the Nab response of patients to multiple variants depends on the infecting variant. We confirm superiority of hybrid immunity in neutralizing multiple variants. Depending on the infecting variant pre- or postvaccination, immune response to different vaccines in different populations will vary and impact protection against emerging variants. The MSD platform provides an excellent alternative to live virus/pseudovirus neutralization tests.
Collapse
Affiliation(s)
- Rajashree Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhileshchandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|
40
|
Delli Gatti D, Reissl S, Turco E. V for vaccines and variants. JOURNAL OF EVOLUTIONARY ECONOMICS 2023:1-56. [PMID: 37362350 PMCID: PMC10233200 DOI: 10.1007/s00191-023-00818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 06/28/2023]
Abstract
In the context of the Covid-19 pandemic, we evaluate the effects of vaccines and virus variants on epidemiological and macroeconomic outcomes by means of Monte Carlo simulations of a macroeconomic-epidemiological agent-based model calibrated using data from the Lombardy region of Italy. From simulations we infer that vaccination plays the role of a mitigating factor, reducing the frequency and the amplitude of contagion waves and significantly improving macroeconomic performance with respect to a scenario without vaccination. The emergence of a variant, on the other hand, plays the role of an accelerating factor, leading to a deterioration of both epidemiological and macroeconomic outcomes and partly negating the beneficial impacts of the vaccine. A new and improved vaccine in turn can redress the situation. Vaccinations and variants, therefore, can be conceived of as drivers of an intertwined cycle impacting both epidemiological and macroeconomic developments.
Collapse
Affiliation(s)
- Domenico Delli Gatti
- Department of Economics and Finance, Catholic University, Milan, Italy
- Complexity Lab in Economics, Catholic University, Milan, Italy
- CESifo, Munich, Germany
| | - Severin Reissl
- RFF-CMCC European Institute on Economics and the Environment, Milan, Italy
| | - Enrico Turco
- Department of Economics and Finance, Catholic University, Milan, Italy
- Fondazione Eni Enrico Mattei, Milan, Italy
| |
Collapse
|
41
|
Russell TW, Townsley H, Abbott S, Hellewell J, Carr EJ, Chapman L, Pung R, Quilty BJ, Hodgson D, Fowler AS, Adams L, Bailey C, Mears HV, Harvey R, Clayton B, O’Reilly N, Ngai Y, Nicod J, Gamblin S, Williams B, Gandhi S, Swanton C, Beale R, Bauer DLV, Wall EC, Kucharski A. Within-host SARS-CoV-2 viral kinetics informed by complex life course exposures reveals different intrinsic properties of Omicron and Delta variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.17.23290105. [PMID: 37292842 PMCID: PMC10246130 DOI: 10.1101/2023.05.17.23290105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.
Collapse
Affiliation(s)
- Timothy W. Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Hermaleigh Townsley
- The Francis Crick Institute, 1 Midland Road, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK
| | - Sam Abbott
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Joel Hellewell
- European Molecular Biology Laboratory-European Bioinformatics Institute, Cambridge, UK
| | - Edward J Carr
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Lloyd Chapman
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Lancaster University, Bailrigg, Lancaster
| | - Rachael Pung
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Billy J. Quilty
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Lorin Adams
- The Francis Crick Institute, 1 Midland Road, London, UK
| | | | | | - Ruth Harvey
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Bobbi Clayton
- The Francis Crick Institute, 1 Midland Road, London, UK
| | | | - Yenting Ngai
- The Francis Crick Institute, 1 Midland Road, London, UK
- University College London, Gower Street, London
| | - Jerome Nicod
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Steve Gamblin
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK
- University College London, Gower Street, London
| | - Sonia Gandhi
- The Francis Crick Institute, 1 Midland Road, London, UK
- University College London, Gower Street, London
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London, UK
- University College London, Gower Street, London
| | - Rupert Beale
- The Francis Crick Institute, 1 Midland Road, London, UK
- University College London, Gower Street, London
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | - David LV Bauer
- The Francis Crick Institute, 1 Midland Road, London, UK
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | - Emma C Wall
- The Francis Crick Institute, 1 Midland Road, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, UK
- University College London, Gower Street, London
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
42
|
Pearson J, Wessler T, Chen A, Boucher RC, Freeman R, Lai SK, Pickles R, Forest MG. Modeling identifies variability in SARS-CoV-2 uptake and eclipse phase by infected cells as principal drivers of extreme variability in nasal viral load in the 48 h post infection. J Theor Biol 2023; 565:111470. [PMID: 36965846 PMCID: PMC10033495 DOI: 10.1016/j.jtbi.2023.111470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.
Collapse
Affiliation(s)
- Jason Pearson
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex Chen
- Department of Mathematics, California State University-Dominguez Hills, Carson, CA 90747, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27606, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Marsico Lung Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Gregory Forest
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
43
|
Orlandi C, Stefanetti G, Barocci S, Buffi G, Diotallevi A, Rocchi E, Ceccarelli M, Peluso S, Vandini D, Carlotti E, Magnani M, Galluzzi L, Casabianca A. Comparing Heterologous and Homologous COVID-19 Vaccination: A Longitudinal Study of Antibody Decay. Viruses 2023; 15:v15051162. [PMID: 37243247 DOI: 10.3390/v15051162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.
Collapse
Affiliation(s)
- Chiara Orlandi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
- Laboratorio Covid, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Giuseppe Stefanetti
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Simone Barocci
- Department of Clinical Pathology, Azienda Sanitaria Unica Regionale Marche Area Vasta 1 (ASUR Marche AV1), Viale Comandino 70, 61029 Urbino, PU, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Ettore Rocchi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Sara Peluso
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, BO, Italy
| | - Daniela Vandini
- Department of Clinical Pathology, Azienda Sanitaria Unica Regionale Marche Area Vasta 1 (ASUR Marche AV1), Viale Comandino 70, 61029 Urbino, PU, Italy
| | - Eugenio Carlotti
- Department of Prevention, ASUR Marche AV1, Viale Comandino 21, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
- Laboratorio Covid, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Anna Casabianca
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
- Laboratorio Covid, University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| |
Collapse
|
44
|
Kryukova N, Baranova I, Abramova N, Khromova E, Pachomov D, Svitich O, Chuchalin A, Kostinov M. Mucosal immunity in health care workers' respiratory tracts in the post-COVID-19 period. Sci Rep 2023; 13:7162. [PMID: 37138005 PMCID: PMC10154756 DOI: 10.1038/s41598-023-32670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Coronavirus disease (COVID-19) has generated interest in the assessment of systemic immune status, but existing knowledge about mucosal immunity is clearly insufficient to understand the full pathogenetic mechanisms of the disease. The aim of this study was to evaluate the long-term effects of novel coronavirus infection on mucosal immunity in the postinfection period among health care workers (HCWs). A total of 180 health care workers with and without a history of COVID-19 who ranged in age from 18 to 65 years were enrolled in this one-stage, cross-sectional study. The study subjects completed the 36-Item Short Form (36) Health Survey (SF-36) and the Fatigue Assessment Scale. Secretory immunoglobulin A (sIgA) and total immunoglobulin G (IgG) levels were quantified in saliva samples, induced sputum samples, and nasopharyngeal and oropharyngeal scrapings by an enzyme-linked immunosorbent assay. Specific anti-SARS-CoV-2 IgG antibodies were quantified in serum samples by chemiluminescence immunoassay. Analysis of the questionnaire data showed that all HCWs with a history of COVID-19 reported health problems that limited their daily activities and negative changes in their emotional health three months after the disease, regardless of its severity. The following shifts were detected in the adaptive arm of the immune response in different mucosal compartments. Among subjects who had severe or moderate-to-severe COVID-19, salivary sIgA levels were significantly higher than those in the control group (p < 0.05 and p < 0.005, respectively). Compared to the subjects in the control group, all subjects with prior COVID-19 had significantly higher levels of total IgG in induced sputum. In the group of patients who had had severe infection, total IgG in saliva was also higher (p < 0.05). A direct statistically significant correlation was also detected between the levels of total IgG in all studied samples and the levels of specific IgG antibodies against SARS-CoV-2 in the serum. A significant correlation was observed between total IgG levels and the parameters of physical and social activities, mental health, and fatigue levels. Our study demonstrated long-term changes in the humoral mucosal immune response, which were most pronounced in health care workers with a history of severe or moderate-to-severe COVID-19, and an association of these changes with certain clinical signs of post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Nadezhda Kryukova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| | - Irina Baranova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Natalia Abramova
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Ekaterina Khromova
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Dmitry Pachomov
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Oksana Svitich
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Alexander Chuchalin
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mikhail Kostinov
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
45
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
46
|
Chiara M, Horner DS, Ferrandi E, Gissi C, Pesole G. HaploCoV: unsupervised classification and rapid detection of novel emerging variants of SARS-CoV-2. Commun Biol 2023; 6:443. [PMID: 37087497 PMCID: PMC10122080 DOI: 10.1038/s42003-023-04784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Accurate and timely monitoring of the evolution of SARS-CoV-2 is crucial for identifying and tracking potentially more transmissible/virulent viral variants, and implement mitigation strategies to limit their spread. Here we introduce HaploCoV, a novel software framework that enables the exploration of SARS-CoV-2 genomic diversity through space and time, to identify novel emerging viral variants and prioritize variants of potential epidemiological interest in a rapid and unsupervised manner. HaploCoV can integrate with any classification/nomenclature and incorporates an effective scoring system for the prioritization of SARS-CoV-2 variants. By performing retrospective analyses of more than 11.5 M genome sequences we show that HaploCoV demonstrates high levels of accuracy and reproducibility and identifies the large majority of epidemiologically relevant viral variants - as flagged by international health authorities - automatically and with rapid turn-around times.Our results highlight the importance of the application of strategies based on the systematic analysis and integration of regional data for rapid identification of novel, emerging variants of SARS-CoV-2. We believe that the approach outlined in this study will contribute to relevant advances to current and future genomic surveillance methods.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Erika Ferrandi
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Carmela Gissi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
- Department of Biosciences, Biotechnology and Environment, University of Bari "A. Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.
- Department of Biosciences, Biotechnology and Environment, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
47
|
Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC. Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. J Clin Invest 2023; 133:e166844. [PMID: 36862518 PMCID: PMC10104900 DOI: 10.1172/jci166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joshua J.C. McGrath
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - G. Dewey Wilbanks
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Min Huang
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven A. Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, Illinois, USA
| | - Yanbin Fu
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gagandeep Singh
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
| | - Brian Monahan
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Jacob Mauldin
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Komal Srivastava
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Viviana Simon
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
- The Global Health and Emerging Pathogens Institute, and
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
48
|
Borghi M, Gallinaro A, Pirillo MF, Canitano A, Michelini Z, De Angelis ML, Cecchetti S, Tinari A, Falce C, Mariotti S, Capocefalo A, Chiantore MV, Iacobino A, Di Virgilio A, van Gils MJ, Sanders RW, Lo Presti A, Nisini R, Negri D, Cara A. Different configurations of SARS-CoV-2 spike protein delivered by integrase-defective lentiviral vectors induce persistent functional immune responses, characterized by distinct immunogenicity profiles. Front Immunol 2023; 14:1147953. [PMID: 37090707 PMCID: PMC10113491 DOI: 10.3389/fimmu.2023.1147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.
Collapse
Affiliation(s)
- Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Falce
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Mariotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Capocefalo
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| |
Collapse
|
49
|
Polatoğlu I, Oncu‐Oner T, Dalman I, Ozdogan S. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm (Beijing) 2023; 4:e228. [PMID: 37041762 PMCID: PMC10082934 DOI: 10.1002/mco2.228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Coronavirus Disease-19 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), a highly pathogenic and transmissible coronavirus. Most cases of COVID-19 have mild to moderate symptoms, including cough, fever, myalgias, and headache. On the other hand, this coronavirus can lead to severe complications and death in some cases. Therefore, vaccination is the most effective tool to prevent and eradicate COVID-19 disease. Also, rapid and effective diagnostic tests are critical in identifying cases of COVID-19. The COVID-19 pandemic has a dynamic structure on the agenda and contains up-to-date developments. This article has comprehensively discussed the most up-to-date pandemic situation since it first appeared. For the first time, not only the structure, replication mechanism, and variants of SARS-CoV-2 (Alpha, Beta, Gamma, Omicron, Delta, Epsilon, Kappa, Mu, Eta, Zeta, Theta, lota, Lambda) but also all the details of the pandemic, such as how it came out, how it spread, current cases, what precautions should be taken, prevention strategies, the vaccines produced, the tests developed, and the drugs used are reviewed in every aspect. Herein, the comparison of diagnostic tests for SARS-CoV-2 in terms of procedure, accuracy, cost, and time has been presented. The mechanism, safety, efficacy, and effectiveness of COVID-19 vaccines against SARS-CoV-2 variants have been evaluated. Drug studies, therapeutic targets, various immunomodulators, and antiviral molecules applied to patients with COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Ilker Polatoğlu
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Tulay Oncu‐Oner
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Irem Dalman
- Department of BioengineeringEge UniversityBornovaIzmirTurkey
| | - Senanur Ozdogan
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| |
Collapse
|
50
|
Shah M, Shin JY, Woo HG. Rational strategies for enhancing mAb binding to SARS-CoV-2 variants through CDR diversification and antibody-escape prediction. Front Immunol 2023; 14:1113175. [PMID: 37063859 PMCID: PMC10102385 DOI: 10.3389/fimmu.2023.1113175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Since the emergence of SARS-CoV-2, dozens of variants of interest and half a dozen variants of concern (VOCs) have been documented by the World Health Organization. The emergence of these VOCs due to the continuous evolution of the virus is a major concern for COVID-19 therapeutic antibodies and vaccines because they are designed to target prototype/previous strains and lose effectiveness against new VOCs. Therefore, there is a need for time- and cost-effective strategies to estimate the immune escape and redirect therapeutic antibodies against newly emerging variants. Here, we computationally predicted the neutralization escape of the SARS-CoV-2 Delta and Omicron variants against the mutational space of RBD-mAbs interfaces. Leveraging knowledge of the existing RBD-mAb interfaces and mutational space, we fine-tuned and redirected CT-p59 (Regdanvimab) and Etesevimab against the escaped variants through complementarity-determining regions (CDRs) diversification. We identified antibodies against the Omicron lineage BA.1 and BA.2 and Delta variants with comparable or better binding affinities to that of prototype Spike. This suggests that CDRs diversification by hotspot grafting, given an existing insight into the Ag-Abs interface, is an exquisite strategy to redirect antibodies against preselected epitopes and combat the neutralization escape of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Yon Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Korea Initiative for Fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- *Correspondence: Hyun Goo Woo,
| |
Collapse
|