1
|
Oroszi T, Huiting W, Keijser JN, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-Body Vibration Affects Hippocampal Choline Acetyltransferase and Synaptophysin Expression and Improves Spatial Memory in Young Adult Mice. J Integr Neurosci 2024; 23:173. [PMID: 39344235 DOI: 10.31083/j.jin2309173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Beneficial effects of whole-body vibration (WBV) on brain and musculoskeletal health in mice have been demonstrated, but underlying mechanisms remain relatively unrevealed. WBV improves attention and memory performance in mice, putatively through stimulation of the cholinergic system. Here, we investigated the effects of WBV on the septo-hippocampal cholinergic system. METHODS Young C57BL/6 mice (8 weeks old) were subjected to 10 min WBV/day (mechanical vibration: 30 Hz; ~0.1-μm peak-to-peak displacement), 5X/week for 5 weeks. In Experiment 1, choline acetyltransferase (ChAT)-immunoreactivity in the septum and hippocampus was analyzed either 2 or 24 h after the last WBV session. Pseudo-WBV-treated mice (same handling procedure as WBV, but no vibrations) served as controls. In Experiment 2, the longitudinal profile of ChAT-immunoreactivity was analyzed in the hippocampus after 1, 2, 3, 4, or 5 weeks of WBV. In addition, synaptophysin immunostaining was performed at either 2 and 5 weeks of WBV. Mice housed 1/cage during the entire experiment served as controls. The balance-beam test was used to monitor the functional impact of WBV. In Experiment 3, a Y-maze reference-memory test was performed after 5 weeks of WBV to obtain a functional cognitive outcome measure of WBV. Pseudo-WBV treated mice served as controls. RESULTS In Experiment 1, ChAT-immunoreactivity was significantly enhanced after the last WBV session of the 5-week period. This was found in the septum, Cornu Ammonis 1 (CA1), CA3, and dentate gyrus, and was dependent on layer and time-point (2 or 24 h). Experiment 2 revealed that, ChAT-immunoreactivity was lower after 2 weeks of WBV, whereas it was significantly higher after 5 weeks (similar to in Experiment 1). Immunostaining for synaptophysin, a marker for synaptic density, was also significantly higher after 5 weeks of WBV, but not significantly lower after 2 weeks, as was ChAT. WBV-treated groups performed significantly better than did controls on the balance beam from week 3 onwards. Experiment 3 showed that WBV-treated mice had better spatial-reference memory performance in the Y-maze test than did pseudo-WBV controls. CONCLUSIONS Our results indicate that WBV stimulates the septo-hippocampal cholinergic system in a gradual and dynamic way that may contribute to improved spatial-memory performance. This finding suggests that WBV, by upregulation of the septo-hippocampal cholinergic system, may be considered a valuable therapeutic strategy to enhance brain functions in aging, neurodegenerative, and other brain diseases.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Wouter Huiting
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jan N Keijser
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, 1085 Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Chen YS, Shu K, Kang HC. Deep Brain Stimulation in Alzheimer's Disease: Targeting the Nucleus Basalis of Meynert. J Alzheimers Dis 2021; 80:53-70. [PMID: 33492288 DOI: 10.3233/jad-201141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is becoming a prevalent disease in the elderly population. Past decades have witnessed the development of drug therapies with varying targets. However, all drugs with a single molecular target fail to reverse or ameliorate AD progression, which ultimately results in cortical and subcortical network dysregulation. Deep brain stimulation (DBS) has been proven effective for the treatment of Parkinson's disease, essential tremor, and other neurological diseases. As such, DBS has also been gradually acknowledged as a potential therapy for AD. The current review focuses on DBS of the nucleus basalis of Meynert (NBM). As a critical component of the cerebral cholinergic system and the Papez circuit in the basal ganglia, the NBM plays an indispensable role in the subcortical regulation of memory, attention, and arousal state, which makes the NBM a promising target for modulation of neural network dysfunction and AD treatment. We summarized the intricate projection relations and functionality of the NBM, current approaches for stereotactic localization and evaluation of the NBM, and the therapeutic effects of NBM-DBS both in patients and animal models. Furthermore, the current shortcomings of NBM-DBS, such as variations in cortical blood flow, increased temperature in the target area, and stimulation-related neural damage, were presented.
Collapse
Affiliation(s)
- Yu-Si Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
La Fountaine MF. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury. Int J Psychophysiol 2018; 132:155-166. [DOI: 10.1016/j.ijpsycho.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 01/11/2023]
|
4
|
Abstract
Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.
Collapse
Affiliation(s)
- Dominik Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Selective activation of a putative reinforcement signal conditions cued interval timing in primary visual cortex. Curr Biol 2015; 25:1551-61. [PMID: 26004763 DOI: 10.1016/j.cub.2015.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
Abstract
As a consequence of conditioning visual cues with delayed reward, cue-evoked neural activity that predicts the time of expected future reward emerges in the primary visual cortex (V1). We hypothesized that this reward-timing activity is engendered by a reinforcement signal conveying reward acquisition to V1. In lieu of behavioral conditioning, we assessed in vivo whether selective activation of either basal forebrain (BF) or cholinergic innervation is sufficient to condition cued interval-timing activity. Substituting for actual reward, optogenetic activation of BF or cholinergic input within V1 at fixed delays following visual stimulation entrains neural responses that mimic behaviorally conditioned reward-timing activity. Optogenetically conditioned neural responses express cue-evoked temporal intervals that correspond to the conditioning intervals, are bidirectionally modifiable, display experience-dependent refinement, and exhibit a scale invariance to the encoded delay. Our results demonstrate that the activation of BF or cholinergic input within V1 is sufficient to encode cued interval-timing activity and indicate that V1 itself is a substrate for associative learning that may inform the timing of visually cued behaviors.
Collapse
|
6
|
Mans RA, Warmus BA, Smith CC, McMahon LL. An acetylcholinesterase inhibitor, eserine, induces long-term depression at CA3-CA1 synapses in the hippocampus of adult rats. J Neurophysiol 2014; 112:2388-97. [PMID: 25143547 DOI: 10.1152/jn.00048.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies in humans and rodents support a role for muscarinic ACh receptor (mAChR) and nicotinic AChR in learning and memory, and both regulate hippocampal synaptic plasticity using complex and often times opposing mechanisms. Acetylcholinesterase (AChE) inhibitors are commonly prescribed to enhance cholinergic signaling in Alzheimer's disease in hopes of rescuing cognitive function, caused, in part, by degeneration of cholinergic innervation to the hippocampus and cortex. Unfortunately, therapeutic efficacy is moderate and inconsistent, perhaps due to unanticipated mechanisms. M1 mAChRs bidirectionally control synaptic strength at CA3-CA1 synapses; weak pharmacological activation using carbachol (CCh) facilitates potentiation, whereas strong agonism induces muscarinic long-term depression (mLTD) via an ERK-dependent mechanism. Here, we tested the prediction that accumulation of extracellular ACh via inhibition of AChE is sufficient to induce LTD at CA3-CA1 synapses in hippocampal slices from adult rats. Although AChE inhibition with eserine induces LTD, it unexpectedly does not share properties with mLTD induced by CCh, as reported previously. Eserine-LTD was prevented by the M3 mAChR-preferring antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), and pharmacological inhibition of MEK was completely ineffective. Additionally, pharmacological inhibition of p38 MAPK prevents mLTD but has no effect on eserine-LTD. Finally, long-term expression of eserine-LTD is partially dependent on a decrease in presynaptic release probability, likely caused by tonic activation of mAChRs by the sustained increase in extracellular ACh. Thus these findings extend current literature by showing that pharmacological AChE inhibition causes a prolonged decrease in presynaptic glutamate release at CA3-CA1 synapses, in addition to inducing a likely postsynaptic form of LTD.
Collapse
Affiliation(s)
- Robert Alan Mans
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian A Warmus
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline C Smith
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
7
|
Choi SS, Lee SR, Kim SU, Lee HJ. Alzheimer's disease and stem cell therapy. Exp Neurobiol 2014; 23:45-52. [PMID: 24737939 PMCID: PMC3984956 DOI: 10.5607/en.2014.23.1.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
The loss of neuronal cells in the central nervous system may occur in many neurodegenerative diseases. Alzheimer's disease is a common senile disease in people over 65 years, and it causes impairment characterized by the decline of mental function, including memory loss and cognitive impairment, and affects the quality of life of patients. However, the current therapeutic strategies against AD are only to relieve symptoms, but not to cure it. Because there are only a few therapeutic strategies against Alzheimer's disease, we need to understand the pathogenesis of this disease. Cell therapy may be a powerful tool for the treatment of Alzheimer's disease. This review will discuss the characteristics of Alzheimer's disease and various available therapeutic strategies.
Collapse
Affiliation(s)
- Sung S Choi
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver 317-2194, Canada
| | - Hong J Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
8
|
Raghavendra M, Maiti R, Kumar S, Acharya SB. Role of aqueous extract of Azadirachta indica leaves in an experimental model of Alzheimer's disease in rats. Int J Appl Basic Med Res 2013; 3:37-47. [PMID: 23776838 PMCID: PMC3678680 DOI: 10.4103/2229-516x.112239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 11/15/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by multiple cognitive deficits, is often accompanied by behavioral disorders and mood changes. Because of the non-availability of proper curative/preventive therapy for AD, the present study was designed to evaluate the possible role of Azadirachta indica in experimental AD in rats. MATERIALS AND METHODS Experimental AD in rats was produced by nucleus basalis magnacellularis lesion with ibotenic acid (IB) and intacerebroventricular administration of colchicine (Col). Different behavioral tests and biochemical analysis were performed to explore the role to A. indica in AD. RESULTS A. indica exhibited anxiolytic activity in the open field test in Col lesion animals, which was comparable to that of diazepam. In the Elevated plus maze test, A. indica significantly alleviated IB and Col-induced anxiety. IB and Col-induced depression was mitigated by A. indica, and the results were comparable to that of imipramine. In Morris' water maze test, A. indica pre-treatment improved reference memory, working memory and spatial learning, which are at par with the effects of donepezil. Both IB and Col-induced deficits in active avoidance learning and retention of learned behavior were significantly reversed by A. indica. IB and Col-induced increased lipid peroxidase activity was significantly reversed by A. indica (reductions in malondialdehyde level). A. indica stabilized rise in superoxide dismutase and a decreasing trend in acetylcholine-esterase (AChE) activity was seen with IB and Col lesions. A. indica had no effect over the AChE activity. CONCLUSION A. indica might be effective in clinical AD by virtue of its cognition enhancement, antidepressant and antianxiety properties.
Collapse
Affiliation(s)
- M Raghavendra
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rituparna Maiti
- Department of Pharmacology, Prathima Institute of Medical Sciences, Nagunur, Karimnagar, Andhra Pradesh, India
| | - Shafalika Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - SB Acharya
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol 2011; 9:559-73. [PMID: 22654716 PMCID: PMC3263452 DOI: 10.2174/157015911798376190] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer's disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer's disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer's disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Collapse
Affiliation(s)
- Shelley J Allen
- Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
10
|
Paban V, Chambon C, Farioli F, Alescio-Lautier B. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult. Neurobiol Learn Mem 2011; 95:441-52. [PMID: 21345373 DOI: 10.1016/j.nlm.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury.
Collapse
Affiliation(s)
- Véronique Paban
- Université d'Aix-Marseille I, Laboratoire de Neurosciences Intégratives et Adaptatives, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France.
| | | | | | | |
Collapse
|
11
|
Digby GJ, Shirey JK, Conn PJ. Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. MOLECULAR BIOSYSTEMS 2010; 6:1345-54. [PMID: 20582339 PMCID: PMC4780333 DOI: 10.1039/c002938f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) represent exciting therapeutic targets for the treatment of multiple CNS disorders. The high degree of conservation of amino acids comprising the orthosteric acetylcholine (ACh) binding site between individual mAChR subtypes has hindered the development of subtype-selective compounds that bind to this site. As a result, many academic and industry researchers are now focusing on developing allosteric activators of mAChRs including both positive allosteric modulators (PAMs) and allosteric agonists. In the past 10 years major advances have been achieved in the discovery of allosteric ligands that possess much greater selectivity for individual mAChR subtypes when compared to previously developed orthosteric agents. These novel allosteric modulators of mAChRs may provide therapeutic potential for treatment of a number of CNS disorders such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Gregory J. Digby
- 1215 Light Hall, 2215B Garland Ave., Nashville, TN 37237-0575, USA. ; Fax: +1 615 343 3088; Tel: +1 615 322 6730
| | - Jana K. Shirey
- 8410E Medical Research Building IV, 2215B Garland Ave., Nashville, TN 37237-0575, USA. ; Fax: +1 615 936-2661; Tel: +1 615 936-8424
| | - P. Jeffrey Conn
- 2215B Garland Ave., Nashville, TN 37237-0575, USA. ; Fax: +1 615 343 3088; Tel: +1 615 322 6730
| |
Collapse
|
12
|
Kumar A. Carbachol-induced long-term synaptic depression is enhanced during senescence at hippocampal CA3-CA1 synapses. J Neurophysiol 2010; 104:607-16. [PMID: 20505129 DOI: 10.1152/jn.00278.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
13
|
Gene expression profile in rat hippocampus with and without memory deficit. Neurobiol Learn Mem 2010; 94:42-56. [PMID: 20359541 DOI: 10.1016/j.nlm.2010.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 01/22/2023]
Abstract
The cholinergic neuronal system, through its projections to the hippocampus, plays an important role in learning and memory. The aim of the study was to identify genes and networks in rat hippocampus with and without memory deficit. Genome-scale screening was used to analyze gene expression changes in rats submitted or not to intraparenchymal injection of 192 IgG-saporin and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes that could be grouped into several clusters of similar expression profiles and that are involved in biological functions, namely lipid metabolism, signal transduction, protein metabolism and modification, and transcription regulation. Memory loss following hippocampal cholinergic deafferentation was associated with significant expression of genes that did not show similar cluster organization. Only one cluster of genes could be identified; it included genes that would be involved in tissue remodeling. More important, most of the genes significantly altered in lesioned rats were down-regulated.
Collapse
|
14
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:791-805. [PMID: 19389457 DOI: 10.1016/j.pnpbp.2009.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
We understand this review as an attempt to summarize recent advances in the understanding of cholinergic function in cognition. Such a role has been highlighted in the 1970s by the discovery that dementia patients have greatly reduced cholinergic activity in cortex and hippocampus. A brief anatomical description of the major cholinergic pathways focuses on the basal forebrain and its projections to cortex and hippocampus. From this distinction, compelling evidence suggests that the basal forebrain --> cortex projection regulates the excitability of principal cortical neurons and is thereby critically involved in attention, stimulus detection and memory function, although the biological conditions for these functions are still debated. Similar uncertainties remain for the septo-hippocampal cholinergic system. Although initial lesions of the septum caused memory deficits reminiscent of hippocampal ablations, recent and more refined neurotoxic lesion studies which spared non-cholinergic cells of the basal forebrain failed to confirm these memory impairments in experimental animals despite a near total loss of cholinergic labeling. Yet, a decline in cholinergic markers in aging and dementia still stands as the most central piece of evidence for a link between the cholinergic system and cognition and appear to provide valuable targets for therapeutic approaches.
Collapse
|
15
|
Tenovuo O, Alin J, Helenius H. A randomized controlled trial of rivastigmine for chronic sequels of traumatic brain injury—What it showed and taught? Brain Inj 2009; 23:548-58. [DOI: 10.1080/02699050902926275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wilson WL, Munn C, Ross RC, Harding JW, Wright JW. The role of the AT4 and cholinergic systems in the Nucleus Basalis Magnocellularis (NBM): Effects on spatial memory. Brain Res 2009; 1272:25-31. [DOI: 10.1016/j.brainres.2009.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
17
|
Karakida F, Ikeya Y, Tsunakawa M, Yamaguchi T, Ikarashi Y, Takeda S, Aburada M. Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biol Pharm Bull 2007; 30:514-9. [PMID: 17329848 DOI: 10.1248/bpb.30.514] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that tenuifoliside B and 3,6'-disinapoylsucrose in Polygalae Radix, the root of Polygala tenuifolia WILLDENOW, inhibited potassium cyanide (KCN)-induced hypoxia and scopolamine-induced memory impairment in mice. Because both ingredients have a common sinapoyl moiety in their structure, we inferred that the sinapoyl moiety could inhibit hypoxia and memory impairment. In the present study to clarify the hypothesis, sinapic acid inhibited KCN-induced hypoxia and scopolamine-induced memory impairment as well as tenuifoliside B and 3,6'-disinapoylsucrose did. In addition, sinapic acid inhibited decompression- or bilateral carotid artery ligation-induced hypoxia (or mortality) and CO2-induced impairment in mice, and basal forebrain lesion-induced cerebral cholinergic dysfunction (decreases in acetylcholine concentration and choline acetyltransferase activity) in rats. These results, taken together, suggest the possibilities that sinapic acid is not only a very important moiety in the pharmacological activities of tenuifoliside B and 3,6'-disinapoylsucrose but also a candidate for a cerebral protective and cognition-improving medicine.
Collapse
Affiliation(s)
- Fumito Karakida
- Central Research Laboratory, Tsumura & Co., 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Takase K, Mitsushima D, Funabashi T, Kimura F. Sex difference in the 24-h acetylcholine release profile in the premotor/supplementary motor area of behaving rats. Brain Res 2007; 1154:105-15. [PMID: 17477908 DOI: 10.1016/j.brainres.2007.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 11/27/2022]
Abstract
The sex differences in various motor functions suggest a sex-specific neural basis in the nonprimary or primary motor area. To examine the sex difference in the 24-h profile of acetylcholine (ACh) release in the rostral frontal cortex area 2 (rFr2), which is equivalent to the premotor/supplementary motor area in primates, we performed an in vivo microdialysis study in both sexes of rats fed pelleted or powdered diet. The dialysate was automatically collected from the rFr2 for 24 h under freely moving conditions. Moreover, the number of cholinergic neurons in the nucleus basalis magnocellularis (NBM) was examined. Further, to confirm the relation between ACh release in the rFr2 and motor function, the spontaneous locomotor activity was monitored for 24 h. Both sexes showed a distinct 24-h rhythm of ACh release, which was high during the dark phase and low during the light phase. Female rats, however, showed a greater ACh release and more cholinergic neurons in the NBM than male rats. Similarly, spontaneous locomotor activity also showed a 24-h rhythm, which paralleled the changes in ACh release in both sexes, and these changes were again greater in female rats than in male rats. In addition, feeding with powdered diet significantly increased the ACh release and spontaneous locomotor activity. The present study is the first to report the sex difference in the 24-h profile of ACh release in the rFr2 in rats. The sex specific ACh release in the rFr2 may partly contribute to the sex difference in motor function in rats.
Collapse
Affiliation(s)
- Kenkichi Takase
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|
19
|
Mulugeta E, Chandranath I, Karlsson E, Winblad B, Adem A. Temporal and region-dependent changes in muscarinic M4 receptors in the hippocampus and entorhinal cortex of adrenalectomized rats. Exp Brain Res 2006; 173:309-17. [PMID: 16676164 DOI: 10.1007/s00221-006-0490-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Long-term adrenalectomy induces a dramatic loss of cells in the dentate gyrus and CA1-CA4 fields of the hippocampus resulting in an impairment of cognitive functions such as spatial learning, memory and exploratory behaviour. Muscarinic M1 and M4 receptor levels in the hippocampus and entorhinal cortex of adult male Wistar rats were examined 3, 14, 30, 90, and 150 days after adrenalectomy. Receptor levels in the entorhinal cortex and the hippocampus were determined by quantitative autoradiography using 125I-M1-toxin-1 and 125I-M4-toxin-1, M1 and M4 subtype selective antagonists, respectively. Moreover, the level of hippocampal M1 and M4 muscarinic receptors were evaluated 1 month after adrenalectomy by immunoblot analysis. Adrenalectomy induced apoptotic processes were examined by analysing apoptotic markers using Western blot analysis. No significant changes were observed in the level of muscarinic M1 receptors in the entorhinal cortex, the dentate gyrus and in the different CA fields of the hippocampus of adrenalectomized (ADX) rats. However, M4 receptors showed a significant decrease in the entorhinal cortex (at 3 days), dentate gyrus and CA4 (at 14 days), CA3 (at 30 days), and CA2 and CA1 (at 90 days) after adrenalectomy. Moreover, a decrease in the level of M4 receptors was detected in ADX rats 1 month after adrenalectomy as compared with sham groups using M4 specific antibody. Apoptotic markers such as PARP and p53 were significantly increased whereas Bcl-2 marker was decreased in ADX rat brain homogenates compared to controls. Our results show that M1 and M4 receptors are differentially affected by adrenalectomy and indicate that these subtypes have different functions in the hippocampus. Our data on time and region-dependent decreases in hippocampal M4 receptors indicate that the M4 receptor subtype is influenced by adrenal hormones and suggest that the M4 receptor might be linked to memory function in the hippocampus.
Collapse
Affiliation(s)
- Ezra Mulugeta
- Section of Experimental Geriatrics, NEUROTEC, Karolinska Institute, 141 86, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
20
|
Frielingsdorf H, Thal LJ, Pizzo DP. The septohippocampal cholinergic system and spatial working memory in the Morris water maze. Behav Brain Res 2006; 168:37-46. [PMID: 16330106 DOI: 10.1016/j.bbr.2005.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/30/2005] [Accepted: 10/10/2005] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to determine whether a systematic optimization of Morris water maze (mwm) testing parameters could reveal a significant role of the septohippocampal cholinergic system in spatial working memory. Young adult rats were lesioned using 192 IgG-saporin infused bilaterally into the medial septum. Lesions were near complete as measured by choline acetyltransferase (ChAT) activity and immunohistochemistry. Behavioral testing was performed in three phases. In the first, lesioned and unlesioned rats were trained in the mwm focusing on working memory, which was tested using novel platform locations daily. In the second phase, the optimal locations were retested with increasing intertrial intervals (ITI). In the third phase, intracerebroventricular infusions of nerve growth factor (NGF) were employed to enhance cholinergic activity of the unlesioned rats and potentially further separate group performance. Neither the standard or increased ITI resulted in a consistent significant difference in spatial working memory between groups. In addition, NGF treatment also failed to induce a significant difference in behavioral performance. In conclusion, impairments in working memory as assessed by the mwm could not be revealed despite a greater than 90% loss of hippocampal ChAT and the use of optimal testing parameters and NGF treatment.
Collapse
Affiliation(s)
- Helena Frielingsdorf
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | | | | |
Collapse
|
21
|
Berlanga ML, Simpson TK, Alcantara AA. Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 2006; 492:34-49. [PMID: 16175554 DOI: 10.1002/cne.20684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.
Collapse
Affiliation(s)
- Monica Lisa Berlanga
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
22
|
Pizzo DP, Coufal NG, Lortie MJ, Gage FH, Thal LJ. Regulatable acetylcholine-producing fibroblasts enhance cognitive performance. Mol Ther 2005; 13:175-82. [PMID: 16185935 DOI: 10.1016/j.ymthe.2005.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 11/28/2022] Open
Abstract
Regulatable gene therapy systems provide a method to alter neurotransmitter levels in vivo. We developed a rodent fibroblast cell line expressing the choline acetyltransferase (ChAT) cDNA that is silenced by doxycycline (DOX) administration. The ability of the cell line to improve cognition was tested by grafting after cholinergic lesions. Ibotenic acid was injected bilaterally into the nucleus basalis of rats, which were distributed into three groups. One group received no treatment, while the second group received cortical transplants (Graft). The third group received identical grafts but was treated with DOX to turn off ChAT expression (Graft/DOX). An unlesioned group served as control. Water maze acquisition was significantly better in the Graft group compared to the Graft/DOX group, an effect also seen in the retention and spatial probe trials. However, cognitive enhancement was restricted to spatial tasks, as inhibitory avoidance or open-field activity measures were unchanged. Molecular and biochemical analyses confirmed that DOX regulated transgene transcription and ACh levels. This study demonstrates that regulatable gene therapy has therapeutic value for single-gene disorders and also provides a mechanism to deliver small molecules in a spatiotemporal pattern to delineate the role of these compounds in discrete behavioral tasks.
Collapse
Affiliation(s)
- Donald P Pizzo
- Department of Neurosciences, University of California at San Diego, VA Medical Center MC 9151, La Jolla, CA 92093-9157, USA
| | | | | | | | | |
Collapse
|
23
|
Kristofiková Z, Klaschka J, Nemcová V, Majer E, Fales E. Effect of postmortem storage on the [3H]hemicholinium-3 binding site in the rat brain. Preliminary study for investigations of human patients with Alzheimer's disease. Arch Gerontol Geriatr 2005; 16:117-28. [PMID: 15374342 DOI: 10.1016/0167-4943(93)90003-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1992] [Revised: 12/19/1992] [Accepted: 12/22/1992] [Indexed: 10/27/2022]
Abstract
The effect of postmortem storage at room temperature (24-26 degrees C, 0-4 h) and cold-room temperature (4 degrees C, (0-24 h) on the [(3)H]hemicholinium-3 binding sites in the brain hippocampus, cortex and cerebellum of 3-month-old Wistar rats was studied. A slow decrease in the density of the binding sites was observed at both temperatures, which was best fit by a linear model common for all three brain regions. No systematic alterations of the affinity of the binding sites for hemicholinium-3 were found. The values obtained from experiments with animals were compared with the values measured in the frontal cortex of old men. Approaches to the evaluation of data obtained from postmortem samples of human brain tissue of patients with Alzheimer's disease are proposed.
Collapse
Affiliation(s)
- Z Kristofiková
- Psychiatric Centre Prague, 181 03 Prague, Czechoslovakia
| | | | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Because the average human life span has increased, a greater part of more women's lives will be lived in a hypoestrogenic state. OBJECTIVE This article provides an overview of our current knowledge of the neuroendocrine processes in the aging female brain. METHODS Using the search terms cardiovascular disease, cognition, dementia, depression, estrogens, female aging, gonadotropins, immune function, mood, neuroendocrinology, neurotransmitters, osteoporosis, and ovarian steroids, a review of English-language literature on the MEDLINE database was conducted from 1970 through June 2004. RESULTS It is thought that the temporal patterns of neural signals are altered during middle age, leading to cessation of reproductive cycles, and that the complex interplay of ovarian and hypothalamic/pituitary pacemakers becomes increasingly dysfunctional with aging, ultimately resulting in menopause. Estrogen deficiency is associated with low mood, whereas estrogen therapy tends to be linked with improvements in measures of well-being and a decline in depression scores. It is likely that these effects of estrogens are mediated through changes in the metabolism of serotonin and nor epinephrine. Evidence exists to support the role of estrogens in specific effects on cognitive functioning in women, enhancing aspects of verbal memory, abstract reasoning, and information processing. Significant gender dimorphism is evident in both humoral and cell-mediated immune responses. The effects of estrogens on the cardiovascular system are complex; recent evidence suggests a negative role for oral estrogen in primary and secondary prevention of cardiovascular events. Additionally, estrogens increase the risk of stroke, and estrogen deficiency influences the pathogenesis of osteoporosis in both men and women. CONCLUSIONS Changes in the neuroendocrine system due to the loss of ovarian function at menopause have an important biological role in the control of reproductive and nonreproductive functions, and regulate mood, memory, cognition, behavior, immune function, the locomotor system, and cardiovascular functions. More detailed insights are needed into the complex mechanisms of neuroendocrine alterations with aging.
Collapse
|
25
|
Paban V, Jaffard M, Chambon C, Malafosse M, Alescio-Lautier B. Time course of behavioral changes following basal forebrain cholinergic damage in rats: Environmental enrichment as a therapeutic intervention. Neuroscience 2005; 132:13-32. [PMID: 15780463 DOI: 10.1016/j.neuroscience.2004.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/27/2022]
Abstract
The present experiment was designed to study changes in behavior following immunolesioning of the basal forebrain cholinergic system. Rats were lesioned at 3 months of age by injection of the 192 IgG-saporin immunotoxin into the medial septum area and the nucleus basalis magnocellularis, and then tested at different times after surgery (from days 7-500) on a range of behavioral tests, administered in the following order: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. The results revealed a two-way interaction between post-lesion behavioral testing time and memory demands. In the nonmatching-to-position task, memory deficits appeared quite rapidly after surgery, i.e. at a post-lesion time as short as 1 month. In the object-recognition test, memory impairments appeared only when rats were tested at late post-lesion times (starting at 15 months), whereas in the object-location task deficits were apparent at early post-lesion times (starting from 2 months). Taking the post-operative time into account, one can hypothesize that at the shortest post-lesion times, behavioral deficits are due to pure cholinergic depletion, while as the post-lesion time increases, one can speculate the occurrence of a non-cholinergic system decompensation process and/or a gradual degeneration process affecting other neuronal systems that may contribute to mnemonic impairments. Interestingly, when middle-aged rats were housed in an enriched environment, 192 IgG-saporin-lesioned rats performed better than standard-lesioned rats on both the nonmatching-to-position and the object-recognition tests. Environment enrichment had significant beneficial effects in 192 IgG-saporin-lesioned rats, suggesting that lesioned rats at late post-lesion times (over 1 year) still have appreciable cognitive plasticity.
Collapse
Affiliation(s)
- V Paban
- Université d'Aix-Marseille I, Laboratoire de Neurobiologie Intégrative et Adaptative, UMR/CNRS 6149, Avenue Normandie Escadrille Niemen, 13397 Marseille, Cedex 20, France.
| | | | | | | | | |
Collapse
|
26
|
Tenovuo O. Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:61-7. [PMID: 15610946 DOI: 10.1016/j.pnpbp.2004.10.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2004] [Indexed: 11/29/2022]
Abstract
PURPOSE Theoretically, central acetylcholinesterase inhibitors (CAIs) could alleviate at least some of the main symptoms of chronic traumatic brain injury (TBI). The aim of this report is to describe clinical experience of the treatment of chronic TBI with these drugs. GENERAL METHODS From an outpatient clinic material, 111 patients were selected having chronic stable TBI with at least one of the following target symptoms: fatigue, poor memory, diminished attention or diminished initiation. Patients received in random donepezil, galantamine or rivastigmine. The evaluation of the treatment response was based on the subjective view of the patient. FINDINGS As first treatment, 27 patients received donepezil, 30 galantamine and 54 rivastigmine. Altogether 41 patients tried more than one drug, but only three patients tried all three alternatives. In total, 61% of patients had a marked positive response and 39% a modest or no response. The clearest effect was in almost all responders a better vigilance and attention causing better general function. About half of the patients (55%) wanted to continue therapy with one of these drugs. The therapeutic response became very quickly and at low doses. There were no significant differences between the three drugs either in effect or tolerability. The age, sex, type of injury, severity of TBI or elapsed time after injury did not affect the response. The mean dose in maintenance therapy was 7.2 mg od for donepezil, 5.0 mg bid for galantamine and 2.3 mg bid for rivastigmine. Side effects or inadequate therapeutic response were the main causes for discontinuation with nearly equal frequency. Paradoxical responses were seen in some patients. CONCLUSIONS CAIs show a very promising therapeutic potential in the treatment of chronic TBI. There were no significant differences between the three drugs. Large-scale randomised double-blinded placebo-controlled studies are clearly needed.
Collapse
Affiliation(s)
- Olli Tenovuo
- Department of Neurology, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland.
| |
Collapse
|
27
|
Sánchez-Camacho C, López JM, González A. Basal forebrain cholinergic system of the anuran amphibianRana perezi: Evidence for a shared organization pattern with amniotes. J Comp Neurol 2005; 494:961-75. [PMID: 16385484 DOI: 10.1002/cne.20833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the basal forebrain cholinergic system (BFCS) in the frog was studied by means of choline acetyltransferase (ChAT) immunohistochemistry. The BFCS was observed as a conspicuous cholinergic cell population extending through the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and pallidal regions. Abundant fiber labeling was also found around the labeled cell bodies. The combination of retrograde tract tracing with dextran amines and ChAT immunohistochemistry revealed intraseptal and intra-BFCS cholinergic connections. In addition, an extratelencephalic cholinergic input from the laterodorsal tegemental nucleus was demonstrated. The possible influence of monoaminergic inputs on the BFCS neurons was examined by means of tyrosine hydroxylase and serotonin immunohistochemistry combined with ChAT immunolabeling. Our results showed that catecholaminergic fibers overlapped the BFCS, with the exception of the medial septal nucleus. Serotoninergic innervation was widespread, but less abundant in the caudal extent of the BFCS. Taken together, our results on the localization of the cholinergic neurons in the basal forebrain and their relationship with cholinergic, catecholaminergic, and serotoninergic afferents have shown numerous common features with amniotes. In particular, anurans and mammals (for which most data is available) share a strikingly comparable organization pattern of the BFCS.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
28
|
Van der Zee EA, Biemans BAM, Gerkema MP, Daan S. Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acetylcholine receptor-immunoreactivity in rat suprachiasmatic nucleus. J Neurosci Res 2004; 78:508-19. [PMID: 15468178 DOI: 10.1002/jnr.20300] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The suprachiasmatic nucleus (SCN) is engaged in modulation of memory retention after (fear) conditioning, but it is unknown which pathways and neurotransmitter system(s) play a role in this action. Here we examine immunocytochemically whether muscarinic acetylcholine receptors (mAChRs), mediating cholinergic signal transduction in the SCN, are involved. For this purpose, mAChR immunoreactivity (mAChR-ir) was studied in the SCN after various stages of passive shock avoidance (PSA) and active shock avoidance (ASA) training and, for ASA, at various posttraining time points. mAChR-ir was significantly enhanced in SCN neurons as a result of the training procedure, and the number of mAChR-positive glial cells in the SCN increased significantly. The increase in mAChR-ir as a result of PSA and ASA training was not due to fear conditioning or the number of correct avoidances (in case of ASA training) but rather to behavioral arousal as a consequence of (brief) exposure to a novel environment (the test apparatus). This finding was confirmed by a cage-change experiment in which the rats were allowed to stay in a novel cage for 15 min or 24 hr. Only the brief exposure to the fresh cage triggered alterations for SCN mAChRs 24 hr later. These results shed new light on a possible function of the cholinergic system in the SCN mediated by mAChRs in relation to modulation of memory processes and demonstrate that behavioral arousal during (the habituation stage of) a learning task is sufficient to alter the mAChR system in the SCN.
Collapse
Affiliation(s)
- Eddy A Van der Zee
- Department of Animal Behaviour, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Chen YL, Hsieh CL, Wu PHB, Lin JG. Effect of Polygala tenuifolia root on behavioral disorders by lesioning nucleus basalis magnocellularis in rat. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:47-55. [PMID: 15374606 DOI: 10.1016/j.jep.2004.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 05/24/2023]
Abstract
UNLABELLED We investigated whether an aqueous extract of Polygala tenuifolia Willd (PTW) could improve the rats' memory and behavioral disorders produced by lesioning nucleus basalis magnocellularis (NBM) in rats. The animals were divided into four groups for surgery, and following that they were orally administered PTW extract for 7 and 21 days. Each group consisted of eight male Sprague-Dawley rats and were treated as follows: CONTROL no surgery (n = 8), PBS: 1M (mol/L) phosphate buffered saline (n = 8), IBO: 0.12 M (n = 8), QUIS: 0.12 M (n = 8). Two 0.5 microL injections were made in the vicinity of the bilateral side of the nucleus basalis magnocellularis (NBM). All rats were tested in the neurological tests and the step-through passive avoidance memory test during pre-surgery, surgery and post-surgery drug treatment. The results suggest that PTW extract has some repairing effects on the memory and behavioral disorders produced by lesioning of the NBM in rats.
Collapse
Affiliation(s)
- Yung-Li Chen
- Graduate Institute of Chinese Medical Science, China Medical University, 91 HSue-Hsi Rd., Taichung City, Taiwan
| | | | | | | |
Collapse
|
30
|
Santucci AC, Mercado M, Bettica A, Cortes C, York D, Moody E. Residual behavioral and neuroanatomical effects of short-term chronic ethanol consumption in rats. ACTA ACUST UNITED AC 2004; 20:449-61. [PMID: 15268922 DOI: 10.1016/j.cogbrainres.2004.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/21/2022]
Abstract
The residual effects of short-term chronic ethanol consumption were investigated in rats maintained on an ethanol liquid diet for 26 consecutive days (mean intake = 16.1 g/kg/day). Animals were assessed for spontaneous motor activity (12 days post-ethanol), spatial working memory (17 days post-ethanol), spatial reference memory (184 days post-ethanol), and retention of passive avoidance (201 days post-ethanol). Measurements of brain weights and cortical thickness vertices within the dorsomedial and ventrolateral cortex of eight coronal planes were determined 260 days post-ethanol. Two-dimensional cell profile densities within six coronal planes and within CA1 region of the hippocampus were also obtained, along with the total volumetric measurement of the hippocampus proper. Results indicated between group differences when subjects were assessed on working memory with ethanol-treated animals exhibiting longer escape latencies in a Morris water maze, an effect partially attributed to the perseverance of ethanol-treated animals in exhibiting thigmotaxicity. No other ethanol-related behavioral impairment was noted. Neuroanatomically, ethanol-treated rats had thinner cortical mantles (6.3% and 6.6% reductions) within the frontoparietal cortex and had lower two-dimensional cell profile densities within the most caudal cortical region studied. Interestingly, control animals with thicker cortical mantles tended to perform better on the working memory task, whereas the opposite was true for ethanol-treated subjects. These data led to the conclusion that chronic ethanol consumption of a relatively short duration produces working memory impairments, albeit mild, that are partially related to an inability to abandon ineffectual behavioral strategies, and also produces neuroanatomical alterations within the cortex.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Butt AE, Schultz JA, Arnold LL, Garman EE, George CL, Garraghty PE. Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning. ACTA ACUST UNITED AC 2004; 38:253-71. [PMID: 15119377 DOI: 10.1007/bf02688857] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.
Collapse
Affiliation(s)
- A E Butt
- Department of Psychology, California State University San Bernardino, 92407, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pizzo DP, Paban V, Coufal NG, Gage FH, Thal LJ. Long-term production of choline acetyltransferase in the CNS after transplantation of fibroblasts modified with a regulatable vector. ACTA ACUST UNITED AC 2004; 126:1-13. [PMID: 15207910 DOI: 10.1016/j.molbrainres.2004.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
A rat fibroblast cell line was modified to contain the Drosophila choline acetyltransferase (ChAT) cDNA under the control of a tetracycline-regulated system. Several clonal lines were assessed in vitro and in vivo to establish the optimal clone for gene therapy experiments. The influence of in vitro cell density on ChAT expression was compared to biological activity detected after grafting to the rat brain. While each clone had different ChAT activity patterns, all clones had low activity immediately post-grafting which increased over time, reaching a plateau between 1 and 2 months which was maintained for at least 1 year. The clones expressed a high basal ChAT activity level in vitro that was repressed in a dose- and time-dependent manner with doxycycline (DOX) treatment. In the absence of DOX, high levels of ChAT activity were maintained for at least 2 months in vitro. DOX induced a rapid and strong (200-fold) suppression of ChAT activity within 48 h. A dose-response curve indicated that the fibroblasts were very sensitive to low concentrations of DOX (ED50 12 pg/ml). Removal of DOX led to a derepression of ChAT activity within 2 days. These cells will be useful for ex vivo gene therapy of the cholinergic system.
Collapse
Affiliation(s)
- Donald P Pizzo
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92023, USA
| | | | | | | | | |
Collapse
|
33
|
Pizzo DP, Thal LJ. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 2004; 124:743-55. [PMID: 15026115 DOI: 10.1016/j.neuroscience.2003.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF) delivered via intracerebroventricular (ICV) infusion restores behavioral and biochemical deficits in animal models of cholinergic hypofunction. However, ICV infusion of NGF induces an array of adverse events including weight loss, thermal hyperalgesia, and Schwann cell hyperplasia. We compared ICV administration with three different doses of intraparenchymally delivered NGF with cytochrome C infusion serving as a control. The goal of the study was to determine whether direct infusion of NGF would result in a more restricted topographical distribution of NGF leading to a reduction or elimination of the adverse events while still augmenting cholinergic functioning sufficiently to restore spatial mnemonic processing. Subsequent to bilateral ibotenic acid lesions of the nucleus basalis magnocellularis (NBM), NGF was delivered into the lateral ventricle or adjacent to the NBM for 11 weeks. Ibotenic acid lesions resulted in reductions in choline acetyltransferase (ChAT) activity in the cortex. The highest and medium dose of NGF led to significant restoration in ChAT activity on par with ICV infusion. The lowest dose was ineffective in altering ChAT activity in any region assayed. Similarly, the two highest doses did not alter weight gain, but ICV-NGF led to a significant weight loss. Intraparenchymal infusion resulted in a dose-dependent attenuation of the development of thermal hyperalgesia. However, the highest dose of intraparenchymal NGF induced Schwann cell hyperplasia at the level of the medulla and upper cervical spinal cord. ICV-NGF was able to completely restore spatial learning and memory as predicted while only the highest intraparenchymal dose was able to able to restore the mnemonic deficits. These data suggest that intraparenchymal infusion of growth factors may provide a viable delivery method in clinical trials using this mode of drug delivery once an optimal dose has been established.
Collapse
Affiliation(s)
- D P Pizzo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
34
|
Sarter M, Bruno JP, Givens B. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 2004; 80:245-56. [PMID: 14521867 DOI: 10.1016/s1074-7427(03)00070-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hypothesis that cortical cholinergic inputs mediate attentional functions and capacities has been extensively substantiated by experiments assessing the attentional effects of specific cholinotoxic lesions of cortical cholinergic inputs, attentional performance-associated cortical acetylcholine release, and the effects of pharmacological manipulations of the excitability of basal forebrain corticopetal cholinergic projections on attentional performance. At the same time, numerous animal experiments have suggested that the integrity of cortical cholinergic inputs is not necessary for learning and memory, and a dissociation between the role of the cortical cholinergic input system in attentional functions and in learning and memory has been proposed. We speculate that this dissociation is due, at least in part, to the use of standard animal behavioral tests for the assessment of learning and memory which do not sufficiently tax defined attentional functions. Attentional processes and the allocation of attentional capacities would be expected to influence the efficacy of the acquisition and recall of declarative information and therefore, persistent abnormalities in the regulation of the cortical cholinergic input system may yield escalating impairments in learning and memory. Furthermore, the cognitive effects of loss of cortical cholinergic inputs are augmented by the disruption of the top-down regulation of attentional functions that normally acts to optimize information processing in posterior cortical areas. Because cortical cholinergic inputs play an integral role in the mediation of attentional processing, the activity of cortical cholinergic inputs is hypothesized to also determine the efficacy of learning and memory.
Collapse
Affiliation(s)
- Martin Sarter
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
35
|
Santucci AC, Haroutunian V. p-Chloroamphetamine blocks physostigmine-induced memory enhancement in rats with unilateral nucleus basalis lesions. Pharmacol Biochem Behav 2004; 77:59-67. [PMID: 14724042 DOI: 10.1016/j.pbb.2003.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present experiment examined whether p-chloroamphetamine (PCA), a serotonergic releasing/depleting agent, would block the memory-enhancing effect of physostigmine in rats with N-methyl-D-aspartic acid (NMDA)-induced unilateral lesions of the nucleus basalis of Meynert (uni-nbM). Six groups of subjects with uni-nbM lesions in addition to an isolated sham-operated control group were included. Subjects were trained and tested 72 h later on a one-trial passive avoidance task. Thirty minutes before training, rats with uni-nbM lesions were injected with either 1.0 or 5.0 mg/kg PCA or saline. Immediately after training, approximately half the subjects in each group were injected with either saline or 0.06 mg/kg physostigmine. Animals in the sham group received saline injections. Saline-injected animals with uni-nbM lesions performed poorly at test, a deficit that was reversed with physostigmine. Pretraining injections of PCA blocked physostigmine's memory-enhancing effect, although motor impairment during training may have contributed to decrements in test performance in animals injected with 5.0 mg/kg. Subjects were killed about 10 days later and their frontal cortices examined for choline acetyltransferase (ChAT). Results from the neurochemical analysis revealed that the lesion decreased ChAT levels and that the injection of 1.0 mg/kg PCA exaggerated this lesion-induced depletion. Implications for the interaction between acetylcholine and serotonin are discussed.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA. santuccia@.mville.edu
| | | |
Collapse
|
36
|
Orsetti M, Dellarole A, Ferri S, Ghi P. Acquisition, retention, and recall of memory after injection of RS67333, a 5-HT(4) receptor agonist, into the nucleus basalis magnocellularis of the rat. Learn Mem 2003; 10:420-6. [PMID: 14557615 PMCID: PMC218008 DOI: 10.1101/lm.67303] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The serotonin 5-HT4 subtype receptor is predominantly localized into anatomical structures linked to memory and cognition. A few experimental studies report that the acute systemic administration of selective 5-HT4 agonists has ameliorative effects on memory performance, and that these effects are reversed by contemporary administration of 5-HT4 receptor antagonists. To verify whether this procognitive action occurs via the activation of the cholinergic nucleus basalis magnocellularis (NBM)-cortical pathways, we examined the effects of RS67333, a selective partial agonist of the 5-HT4 receptor, on rat performance in a place recognition task upon local administration of the drug into the NBM area. The intra-NBM administration of RS67333 enhances the acquisition (200-500 ng/0.5 microL) and the consolidation (40-200 ng/0.5 microL) of the place recognition memory. These effects are reversed by pretreatment with the selective 5-HT4 receptor antagonist RS39604 (300 ng/0.5 microL). Conversely, the recall of memory is not affected by the 5-HT4 agonist. Our results indicate that 5-HT4 receptors located within the NBM may play a role in spatial memory and that the procognitive effect of RS67333 is due, at least in part, to the potentiation of the activity of cholinergic NBM-cortical pathways.
Collapse
Affiliation(s)
- Marco Orsetti
- Dipartimento di Scienze C. A. F. e Farmacologiche, Università del Piemonte Orientale, 28100 Novara, Italy.
| | | | | | | |
Collapse
|
37
|
Biemans BA, Van der Zee EA, Daan S. Age-dependent effects of conditioning on cholinergic and vasopressin systems in the rat suprachiasmatic nucleus. Biol Chem 2003; 384:729-36. [PMID: 12817469 DOI: 10.1515/bc.2003.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Active shock avoidance was used to explore the impact of behavioural stimulation on the neurochemistry of the suprachiasmatic nucleus. We have found previously that the expression of muscarinic acetylcholine receptors in the suprachiasmatic nucleus of young rats was significantly enhanced 24 hours after fear conditioning. Here, we investigated whether this observation is age-dependent. We used 26 month-old Wistar rats with a deteriorated circadian system, and compared them with young rats (4 months of age) with an intact circadian system. Vasopressin, representing a major output system of the suprachiasmatic nucleus, was studied in addition to muscarinic receptors. Young rats showed a significant increase in immunostaining for muscarinic acetylcholine receptors 24 h after training, corroborating earlier observations. Aged rats did not show such an increase. In contrast, aged rats did show an increase in vasopressin immunoreactivity 24 h after fear conditioning, both at the level of content and cell number, while young rats did not reveal a significant rise. Thus, it seems that these two neurochemical systems in the suprachiasmatic nucleus are regulated independently. The results further demonstrate that the circadian pacemaker is influenced by fear conditioning in an age-dependent manner.
Collapse
Affiliation(s)
- Barbara A Biemans
- Centre for Behaviour and Neurosciences (CBN), University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
38
|
Santucci AC, Perez S. Multiple injections of thyrotropin releasing hormone fail to reverse learning and memory deficits in rats with lesions of the nucleus basalis of meynert. Behav Brain Res 2002; 136:433-8. [PMID: 12429405 DOI: 10.1016/s0166-4328(02)00195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The learning and memory enhancing effects of thyrotropin releasing hormone (TRH) was examined in an animal model of Alzheimer's disease. Adult rats were prepared with either sham surgeries or cholinergic lesions of the nucleus basalis of Meynert (nbM). Subjects were injected (ip) with one of three doses of TRH (0, 5, 10 mg/kg) starting on the day of surgery and continuing once every other day for a total of four injections. Performance (four trials/day for 4 days, 30 m inter-trial interval) in a Morris water maze was assessed one week after the last TRH injection (i.e., 2 weeks postoperatively). Latency to find the hidden platform served as the dependent variable. Results indicated that damage to the nbM impaired task performance in that animals with nbM lesions generally required more time to find the platform and showed less trial-to-trial improvement. Treatment with TRH failed to reverse this lesion-induced deficit. These results suggest that multiple injections of TRH do not provide residual protection against the deleterious effects on learning and memory produced by cholinergic lesions of the basal forebrain. Other doses and administration parameters, however, need to be studied in order to determine the generalizability of these findings.
Collapse
Affiliation(s)
- Anthony C Santucci
- Deptartment of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA.
| | | |
Collapse
|
39
|
Niewiadomska G, Komorowski S, Baksalerska-Pazera M. Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol Aging 2002; 23:601-13. [PMID: 12009509 DOI: 10.1016/s0197-4580(01)00345-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study was designed to examine whether NGF-induced improvement in morphology of senile basal forebrain cholinergic neurons persist after discontinuation of NGF treatment. Trophic effect of continuous intraventricular infusion of NGF was tested in the 4- and 28 months old male Wistar rats immediately after cessation of NGF and 3 or 6 weeks after termination of treatment. Immunohistochemical procedure for ChAT, TrkA, and p75(NTR) receptor has been applied to identify cholinergic cells in the basal forebrain structures. Using the quantitative image analyzer, morphometric and densitometric parameters of cholinergic cells were measured. In untreated 28-month-old rats a reduction in the number, size and intensity of staining of cholinergic neurons was observed in all basal forebrain structures. NGF significantly improved morphological parameters of ChAT- and TrkA-positive cells in aged rats. In 28-month-old rats tested within 3 and 6 weeks after discontinuation of infusion a renewed progressive deterioration of cholinergic phenotype of basal forebrain neurons was observed when compared with the NGF-treated immediately tested group. The parallel staining for p75(NTR) revealed normal morphology of the basal forebrain neurons, despite of the age of rats or the NGF treatment. Analysis of Nissl stained sections also showed that 28-month-old rats did not display significant losses of neurons in the basal forebrain when compared with the young animals. These findings demonstrate that senile impairment of cholinergic neurons is induced by a loss of cholinergic phenotype rather than an acute degeneration of cell bodies. NGF may be beneficial in enhancing cholinergic neurochemical parameters, but the protective effects seem to be dependent on the continuous supply of NGF.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Department of Neurophysiology, Nencki Institute, 3 Pasteur St., 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
40
|
Power AE, McGaugh JL. Phthalic acid amygdalopetal lesion of the nucleus basalis magnocellularis induces reversible memory deficits in rats. Neurobiol Learn Mem 2002; 77:372-88. [PMID: 11991764 DOI: 10.1006/nlme.2001.4030] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The basolateral amygdala (BLA) is extensively implicated in emotional learning and memory. The current study investigated the contribution of cholinergic afferents to the BLA from the nucleus basalis magnocellularis in influencing aversive learning and memory. Sprague-Dawley rats were given permanent unilateral phthalic acid (300 ng) lesions of the nucleus basalis magnocellularis and were chronically implanted with cannulas aimed at the ipsilateral BLA. Lesioned rats showed a pronounced inhibitory avoidance task retention deficit that was attenuated by acute posttraining infusions of the muscarinic cholinergic agonist oxotremorine (4 ng) or the indirect agonist physostigmine (1 microg) into the BLA. Continuous multiple-trial inhibitory avoidance training and testing revealed that lesioned rats have a mild acquisition deficit, requiring approximately 1 additional shock to reach the criterion, and a pronounced consolidation deficit as indicated by a shorter latency to enter the shock compartment on the retention test. Because lesioned rats did not differ from sham-operated controls in performance on a spatial water maze task or in shock sensitivity, it is not likely that the memory impairments produced by the phthalic acid lesions are due to any general sensory or motor deficits. These findings suggest that the dense cholinergic projection from the nucleus basalis magnocellularis to the BLA is involved in both the acquisition and the consolidation of the aversive inhibitory avoidance task.
Collapse
Affiliation(s)
- Ann E Power
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697-3800, USA.
| | | |
Collapse
|
41
|
Butt AE, Noble MM, Rogers JL, Rea TE. Impairments in negative patterning, but not simple discrimination learning, in rats with 192 IgG-saporin lesions of the nucleus basalis magnocellularis. Behav Neurosci 2002; 116:241-55. [PMID: 11996310 DOI: 10.1037/0735-7044.116.2.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats with 192 IgG-saporin lesions of the nucleus basalis magnocellularis (NBM) and sham-operated rats were trained in either a simple discrimination paradigm assessing simple association learning or a negative patterning paradigm assessing configural association learning. In the simple discrimination task, rats were reinforced for responding to a light but were not reinforced for responding to a tone. In the negative patterning discrimination task, rats were reinforced for responding to either a light or a tone presented alone but were not reinforced for responding to both stimuli presented simultaneously. Simple discrimination learning was not affected, whereas acquisition of negative patterning was impaired by NBM lesions. Impaired configural association learning may reflect a loss in the ability of rats with NBM lesions to attend to multiple sensory stimuli or to cope with conflicting response strategies.
Collapse
Affiliation(s)
- Allen E Butt
- Department of Psychology, Indiana State University, Terre Haut 47809, USA.
| | | | | | | |
Collapse
|
42
|
Butt AE, Bowman TD. Transverse patterning reveals a dissociation of simple and configural association learning abilities in rats with 192 IgG-saporin lesions of the nucleus basalis magnocellularis. Neurobiol Learn Mem 2002; 77:211-33. [PMID: 11848720 DOI: 10.1006/nlme.2001.4013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This experiment tests the hypothesis that the cholinergic nucleus basalis magnocellularis (NBM) is necessary for complex or configural association learning, but not elemental or simple association learning. Male Long-Evans rats with bilateral 192 IgG-saporin lesions of the NBM (n = 12) and sham-operated controls (n = 8) were tested in the transverse patterning problem, which provides a test of both simple and configural association learning. Rats were trained in phases to concurrently solve first one, then two, and finally three different visual discriminations; Problem 1 (A+ vs B- sign) and Problem 2 (B+ vs C-) could be solved using simple associations, whereas solving Problem 3 (C+ vs A-) required the ability to form configural associations. Consistent with our hypothesis, the NBM lesion group solved the simple discriminations in Problems 1 and 2 but showed impaired configural association learning in Problem 3. Additionally, when Problem 2 was introduced, previously high levels of performance on Problem 1 suffered more in the NBM lesion group than in the control group; this finding suggests an impairment in the ability of animals with NBM lesions to divide attention among multiple stimuli or to shift between strategies for solving different problems. Results support our argument that the NBM is critically involved in the acquisition of associative problems requiring a configural solution but not in problems that can be solved using only simple associations. The observed impairments in configural association learning and the apparent loss of cognitive flexibility or capacity are interpreted as reflecting specific attentional impairments resulting from NBM damage.
Collapse
Affiliation(s)
- Allen E Butt
- Department of Psychology, Indiana State University, Terre Haute, Indiana 47809, USA.
| | | |
Collapse
|
43
|
Waite JJ, Chen AD. Differential changes in rat cholinergic parameters subsequent to immunotoxic lesion of the basal forebrain nuclei. Brain Res 2001; 918:113-20. [PMID: 11684049 DOI: 10.1016/s0006-8993(01)02968-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The degree of lesion produced by 192 IgG-saporin relative to controls was compared using three independent methods. Microdialyzed acetylcholine (ACh), choline acetyltransferase (ChAT) activity, and the rate of ACh synthesis were compared in the frontal cortex and hippocampus. Microdialysis of rats was performed 1 and 15 weeks post-lesion. In week 16, the rats were sacrificed after an injection of deuterated choline (Ch) for determination of the rate of ACh synthesis. ChAT activity was determined at the same timepoints in a separate set of rats. At 1 week, ChAT activity and microdialyzed ACh showed similar degrees of depletion. At 15 weeks, microdialyzed ACh was significantly lower than the synthesis rate in cortex, but not in hippocampus. A small increase in ChAT activity between 1 and 15 weeks was found in the cortex, but not hippocampus. In the hippocampus, however, the rate of ACh synthesis was significantly greater than ChAT activity. This was true for two doses of immunotoxin; the greater compensation occurring with the lesser lesion. Microdialyzed ACh levels were not different from the other measures in hippocampus. Residual cholinergic terminals in the hippocampus, but not frontal cortex, compensate for a selective cholinergic lesion by increasing the rate of synthesis and may thereby alleviate hippocampus-dependent behavioral deficits.
Collapse
Affiliation(s)
- J J Waite
- Department of Neurosciences, 9151, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
44
|
Berger-Sweeney J, Stearns NA, Frick KM, Beard B, Baxter MG. Cholinergic basal forebrain is critical for social transmission of food preferences. Hippocampus 2001; 10:729-38. [PMID: 11153718 DOI: 10.1002/1098-1063(2000)10:6<729::aid-hipo1010>3.0.co;2-m] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies using selective lesions of basal forebrain cholinergic neurons suggest that these neurons play a role in attentional processing, but not learning and memory. However, the tests of learning and memory used thus far have been restricted largely to spatial tasks. In the present study, we examined whether the cholinergic basal forebrain plays a role in a form of nonspatial associative memory, the social transmission of food preferences. Sham-operated control rats were compared to rats with 192 IgG-saporin lesions of the medial septum/diagonal band cholinergic projections to hippocampus or nucleus basalis magnocellularis/substantia innominata cholinergic projections to neocortex. Both lesions impaired 24-h retention of a learned social food preference relative to controls, despite performance on an immediate retention trial that was indistinguishable from controls. Moreover, 24-h retention of the socially learned food preference correlated strongly with cholinergic enzymatic activity in the neocortex, but not in the hippocampus. Immunohistochemical data confirmed significant and selective lesion-induced cholinergic depletions in the intended brain regions. These data provide evidence that the cholinergic basal forebrain, particularly the cholinergic projection to neocortex, is involved in the formation and/or retrieval of social memories related to food preference, and suggest a role for cortical acetylcholine in consolidation of associative memory processes.
Collapse
Affiliation(s)
- J Berger-Sweeney
- Department of Biological Sciences, Wellesley College, Massachusetts 02481, USA.
| | | | | | | | | |
Collapse
|
45
|
Mercado E, Myers CE, Gluck MA. A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2001; 1:37-55. [PMID: 12467102 DOI: 10.3758/cabn.1.1.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cortical representations of sound can be modified by repeatedly pairing presentation of a pure tone with electrical stimulation of neuromodulatory neurons located in the basal forebrain (Bakin & Weinberger, 1996; Kilgard & Merzenich, 1998a). We developed a computational model to investigate the possible effects of basal forebrain modulation on map reorganization in the auditory cortex. The model is a self-organizing map with acoustic response characteristics mimicking those observed in the mammalian auditory cortex. We simulated the effects of basal forebrain modulation, using parameters intrinsic to the self-organizing map, such as the learning rate (controlling the adaptability of map nodes) and the neighborhood function (controlling the excitability of map nodes). Previous research has suggested that both parameters can be useful for characterizing the effects of neuromodulation on plasticity (Kohonen, 1993; Myers et al., 1996; Myers, Ermita, Hasselmo, & Gluck, 1998). The model successfully accounts for experimentally observed effects of pairing basal forebrain stimulation with the presentation of a single tone, but not of two tones, suggesting that auditory cortical plasticity is constrained in ways not accounted for by current theories. Despite this limitation, the model provides a useful framework for describing experience-induced changes in auditory representations and for relating such changes to variations in the excitability and adaptability of cortical neurons produced by neuromodulation.
Collapse
Affiliation(s)
- E Mercado
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave., Newark, NJ 07102, USA.
| | | | | |
Collapse
|
46
|
Beninger RJ, Dringenberg HC, Boegman RJ, Jhamandas K. Cognitive effects of neurotoxic lesions of the nucleus basalis magnocellularis in rats: differential roles for corticopetal versus amygdalopetal projections. Neurotox Res 2001; 3:7-21. [PMID: 15111258 DOI: 10.1007/bf03033227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cholinergic hypothesis states that cholinergic neurons of the basal forebrain nucleus basalis magnocellularis (nbm) that project to cortical and amygdalar targets play an important role in memory. Biochemical studies have shown that these target areas are differentially sensitive to different excitotoxins (e.g., ibotenate vs. quisqualate). This observation might explain the finding from many behavioural studies of memory that different excitotoxins affect memory differentially even though they produce about the same level of depletion of cholinergic markers in the cortex and similar cortical electrophysiological effects. Thus, the magnitude of mnemonic impairment might be related to the extent of damage to cholinergic projections to the amygdala more than to the extent of damage to corticopetal cholinergic projections. This explanation might similarly apply to the observation that the immunotoxin 192 IgG-saporin produces mild effects on memory when injected into the nbm. This is because it damages cholinergic neurons projecting to the cortex but not those projecting to the amygdala. Studies comparing the effects on memory of ibotenic acid vs. quisqualic acid lesions of the nbm are reviewed as are studies of the mnemonic effects of 192 IgG-saporin. Results support the cholinergic hypothesis and suggest that amygdalopetal cholinergic neurons of the nbm play an important role in the control of memory.
Collapse
Affiliation(s)
- R J Beninger
- Departments of Psychology, Psychiatry, and Pharmacology & Toxicology, Queen's University, Kingston K7L 3N6, Canada.
| | | | | | | |
Collapse
|
47
|
Aggarwal P, Gibbs RB. Estrogen replacement does not prevent the loss of choline acetyltransferase-positive cells in the basal forebrain following either neurochemical or mechanical lesions. Brain Res 2000; 882:75-85. [PMID: 11056186 DOI: 10.1016/s0006-8993(00)02832-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have shown that estrogen replacement can enhance the functional status of basal forebrain cholinergic neurons. Studies have also shown that estrogen has neuroprotective effects both in vitro and in vivo on a variety of cells and against a variety of insults. The present study examined the ability of estrogen replacement to protect basal forebrain cholinergic neurons from the effects of neurochemical and mechanical injury. Ovariectomized Sprague-Dawley rats received either estrogen replacement or sham surgery, and then received either a unilateral injection of ibotenic acid into the nucleus basalis magnocellularis, or unilateral transection of the fimbria fornix. Cholinergic neurons in the medial septum and nucleus basalis were detected and quantified using immunohistochemical techniques. The data show that neither 3 weeks nor 13 weeks of continuous estrogen replacement prevented the loss of choline acetyltransferase (ChAT)-containing cells in the nucleus basalis following a unilateral injection of ibotenic acid. Likewise, estrogen replacement did not prevent a decrease in ChAT-positive cells detected in the medial septum following unilateral transection of the fimbria fornix. Notably, increased numbers of ChAT-positive cells were detected in the contralateral nucleus basalis, and in the ipsilateral and contralateral medial septum, at 2 weeks following a unilateral injection of ibotenic acid into the nucleus basalis; however, these effects were not related to hormone treatment. These data suggest that estrogen replacement does not protect cholinergic neurons in the medial septum and nucleus basalis from the effects of excitotoxic or mechanical injury.
Collapse
Affiliation(s)
- P Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
48
|
Zhang Y, Ji Y, Mei J. Effects of cholinergic agents on spontaneous activity of nucleus basalis magnocellularis neurons in different age rats. Neurosci Lett 2000; 288:91-4. [PMID: 10876068 DOI: 10.1016/s0304-3940(00)01186-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study investigated the effects of intracerebroventricular (i.c.v.) injection of acetylcholine (Ach), atropine and tubocurarine on the spontaneous activity of nucleus basalis Magnocellularis (nbM) neurons in young, adult and old rats. I.c.v. injection of Ach (1, 10 and 100 mM) dose-dependently increased the spontaneous firing rate in most of the nbM neurons (66.7%). The Ach-induced excitation effect on the spontaneous firing of nbM neurons was decreased with aging. I.c.v. injection of atropine (2.5, 25 and 250 mM) or tubocurarine (0.1, 1 and 10 mM) not only antagonized the Ach-induced excitation, but also inhibited the spontaneous firing of nbM neurons. The inhibitory effects were gradually decreased with aging. These results suggested that there might be some functional changes in nbM neurons with aging, which impair their responsive ability to stimuli of drugs.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Medical Neurobiology, Shanghai Medical University, 138 Yi Xue Yuan Road, 200032, People's Republic of, Shanghai, China.
| | | | | |
Collapse
|
49
|
Wang Q, Iwasaki K, Suzuki T, Arai H, Ikarashi Y, Yabe T, Toriizuka K, Hanawa T, Yamada H, Sasaki H. Potentiation of brain acetylcholine neurons by Kami-Untan-To (KUT) in aged mice: implications for a possible antidementia drug. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2000; 7:253-258. [PMID: 10969717 DOI: 10.1016/s0944-7113(00)80041-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of a traditional Japanese herbal medicine, Kami-Untan-To (KUT), on brain choline (Ch) and Acetylcholine (ACh) levels in aged mice were examined. Further, the expression of choline acetyltransferase (ChAT) in the medial septum (MS), the vertical limbs of the diagonal band of Broca (VDB), and the nucleus basalis Meynert (NBM) was examined by immunohistochemistry. Following an oral administration of KUT to the aged mice for 3 months, ACh levels in the cortex, striatum and hippocampus were increased significantly. The density of ChAT-immunoreactive cells located in MS, VDB, and NBM in the KUT-treated group was increased significantly as compared to the non-treatment group. The survival rate of aged mice was significantly higher in the KUT-treated group as compared to that in the nontreated group. Our results suggest that KUT potentiates the brain acetylcholinergic system, and may become a possible anti-dementia drug.
Collapse
Affiliation(s)
- Q Wang
- Department of Geriatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stemmelin J, Lazarus C, Cassel S, Kelche C, Cassel JC. Immunohistochemical and neurochemical correlates of learning deficits in aged rats. Neuroscience 2000; 96:275-89. [PMID: 10683568 DOI: 10.1016/s0306-4522(99)00561-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined whether cholinergic and monoaminergic dysfunctions in the brain could be related to spatial learning capabilities in 26-month-old, as compared to three-month-old, Long-Evans female rats. Performances were evaluated in the water maze task and used to constitute subgroups with a cluster analysis statistical procedure. In the first experiment (histological approach), the first cluster contained young rats and aged unimpaired rats, the second one aged rats with moderate impairment and the third one aged rats with severe impairment. Aged rats showed a reduced number of choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis, and choline acetyltransferase-positive neurons in the striatum. In the second experiment (neurochemical approach), the three clusters comprised young rats, aged rats with moderate impairment and aged rats with severe impairment. Alterations related to aging consisted of reduced concentration of acetylcholine, norepinephrine and serotonin in the striatum, serotonin in the occipital cortex, dopamine and norepinephrine in the dorsal hippocampus, and norepinephrine in the ventral hippocampus. In the first experiment, there were significant correlations between water maze performance and the number of; (i) choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis; (ii) choline acetyltransferase-positive neurons in the striatum and; (iii) p75(NTR)-positive neurons in the medial septum. In the second experiment, water maze performance was correlated with the concentration of; (i) acetylcholine and serotonin in the striatum; (ii) serotonin and norepinephrine in the dorsal hippocampus; (iii) norepinephrine in the frontoparietal cortex and; (iv) with other functional markers such as the 5-hydroxyindoleacetic acid/serotonin ratio in the striatum, 3,4-dihydroxyphenylacetic acid/dopamine ratio in the dorsal hippocampus, 5-hydroxyindoleacetic acid/serotonin and homovanillic acid/dopamine ratios in the frontoparietal cortex, and 3,4-dihydroxyphenylacetic acid/dopamine ratio in the occipital cortex. The results indicate that cognitive deficits related to aging might involve concomitant alterations of various neurochemical systems in several brain regions such as the striatum, the hippocampus or the cortex. It also seems that these alterations occur in a complex way which, in addition to the loss of cholinergic neurons in the basal forebrain, affects dopaminergic, noradrenergic and serotonergic processes.
Collapse
Affiliation(s)
- J Stemmelin
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521, CNRS, Université Louis Pasteur, 67000, Strasbourg, France
| | | | | | | | | |
Collapse
|