1
|
López-Moraga A, Luyten L, Beckers T. Generalization and extinction of platform-mediated avoidance in male and female rats. Sci Rep 2025; 15:9730. [PMID: 40118949 PMCID: PMC11928644 DOI: 10.1038/s41598-025-94265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Understanding anxiety-related disorders can be advanced by studying the fear learning mechanisms implicated in the transition from adaptive to maladaptive fear. Individuals with anxiety disorders often show impaired fear extinction, pervasive avoidance, and overgeneralization of fear. While these characteristics are usually studied in isolation, their interactions are less understood. We modified the platform-mediated avoidance task to chart avoidance, generalization, and extinction in male and female rats. Male rats acquired avoidance, showed a gradient of generalization, and reduced avoidance and fear under extinction. Female rats also learned avoidance, showed gradual generalization, and extinction of defensive behaviors. Sex differences emerged in extinction learning but were subtler than expected. We present an open-source automated system for processing DeepLabCut and SimBA output to score avoidance and freezing behavior. This task effectively probes avoidance, generalization, and extinction of fear in rats, and our automated scoring approach offers a effective method to quantify defensive behaviors.
Collapse
Affiliation(s)
- Alba López-Moraga
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Olivera-Pasilio V, Dabrowska J. Fear-Conditioning to Unpredictable Threats Reveals Sex and Strain Differences in Rat Fear-Potentiated Startle (FPS). Neuroscience 2023; 530:108-132. [PMID: 37640137 PMCID: PMC10726736 DOI: 10.1016/j.neuroscience.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies showed higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock un-paired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females consistently demonstrate higher shock reactivity during fear-conditioning. Both sexes and strains demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS and FPS following fear-conditioning with 70% contingency or backward order (cue co-starts with shock). However, in the classic FPS, Sprague-Dawley females show reduced proportion between cued fear and cue-elicited vigilant state than males. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning (cue and shock un-paired), with Wistar, but not Sprague-Dawley, females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA.
| |
Collapse
|
3
|
Torrisi SA, Rizzo S, Laudani S, Ieraci A, Drago F, Leggio GM. Acute stress alters recognition memory and AMPA/NMDA receptor subunits in a sex-dependent manner. Neurobiol Stress 2023; 25:100545. [PMID: 37293561 PMCID: PMC10244889 DOI: 10.1016/j.ynstr.2023.100545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Several studies have consistently reported a detrimental effect of chronic stress on recognition memory. However, the effects of acute stress on this cognitive ability have been poorly investigated. Moreover, despite well-documented sex differences in recognition memory observed in clinical studies, most of the preclinical studies in this field of research have been carried out by using solely male rodents. Here we tested the hypothesis that acute stress could affect the consolidation of different types of recognition memory in a sex-dependent manner. For this purpose, male and female C57BL6/J mice were exposed to 2-h of restrain stress immediately after the training session of both the novel object recognition (NOR) test and novel object location (NOL) tasks. Acute restraint stress did not affect memory performance of male and female mice, after a 4-h delay between the training session and the test phase of both tasks. By contrast, acute restraint stress altered memory performance in a sex-dependent manner, after a 24-h delay. While stressed mice of both sexes were impaired in the NOL test, only male stressed mice were impaired in the NOR test. Because ionotropic glutamate receptors-mediated neurotransmission is essential for shaping recognition memory, we further tested the hypothesis that post training acute stress could induce sex-dependent transcriptional changes of ionotropic glutamate receptor subunits in the dorsal hippocampus. We uncovered that acute stress induced sex-, time- and type of memory-dependent transcriptional changes of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. These findings suggest that the effect of acute stress on recognition memory can be strongly biased by multiple factors including sex. These findings also indicate that the same stress-induced memory impairment observed in both sexes can be triggered by different sex-dependent molecular mechanisms. At the therapeutic level, this should not be overlooked in the context of personalized and targeted treatments.
Collapse
Affiliation(s)
- Sebastiano A. Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate, CO, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Zhang Q, Li M, Wang Z, Chen F. Sex differences in learning and performing the Go/NoGo tasks. Biol Sex Differ 2023; 14:25. [PMID: 37138307 PMCID: PMC10155458 DOI: 10.1186/s13293-023-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The quality of learning and post-learning performances is critical for daily life. The behavioral flexibility is equally important for adapting the changing circumstances. The learning process requires repeated practices, which enhances prompt and proper behavioral responses, in turn, which promotes habits formation as well. Despite the well-documented sex differences in learning and performances, contradictory results were reported. A possible cause might be a systematic analysis due to specific research interests, regardless of the continuity of natural acquisition process. Here, we investigate the potential sex differences in learning, performances and adjustments of habited behaviors with regular and reversal Go/NoGo tasks. METHODS Both male and female Sprague-Dawley rats were used in this study. All rats were trained for a regular rodent Go/NoGo task and a subset of rats were trained for a reversal rodent Go/NoGo task, both with strict elimination criteria. The behavioral performance data were stored in PC for off-line analysis. Multiple behavioral indices were analyzed for both passed and retired rats. RESULTS The ability of learning the regular the reversal Go/NoGo tasks was similar for both male and female rats, however, the female rats took longer time to master the task principles in later stages for both tasks. In the regular Go/NoGo task, the female rats spent more time on completing the trial in performance optimization phases, which implied female rats were more cautious than male rats. Along with the progression of training, both male and female rats developed Go-preference strategies to perform the regular Go/NoGo task, which induced failure to meet the setting success criteria. The retired male rats exhibited shorter RTs and MTs than the retired female rats after developing Go-preference. Moreover, the time needed to complete the Go trials was significantly prolonged for male rats in the reversal Go/NoGo task. CONCLUSIONS Overall, we conclude that distinctive strategies were employed in performing Go/NoGo tasks for both male and female rats. Male rats required less time to stabilize the performance in behavioral optimization phase. In addition, male rats were more accurate in estimating time elapsing. In contrast, female rats took more cautious considerations in performing the task, through which minimal influences were manifested in the reversal version of task.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiru Wang
- The Institute of Brain Functional Genomics, East China Normal University, Shanghai, China.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Olivera-Pasilio V, Dabrowska J. Fear-conditioning to unpredictable threats reveals sex differences in rat fear-potentiated startle (FPS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531430. [PMID: 36945466 PMCID: PMC10028867 DOI: 10.1101/2023.03.06.531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies have shown higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies often use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock unpaired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females demonstrate higher shock reactivity during fear-conditioning. Both sexes demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS but females show reduced fear discrimination vs. males. Fear-conditioning with 70% contingency or backward order (cue co-starts with shock) induces similar levels of cued, non-cued, and contextual fear in both sexes but they differ in contextual fear extinction. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning protocol (cue and shock un-paired), with females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women. Highlights Male and female rats have comparable startle amplitudes when corrected for body weightFemale rats show higher foot-shock reactivity than males during fear-conditioningFemale rats show reduced fear discrimination vs. males in the classic FPSReversed signal-threat order increases contextual fear in both sexesExposure to unpredictable threats increases startle in general and contextual fear only in females.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| |
Collapse
|
6
|
Witt KM, Harper DN, Ellenbroek BA. Dopamine D1 receptor and effort-based decision making in rats: The moderating effect of sex. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110651. [PMID: 36191805 DOI: 10.1016/j.pnpbp.2022.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Dopamine is a modulating factor in effort-based decision-making, and emerging evidence from pharmacological research suggests that the dopamine D1 receptor is the primary regulator. Given the limited selectivity of pharmacological tools, we further explored this hypothesis using dopamine D1 mutant (DAD1-/-) rats which have a specific genetic reduction in functional D1 receptors. Moreover, given the strong focus on males in neuroscience research in general and in the role of D1 receptors in effort-based learning, we compared both sexes in the present study. Adult male and female DAD1-/- mutant rats and wild type controls were trained to press a lever for a reinforcer. Once trained, subjects completed multiple fixed ratio, progressive ratio, and operant effort-choice (concurrent progressive ratio/chow feeding task [PROG/chow]) experiments. We predicted that DAD1-/- mutant rats would press the lever significantly less than controls across all experiments, have lower breakpoints, and consume more freely available food. As predicted, DAD1-/- mutant rats (regardless of sex) pressed the lever significantly less than controls and had lower breakpoints. Interestingly, there was a sex * genotype interaction for acquisition rates of lever pressing and change in breakpoints with free food available. Only 31% of DAD1-/- mutant males acquired lever pressing while 73% of DAD1-/- mutant females acquired lever pressing. Additionally, DAD1-/- mutant males had significantly larger decreases in breakpoints when free food was available. These findings extend the pharmacological research suggesting that the dopamine D1 receptor modulates decisions based on effort, which has implications for the development of treatment targeting amotivation in neuropsychiatric disorders. The sex * genotype interaction highlights the importance of including both sexes in future research, especially when there are sex differences in incidences and severity of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kate M Witt
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - David N Harper
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bart A Ellenbroek
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
7
|
Investigation of the protective effects of lutein on memory and learning using behavioral methods in a male rat model of Alzheimer's disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
9
|
Pinizzotto CC, Patwardhan A, Aldarondo D, Kritzer MF. Task-specific effects of biological sex and sex hormones on object recognition memories in a 6-hydroxydopamine-lesion model of Parkinson's disease in adult male and female rats. Horm Behav 2022; 144:105206. [PMID: 35653829 DOI: 10.1016/j.yhbeh.2022.105206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/13/2023]
Abstract
Many patients with Parkinson's disease (PD) experience cognitive or memory impairments with few therapeutic options available to mitigate them. This has fueled interest in determining how factors including sex and sex hormones modulate higher order function in this disease. The objective of this study was to use the Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms to compare the effects of a bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesion model of PD in gonadally intact male and female rats, in orchidectomized male rats and in orchidectomized males supplemented with 17β-estradiol or testosterone propionate on measures of recognition memory similar to those at risk in PD. These studies showed that 6-ODHA lesions impaired discrimination in both tasks in males but not females. Further, 6-OHDA lesions disrupted NOR performance similarly in all males regardless of whether they were gonadally intact, orchidectomized or hormone-supplemented. In contrast, OiP performance was disrupted in males that were orchidectomized or 6-OHDA-lesioned but was spared in orchidectomized and orchidectomized, 6-OHDA lesioned males supplemented with 17β-estradiol. The distinct effects that sex and/or sex hormones have on 6-OHDA lesion-induced NOR vs. OiP deficits identified here also differ from corresponding impacts recently described for 6-OHDA lesion-induced deficits in spatial working memory and episodic memory. Together, the collective data provide strong evidence for effects of sex and sex hormones on cognition and memory in PD as being behavioral task and behavioral domain specific. This specificity could explain why a cohesive clinical picture of endocrine impacts on higher order function in PD has remained elusive.
Collapse
Affiliation(s)
- Claudia C Pinizzotto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Aishwarya Patwardhan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Daniel Aldarondo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
10
|
Börchers S, Krieger JP, Asker M, Maric I, Skibicka KP. Commonly-used rodent tests of anxiety-like behavior lack predictive validity for human sex differences. Psychoneuroendocrinology 2022; 141:105733. [PMID: 35367714 DOI: 10.1016/j.psyneuen.2022.105733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Women are more likely to develop an anxiety disorder than men. Yet, preclinical models of anxiety were largely developed in male rodents, with poorly understood predictive validity for sex differences. Here, we investigate whether commonly-used anxiety-like behavior tests, elevated plus maze (EPM) and open field (OF), represent the human sex difference in adult Sprague-Dawley rats. When interpreted by EPM or OF, female rats displayed less anxiety-like behavior compared to males, as they spent twice as much time in the open arms of the EPM or the center of the OF compared to males. However, they also displayed vastly different levels of locomotor activity, possibly confounding interpretation of these locomotion-dependent tests. To exclude locomotion from the assessment, the acoustic startle response (ASR) test was used. When interpreted by the ASR test, females displayed more anxiety-like behavior compared to males, as indicated by a nearly two-fold higher startle amplitude. The observed sex differences were not driven by gonadal steroids. Overall, all but one of the tests fail to mirror the sex difference in anxiety reported in humans. Our findings suggest that the ASR might be a better fit in modelling female anxiety-like behavior.
Collapse
Affiliation(s)
- Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Becker-Krail DD, Ketchesin KD, Burns JN, Zong W, Hildebrand MA, DePoy LM, Vadnie CA, Tseng GC, Logan RW, Huang YH, McClung CA. Astrocyte Molecular Clock Function in the Nucleus Accumbens Is Important for Reward-Related Behavior. Biol Psychiatry 2022; 92:68-80. [PMID: 35461698 PMCID: PMC9232937 DOI: 10.1016/j.biopsych.2022.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Substance use disorders are associated with disruptions in circadian rhythms. Both human and animal work have shown the integral role for circadian clocks in the modulation of reward behaviors. Astrocytes have emerged as key regulators of circadian rhythmicity. However, no studies to date have identified the role of circadian astrocyte function in the nucleus accumbens (NAc), a hub for reward regulation, or determined the importance of these rhythms for reward-related behavior. METHODS Using astrocyte-specific RNA sequencing across time of day, we first characterized diurnal variation of the NAc astrocyte transcriptome. We then investigated the functional significance of this circadian regulation through viral-mediated disruption of molecular clock function in NAc astrocytes, followed by assessment of reward-related behaviors, metabolic-related molecular assays, and whole-cell electrophysiology in the NAc. RESULTS Strikingly, approximately 43% of the astrocyte transcriptome has a diurnal rhythm, and key metabolic pathways were enriched among the top rhythmic genes. Moreover, mice with a viral-mediated loss of molecular clock function in NAc astrocytes show a significant increase in locomotor response to novelty, exploratory drive, operant food self-administration, and motivation. At the molecular level, these animals also show disrupted metabolic gene expression, along with significant downregulation of both lactate and glutathione levels in the NAc. Loss of NAc astrocyte clock function also significantly altered glutamatergic signaling onto neighboring medium spiny neurons, alongside upregulated glutamate-related gene expression. CONCLUSIONS Taken together, these findings demonstrate a novel role for astrocyte circadian molecular clock function in the regulation of the NAc and reward-related behaviors.
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer N Burns
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lauren M DePoy
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chelsea A Vadnie
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Yanhua H Huang
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
13
|
Sex-dependent elevational effects on bird feather moult. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Errante EL, Chakkalamuri M, Akinbo OI, Yohn SE, Salamone JD, Matuszewich L. Sex differences in effort-related decision-making: role of dopamine D2 receptor antagonism. Psychopharmacology (Berl) 2021; 238:1609-1619. [PMID: 33590311 DOI: 10.1007/s00213-021-05795-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/07/2021] [Indexed: 01/14/2023]
Abstract
RATIONALE Depressed individuals demonstrate debilitating symptoms, including depressed mood, anhedonia, and effort-related deficits. Effort-related decision-making can be measured through providing subjects with a choice between high effort/reward and low effort/reward options, which is a dopamine (DA)-dependent behavior. While previous research has shown sex differences in depression rates, this has not been examined within operant-based effort-related decision-making tasks nor has DA been shown to underlie this behavior in female rats. OBJECTIVES The current study investigated sex differences in an effort-related decision-making task prior to and following administration of the DA D2 receptor antagonist haloperidol (HAL). METHODS Adult rats were food restricted or fed freely and trained in an effort-related progressive ratio choice task. After stable responding, HAL was administered acutely (0.05-0.2 mg/kg) prior to testing. RESULTS Results indicate a significant effect of sex on training variables, with males having a greater number of lever presses, higher ratios, and longer active lever times. Pretreatment with HAL significantly reduced the same measures in both sexes for the high-valued reward, while increasing chow consumption in the food restricted males. Food restricted rats showed a greater number of total lever presses and achieved higher ratios; however, the effect in male food restricted rats was greatest. CONCLUSIONS These data suggest that, although there are sex differences in training, HAL decreases behavior across sexes, demonstrating that the D2 mechanism is similar in both sexes. These findings provide a better understanding of motivational dysfunction in both sexes and potential treatment targets for depression.
Collapse
Affiliation(s)
- Emily L Errante
- Division of Neuroscience and Behavior, Department of Psychology, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Marilyn Chakkalamuri
- Division of Neuroscience and Behavior, Department of Psychology, Northern Illinois University, Dekalb, IL, 60115, USA.,Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Oreoluwa I Akinbo
- Division of Neuroscience and Behavior, Department of Psychology, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Samantha E Yohn
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Leslie Matuszewich
- Division of Neuroscience and Behavior, Department of Psychology, Northern Illinois University, Dekalb, IL, 60115, USA.
| |
Collapse
|
15
|
Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sci 2020; 10:brainsci10110799. [PMID: 33143056 PMCID: PMC7692092 DOI: 10.3390/brainsci10110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The chronic stress of social isolation is a valid predictor of cognitive pathology. This study aimed to compare the effects of long-term social isolation on female versus male Wistar rats’ learning and memory. We hypothesized that prolonged social isolation stress, which starts early in life, would affect learning in a sex-dependent manner. Methods: Social isolation started at the edge of early to mid-adolescence and lasted 9 months. The rat’s cognitive abilities were assessed by habituation and reactivity to novelty in the open field (OF) test, spatial memory in the Morris water maze (MWM), and the conditioned passive avoidance (PA) reflex. Basal serum corticosterone levels were assessed using an enzyme-linked immunosorbent assay. Results: Regardless of the housing conditions, females habituated to the OF under low illumination slower than males. Under bright light, the single-housed rats showed hyporeactivity to novelty. In the MWM, all the rats learned to locate the platform; however, on the first training day, the single-housed females’ speed was lower relative to other groups. Four months later, in the post-reminder probe trial, the single-housed rats reached the area around the platform site later, and only males, regardless of housing conditions, preferred the target quadrant. Single-housed rats, irrespective of sex, showed a PA deficit. There was a more pronounced conditioned fear in the single-housed males than in females. In both male and female rats, basal corticosterone levels in rat blood serum after 9 months of social isolation did not differ from that in the group-housed rats of the corresponding sex. Meanwhile, females’ basal corticosterone level was higher than in males, regardless of the housing conditions. The relative weight of the adrenal glands was increased only in single-housed females. Conclusions: Under long-term social isolation, started early in life, single-housed females compared with males showed more pronounced cognitive impairments in the MWM and PA paradigm, findings that specify their greater vulnerability to the stress of prolonged social isolation.
Collapse
|
16
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
17
|
An active avoidance behavioral paradigm for use in a mild closed head model of traumatic brain injury in mice. J Neurosci Methods 2020; 343:108831. [PMID: 32592717 DOI: 10.1016/j.jneumeth.2020.108831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND A mild traumatic brain injury (TBI) occurs to millions of people each year. Translational approaches to understanding the pathogenesis of neurological diseases and the testing of the effectiveness of interventions typically require cognitive function assays in rodents. NEW METHODS Our goal was to validate the active avoidance task using the GEMINI avoidance system in a mouse model of mild closed head injury (CHI). RESULTS We found that shock intensity had only a marginal effect on the test. We found that sex was an important biological variable, as female mice learned the task better than male mice. We demonstrate that a single mild CHI in mice caused deficits in the task at four weeks post-injury. COMPARISON WITH EXISTING METHODS Active avoidance is a classical conditioning test in which mice must pair the presence of a conditioned stimulus with moving between two chambers to avoid an electric shock. External conditions (i.e., apparatus), as well as inherent differences in the mice, which may not be directly linked to the model of the disease (i.e., sensory differences), can affect the reproducibility of a behavioral assay. Before our study, there was a lack of standard operating procedures and validated methods for the active avoidance behavior for phenotyping mouse models of injury and disease. CONCLUSION We offer a method for validating the active avoidance test, and a standard operating procedure, which will be useful in other models of neurological injury and disease.
Collapse
|
18
|
Effect of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) on learning and memory impairment and hippocampal apoptosis induced by intracerebroventricular administration of streptozotocin in rats. Behav Brain Res 2020; 384:112554. [PMID: 32057828 DOI: 10.1016/j.bbr.2020.112554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Intracerebroventricular (icv) administration of streptozotocin (STZ) has been used as a metabolic model of sporadic Alzheimer's disease (AD). Erythropoietin (EPO) possesses neuroprotective and memory-improving effects, which might be advantageous in treating different characteristics of AD. Nevertheless, the hematopoietic effect of EPO has hindered its application as a neuroprotective agent. Previous studies have shown that a new Epo derivative called carbamylated Erythropoietin-Fc (CEPO-Fc), yield noticeable neuroprotective effects without affecting hematopoiesis. In this study, the neuroprotective effects of CEPO-Fc on icv-STZ induced memory impairment and hippocampal apoptosis were examined. Adult male Wistar rats weighing 250-300 g were used. STZ was administered on days 1 and 3 (3 mg/kg in divided doses/icv), and CEPO-Fc was administered at the dose of 5000 IU/ip/daily during days 4-14. The animals were trained in Morris water maze during days 15-17, and the memory retention test was performed on the 18th day. Following behavioral studies, the animals were sacrificed and their hippocampi isolated to determine the amounts of cleaved caspase-3 (the landmark of apoptosis). The results showed that CEPO-Fc treatment at the dose of 5000 IU/kg/ip was able to prevent the learning and memory deficit induced by icv-STZ. Western blot analysis revealed that STZ prompted the cleavage of caspase-3 in the hippocampus while pretreatment with CEPO-Fc significantly reduced the cleavage of this protein. Collectively, our findings suggest that CEPO-Fc could restore STZ-induced learning and memory impairment as well as apoptosis in the hippocampal region in a rat model of sporadic AD induced by icv-STZ.
Collapse
|
19
|
Conner MR, Adeyemi OM, Anderson BJ, Kritzer MF. Domain-specific contributions of biological sex and sex hormones to what, where and when components of episodic-like memory in adult rats. Eur J Neurosci 2020; 52:2705-2723. [PMID: 31943448 DOI: 10.1111/ejn.14676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Episodic memory involves the integration and recall of discrete events that include information about what happened, where it happened and when it occurred. Episodic memory function is critical to daily life, and its dysfunction is both a first identifiable indicator and an enduring core feature of cognitive decline in ageing and in neuropsychiatric disorders including Alzheimer's disease and schizophrenia. Available evidence from human studies suggests that biological sex and sex hormones modulate episodic memory function in health and disease. However, knowledge of how this occurs is constrained by the limited availability and underutilization of validated animal models in investigating hormone impacts on episodic-like memory function. Here, adult female, adult male and gonadally manipulated adult male rats were tested on the what-where-when episodic-like memory task to determine whether rats model human sex differences in episodic memory and how the hormonal milieu impacts episodic-like memory processes in this species. These studies revealed salient ways in which rats model human sex differences in episodic memory, including a male advantage in spatial episodic memory performance. They also identified domain-specific roles for oestrogens and androgens in modulating what, where and when discriminations in male rats that were unlike those engaged in corresponding novel object recognition and novel object location tasks. These studies thus identify rats and the what-where-when task as suitable for investigating the neuroendocrine bases of episodic-like memory, and provide new information about the unique contributions that sex and sex hormones make to this complex mnemonic process.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | | | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
20
|
Kaptan Z, Dar KA, Kapucu A, Bulut H, Üzüm G. Effect of enriched environment and predictable chronic stress on spatial memory in adolescent rats: Predominant expression of BDNF, nNOS, and interestingly malondialdehyde in the right hippocampus. Brain Res 2019; 1721:146326. [PMID: 31299186 DOI: 10.1016/j.brainres.2019.146326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/27/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Little is known about the mechanisms that promote divergence of function between left and right in the hippocampus, which is most affected by external factors and critical for spatial memory. We investigated the levels of memory-related mediators in the left and right hippocampus and spatial memory in rats exposed to predictable chronic stress (PCS) and an enriched environment (EE) during adolescence. Twenty-eight-day-old Sprague-Dawley rats were divided into control (standard cages), PCS (15 min/day immobilization stress for four weeks), and EE (one hour/day environmentally enriched cages for four weeks) groups. After the applications, spatial memory was tested with the Morris water maze, and the serum levels of corticosterone were evaluated. The levels of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS), which are critical for synaptic plasticity; malondialdehyde (MDA; lipid-peroxidation indicator); protein carbonyl (protein-oxidation indicator); and superoxide dismutase (antioxidant enzyme) were evaluated in the left and right hippocampus. Corticosterone levels in both the PCS and EE groups did not change compared with control. In both the PCS and EE groups, spatial memory improved and BDNF was increased in both halves of the hippocampus, still there was an asymmetry. nNOS levels were increased in the dentate gyrus and CA1 regions of the right hippocampus in both PCS and EE groups. MDA levels were increased but PCO levels were decreased in the right hippocampus in both the PCS and EE groups, but SOD did not change in either half of the hippocampus. Our results suggest that both PCS and EE improved spatial memory by increasing BDNF and nNOS in the right hippocampus and that, interestingly; MDA could be the physiological signal molecule in the right hippocampus for spatial memory process.
Collapse
Affiliation(s)
- Zülal Kaptan
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Turkey
| | - Kadriye Akgün Dar
- Istanbul University, Faculty of Science, Department of Biology, Turkey
| | - Ayşegül Kapucu
- Istanbul University, Faculty of Science, Department of Biology, Turkey
| | - Huri Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Biochemistry, Turkey
| | - Gülay Üzüm
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Turkey.
| |
Collapse
|
21
|
Schatz KC, Martin CD, Ishiwari K, George AM, Richards JB, Paul MJ. Mutation in the vasopressin gene eliminates the sex difference in social reinforcement in adolescent rats. Physiol Behav 2019; 206:125-133. [PMID: 30951747 DOI: 10.1016/j.physbeh.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in normative and pathological social development by regulating social motivation. Recent studies using Brattleboro rats that have a mutation in the Avp gene, however, have suggested that AVP impacts adolescent social behaviors of males and females in a similar manner through actions on behavioral state (i.e., arousal). In the present study, we made use of a recently developed operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence. Operant responding for access to a familiar conspecific was assessed in male and female adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same operant paradigm except that the social reinforcer was replaced with a light reinforcer to determine whether effects of the Brattleboro mutation were specific to social stimuli or a general characteristic of operant conditioning. WT males directed a greater proportion of their responding toward the social and light stimuli than WT females; only males exhibited a preference for these reinforcers over unreinforced ports. The sex difference in social reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was present in all genotypes. These data indicate that adolescent males are more sensitive to the reinforcing properties of social and light stimuli, and that the sex difference in social, but not light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis that AVP plays a critical role in sex differences in social development by acting on factors that influence social motivation.
Collapse
Affiliation(s)
- K C Schatz
- Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| | - C D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - K Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - A M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - J B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - M J Paul
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, Buffalo, NY, USA; Evolution, Ecology and Behavior Program, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
22
|
Harris EP, Allardice HA, Schenk AK, Rissman EF. Effects of maternal or paternal bisphenol A exposure on offspring behavior. Horm Behav 2018; 101:68-76. [PMID: 28964733 PMCID: PMC5882611 DOI: 10.1016/j.yhbeh.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical used in the production of polycarbonate plastics and resins. Exposure to BPA during gestation has been proposed as a risk factor for the development of neurobehavioral disorders, such as autism spectrum disorder. To address the behavioral impact of developmental exposure to BPA, we tested offspring of mice exposed to a daily low dose of BPA during pregnancy. We also asked if preconception exposure of the sire affected behaviors in offspring. Sires that consumed BPA for 50days prior to mating weighed less than controls, but no effects on any reproductive measures were noted. Juvenile offspring exposed to BPA maternally, but not paternally, spent less time in the open arms of the elevated plus maze than controls, indicating increased anxiety-like behavior. However, neither parental exposure group differed significantly from controls in the social recognition task. We also assessed the behaviors of maternally exposed offspring in two novel tasks: ultrasonic vocalizations (USVs) in pups and operant reversal learning in adults. Maternal BPA exposure increased the duration and median frequency of USVs emitted by pups during maternal separation. In the reversal learning task, females responded more accurately and earned more rewards than males. Additionally, control females received more rewards than BPA females during the acquisition phase of the task. These are among the first studies conducted to ask if BPA exposure via the sire affects offspring behavior and the first study to report effects of gestational BPA exposure on pup USVs and adult operant responding.
Collapse
Affiliation(s)
- Erin P Harris
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather A Allardice
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - A Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, VA 24503, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Sex differences and the role of acute stress in the open-field tower maze. Physiol Behav 2018; 189:16-25. [PMID: 29486171 DOI: 10.1016/j.physbeh.2018.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Many studies provide evidence that differences in spatial learning exist between males and females. However, it is necessary to consider non-mnemonic factors that may influence these findings. The present experiment investigated acquisition, retention, and the effects of stress on response- and place-learning in male and female rats. Rats were trained in an open-field tower maze. Procedures were used to minimize stress in the rats, and their ability to solve place- or response-learning in the maze was determined by analyzing a response variable (i.e., first choice correct response) that was not influenced by general locomotor activity. The results revealed that male and female rats acquire place- and response-learning at the same rate even though females moved significantly faster in the maze. However, females showed better retrieval of place-, but not response-learning compared to male rats. This effect appeared to be enhanced when the rats were tested immediately following an acute restraint stress. Furthermore, both female and male rats that were exposed to acute restraint stress showed less impairment than controls when subsequently tested in a novel situation. These findings have clinical implications that a mild physiological stress response can make one more cognitively resistant to adversities later in life.
Collapse
|
24
|
Cumberland AL, Palliser HK, Crombie GK, Walker DW, Hirst JJ. Increased anxiety-like phenotype in female guinea pigs following reduced neurosteroid exposure in utero. Int J Dev Neurosci 2017; 58:50-58. [PMID: 28192175 DOI: 10.1016/j.ijdevneu.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are essential for aiding proper fetal neurodevelopment. Pregnancy compromises such as preterm birth, prenatal stress and intrauterine growth restriction are associated with an increased risk of developing behavioural and mood disorders, particularly during adolescence. These pathologies involve the premature loss or alteration of trophic steroid hormones reaching the fetus leading to impaired neurodevelopment. While the specific programming mechanisms are yet to be fully elucidated, in adult life, dysfunctions of allopregnanolone action are prevalent in individuals with depression, post-traumatic stress disorder and anxiety disorders. The objective of this study was to assess if changes in concentrations of the neurosteroid, allopregnanolone, may be a fetal programming factor in priming the brain towards a negative behavioural phenotype during the childhood to adolescent period using a guinea pig model. Pregnant guinea pigs received either vehicle (45% (2-hydroxypropyl)-β-cyclodextrin) or the 5α-reductase inhibitor, finasteride (25mg/kg maternal weight) from gestational age 60 until spontaneous delivery (∼71days gestation). Male and female offspring from vehicle and finasteride treated dams were tested at postnatal day 20 (juvenile-equivalence) in an open field arena, and hippocampus and amygdala subsequently assessed for neurological changes in markers of development and GABA production pathways 24h later. Females with reduced allopregnanolone exposure in utero displayed increased neophobic-like responses to a change in their environment compared to female controls. There were no differences in the neurodevelopmental markers assessed; MAP2, NeuN, MBP, GFAP or GAD67 between intrauterine finasteride or vehicle exposure, in either the hippocampus or amygdala whereas GAT1 staining was decreased. This study indicates that an intrauterine reduction in the supply of allopregnanolone programs vulnerability of female offspring to anxiety-like disorders in juvenility without impacting long term allopregnanolone concentrations.
Collapse
Affiliation(s)
- Angela L Cumberland
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia.
| | - Hannah K Palliser
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - Gabrielle K Crombie
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| | - David W Walker
- Department of Obstetrics and Gynaecology, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
| | - Jonathan J Hirst
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle 2308, New South Wales, Australia; Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle 2305, New South Wales, Australia
| |
Collapse
|
25
|
Pellman BA, Schuessler BP, Tellakat M, Kim JJ. Sexually Dimorphic Risk Mitigation Strategies in Rats. eNeuro 2017; 4:ENEURO.0288-16.2017. [PMID: 28197550 PMCID: PMC5292597 DOI: 10.1523/eneuro.0288-16.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023] Open
Abstract
The scientific understanding of fear and anxiety-in both normal and pathological forms-is presently limited by a predominance of studies that use male animals and Pavlovian fear conditioning-centered paradigms that restrict and assess specific behaviors (e.g., freezing) over brief sampling periods and overlook the broader contributions of the spatiotemporal context to an animal's behavioral responses to threats. Here, we use a risky "closed economy" system, in which the need to acquire food and water and the need to avoid threats are simultaneously integrated into the lives of rats, to examine sex differences in mitigating threat risk while foraging. Rats lived for an extended period (∼2 months) in enlarged chambers that consisted of a safe, bedded nest and a risky foraging area where footshocks could be delivered unpredictably. We observed that male and female rats used different strategies for responding to the threat of footshock. Whereas male rats increased the size of meals consumed to reduce the overall time spent foraging, female rats sacrificed their metabolic needs in order to avoid shocks. Ovarian hormone fluctuations were shown to exert slight but reliable rhythmic effects on risky decision-making in gonadally intact female rats. However, this did not produce significant differences in approach-avoidance trade-offs between ovariectomized and intact female groups, suggesting that male-female sex differences are not due to the activational effects of gonadal hormones but, rather, are likely to be organized during early development.
Collapse
Affiliation(s)
- Blake A. Pellman
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
| | - Bryan P. Schuessler
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
| | - Mohini Tellakat
- Department of Psychology, University of Texas at Austin, Austin, Texas 78712
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525
- Program in Neuroscience, University of Washington, Seattle, Washington 98195-1525
| |
Collapse
|
26
|
Locklear MN, Michaelos M, Collins WF, Kritzer MF. Gonadectomy but not biological sex affects burst-firing in dopamine neurons of the ventral tegmental area and in prefrontal cortical neurons projecting to the ventral tegmentum in adult rats. Eur J Neurosci 2016; 45:106-120. [PMID: 27564091 DOI: 10.1111/ejn.13380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
The mesocortical and mesolimbic dopamine systems regulate cognitive and motivational processes and are strongly implicated in neuropsychiatric disorders in which these processes are disturbed. Sex differences and sex hormone modulation are also known for these dopamine-sensitive behaviours in health and disease. One relevant mechanism of hormone impact appears to be regulation of cortical and subcortical dopamine levels. This study asked whether this regulation of dopamine tone is a consequence of sex or sex hormone impact on the firing modes of ventral midbrain dopamine neurons. To address this, single unit extracellular recordings made in the ventral tegmental area and substantia nigra were compared among urethane-anaesthetized adult male, female, gonadectomized male rats. These comparisons showed that gonadectomy had no effect on nigral cells and no effects on pacemaker, bursty, single-spiking or random modes of dopamine activity in the ventral tegmental area. However, it did significantly and selectively increase burst firing in these cells in a testosterone-sensitive, estradiol-insensitive manner. Given the roles of prefrontal cortex (PFC) in modulating midbrain dopamine cell firing, we next asked whether gonadectomy's effects on dopamine cell bursting had correlated effects on the activity of ventral tegmentally projecting prefrontal cortical neurons. We found that gonadectomy indeed significantly and selectively increased burst firing in ventral tegmentally projecting but not neighbouring prefrontal cells. These effects were also androgen-sensitive. Together, these findings suggest a working model wherein androgen influence over the activity of PFC neurons regulates its top-down modulation of mesocortical and mesolimbic dopamine systems and related dopamine-sensitive behaviours.
Collapse
Affiliation(s)
- Mallory N Locklear
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Michalis Michaelos
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| |
Collapse
|
27
|
The impact of biological sex and sex hormones on cognition in a rat model of early, pre-motor Parkinson's disease. Neuroscience 2016; 345:297-314. [PMID: 27235739 DOI: 10.1016/j.neuroscience.2016.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is well known for motor deficits such as bradykinesia. However, patients often experience additional deficits in working memory, behavioral selection, decision-making and other executive functions. Like other features of PD, the incidence and severity of these cognitive symptoms differ in males and females. However, preclinical models have not been used to systematically investigate the roles that sex or sex hormones may play in these complex signs. To address this, we used a Barnes maze spatial memory paradigm to compare the effects of a bilateral nigrostriatal dopamine lesion model of early PD on cognitive behaviors in adult male and female rats and in adult male rats that were gonadectomized or gonadectomized and supplemented with testosterone or estradiol. We found that dopamine lesions produced deficits in working memory and other executive operations, albeit only in male rats where circulating androgen levels were physiological. In males where androgen levels were depleted, lesions produced no additional Barnes maze deficits and attenuated those previously linked to androgen deprivation. We also found that while most measures of Barnes maze performance were unaffected by dopamine lesions in the females, lesions did induce dramatic shifts from their preferred use of thigmotactic navigation to the use of spatially guided place strategies similar to those normally preferred by males. These and other sex- and sex hormone-specific differences in the effects of nigrostriatal dopamine lesions on executive function highlight the potential of gonadal steroids as protective and/or therapeutic for the cognitive symptoms of PD. However, their complexity also indicates the need for a more thorough understanding of androgen and estrogen effects in guiding the development of hormone therapies that might effectively address these non-motor signs.
Collapse
|
28
|
Jolles JW, Boogert NJ, van den Bos R. Sex differences in risk-taking and associative learning in rats. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150485. [PMID: 26716004 PMCID: PMC4680619 DOI: 10.1098/rsos.150485] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 05/28/2023]
Abstract
In many species, males tend to have lower parental investment than females and greater variance in their reproductive success. Males might therefore be expected to adopt more high-risk, high-return behaviours than females. Next to risk-taking behaviour itself, sexes might also differ in how they respond to information and learn new associations owing to the fundamental link of these cognitive processes with the risk-reward axis. Here we investigated sex differences in both risk-taking and learned responses to risk by measuring male and female rats' (Rattus norvegicus) behaviour across three contexts in an open field test containing cover. We found that when the environment was novel, males spent more time out of cover than females. Males also hid less when exposed to the test arena containing predator odour. By contrast, females explored more than males when the predator odour was removed (associatively learned risk). These results suggest that males are more risk-prone but behave more in line with previous experiences, while females are more risk-averse and more responsive to changes in their current environment. Our results suggest that male and female rats differ in how they cope with risk and highlight that a general link may exist between risk-taking behaviour and learning style.
Collapse
Affiliation(s)
- Jolle Wolter Jolles
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Neeltje J. Boogert
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Ruud van den Bos
- Faculty of Science, Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Keeley RJ, Trow J, McDonald RJ. Strain and sex differences in puberty onset and the effects of THC administration on weight gain and brain volumes. Neuroscience 2015; 305:328-42. [PMID: 26186896 DOI: 10.1016/j.neuroscience.2015.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/19/2023]
Abstract
The use of recreational marijuana is widespread and frequently begins and persists through adolescence. Some research has shown negative consequences of adolescent marijuana use, but this is not seen across studies, and certain factors, like genetic background and sex, may influence the results. It is critical to identify which characteristics predispose an individual to be susceptible to the negative consequences of chronic exposure to marijuana in adolescence on brain health and behavior. To this end, using males and females of two strains of rats, Long-Evans hooded (LER) and Wistar (WR) rats, we explored whether these anatomically and behaviorally dimorphic strains demonstrated differences in puberty onset and strain-specific effects of adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana. Daily 5 mg/kg treatment began on the day of puberty onset and continued for 14 days. Of particular interest were metrics of growth and volumetric estimates of brain areas involved in cognition that contain high densities of cannabinoid receptors, including the hippocampus and its subregions, the amygdala, and the frontal cortex. Brain volumetrics were analyzed immediately following the treatment period. LER and WR females started puberty at different ages, but no strain differences were observed in brain volumes. THC decreased weight gain throughout the treatment period for all groups. Only the hippocampus and some of its subregions were affected by THC, and increased volumes with THC administration was observed exclusively in females, regardless of strain. Long-term treatment of THC did not affect all individuals equally, and females displayed evidence of increased sensitivity to the effects of THC, and by extension, marijuana. Identifying differences in adolescent physiology of WR and LER rats could help determine the cause for strain and sex differences in brain and behavior of adults and help to refine the use of animal models in marijuana research.
Collapse
Affiliation(s)
- R J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - J Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - R J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Keeley R, Bye C, Trow J, McDonald R. Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behav Brain Res 2015; 288:118-31. [DOI: 10.1016/j.bbr.2014.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
|
31
|
Sex Differences and the Impact of Chronic Stress and Recovery on Instrumental Learning. NEUROSCIENCE JOURNAL 2015; 2015:697659. [PMID: 26317113 PMCID: PMC4437338 DOI: 10.1155/2015/697659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022]
Abstract
We have previously shown that 21-day chronic restraint stress impacts instrumental learning, but overall few studies have examined sex differences on the impact of stress on learning. We further examined sex differences in response to extended 42-day chronic stress on instrumental learning, as well as recovery from chronic stress. Rats were tested in aversive training tasks with or without prior appetitive experience, and daily body weight data was collected as an index of stress. Relative to control animals, reduced body weight was maintained from day 22 through day 42 across the stress period for males, but not for females. Stressed males had increased response speed and lower learning efficiency during appetitive acquisition and aversive learning. Males overall showed slower escape shaping times and more shock exposure. In contrast, stressed females showed slower appetitive response speeds and higher appetitive and aversive efficiency but overall reduced avoidance rates during acquisition and maintenance for transfer animals and during maintenance for aversive-only animals. These tasks reveal important nuances on the effect of stress on goal-directed behavior and further highlight sexually divergent effects on appetitive versus aversive motivation. Furthermore, these data underscore that systems are temporally impacted by chronic stress in a sexually divergent pattern.
Collapse
|
32
|
Sussman D, Germann J, Henkelman M. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain Behav 2015; 5:e00300. [PMID: 25642385 PMCID: PMC4309881 DOI: 10.1002/brb3.300] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/12/2014] [Accepted: 11/10/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. METHODS To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. RESULTS The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. CONCLUSIONS These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.
Collapse
Affiliation(s)
- Dafna Sussman
- Physiology and Experimental Medicine, The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Jurgen Germann
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| |
Collapse
|
33
|
Keeley RJ, Burger DK, Saucier DM, Iwaniuk AN. The size of non-hippocampal brain regions varies by season and sex in Richardson's ground squirrel. Neuroscience 2015; 289:194-206. [PMID: 25595988 DOI: 10.1016/j.neuroscience.2014.12.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
Abstract
Sex- and season-specific modulation of hippocampal size and function is observed across multiple species, including rodents. Other non-hippocampal-dependent behaviors exhibit season and sex differences, and whether the associated brain regions exhibit similar variation with sex and season remains to be fully characterized. As such, we examined the brains of wild-caught Richardson's ground squirrels (RGS; Urocitellus richardsonii) for seasonal (breeding, non-breeding) and sex differences in the volumes of specific brain areas, including: total brain volume, corpus callosum (CC), anterior commissure (AC), medial prefrontal cortex (mPFC), total neocortex (NC), entorhinal cortex (EC), and superior colliculus (SC). Analyses of variance and covariance revealed significant interactions between season and sex for almost all areas studied, primarily resulting from females captured during the breeding season exhibiting larger volumes than females captured during the non-breeding season. This was observed for volumes of the AC, mPFC, NC, EC, and SC. Where simple main effects of season were observed for males (the NC and the SC), the volume advantage favoured males captured during the NBr season. Only two simple main effects of sex were observed: males captured in the non-breeding season had significantly larger total brain volume than females captured in the non-breeding season, and females captured during the breeding season had larger volumes of the mPFC and EC than males captured in the breeding season. These results indicate that females have more pronounced seasonal differences in brain and brain region sizes. The extent to which seasonal differences in brain region volumes vary with behaviour is unclear, but our data do suggest that seasonal plasticity is not limited to the hippocampus and that RGS is a useful mammalian species for understanding seasonal plasticity in an ecologically relevant context.
Collapse
Affiliation(s)
- R J Keeley
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - D K Burger
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - D M Saucier
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - A N Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
34
|
DiFeo G, Curlik DM, Shors TJ. The motirod: a novel physical skill task that enhances motivation to learn and thereby increases neurogenesis especially in the female hippocampus. Brain Res 2014; 1621:187-96. [PMID: 25543070 DOI: 10.1016/j.brainres.2014.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/20/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Males and females perform differently on a variety of training tasks. In the present study we examined performance of male and female rats while they were trained with a gross motor skill in which they learn to maintain their balance on an accelerating rotating rod (the accelerating rotarod). During training, many animals simply step off the rod, thus terminating the training. This problem was addressed by placing cold water below the rod. We termed the new training procedure "motirod" training because the trained animals were apparently motivated to remain on the rod for longer periods of time. Groups of male and female adult Sprague-Dawley rats were trained on either the standard accelerating rotarod or the motirod for four trials per day on four consecutive days. Latency to fall from the rod (in seconds) was recorded. The motivating feature increased performance especially in females (p=.001). As a consequence of enhanced performance, females retained significantly more new cells in the dentate gyrus of the hippocampus than those trained on the accelerating rotarod or those that received no training. In addition, individuals that learned well retained more new cells, irrespective of sex or task conditions. Previous studies have established that new cells rescued from death by learning remain in the hippocampus for months and mature into neurons (Leuner et al., 2004a; Shors, 2014). These data suggest that sex differences in physical skill learning can arise from sex differences in motivation, which thereby influence how many new neurons survive in the adult brain. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gina DiFeo
- Department of Psychology, Behavioral and Systems Neuroscience, Center for Collaborative Neuroscience, Rutgers University, Busch Campus, Piscataway, NJ 08854, USA
| | - Daniel M Curlik
- Department of Psychology, Behavioral and Systems Neuroscience, Center for Collaborative Neuroscience, Rutgers University, Busch Campus, Piscataway, NJ 08854, USA
| | - Tracey J Shors
- Department of Psychology, Behavioral and Systems Neuroscience, Center for Collaborative Neuroscience, Rutgers University, Busch Campus, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Gillies G, Virdee K, McArthur S, Dalley J. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis. Neuroscience 2014; 282:69-85. [PMID: 24943715 PMCID: PMC4245713 DOI: 10.1016/j.neuroscience.2014.05.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023]
Abstract
The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction.
Collapse
Affiliation(s)
- G.E. Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Corresponding author. Address: Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel: +44-(0)-20-7594-7050.
| | - K. Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - S. McArthur
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1 6BQ, UK
| | - J.W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hill’s Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
36
|
Sase S, Meyer K, Lubec G, Korz V. Different expression of membrane-bound and cytosolic hippocampal steroid receptor complexes during spatial training in young male rats. Eur Neuropsychopharmacol 2014; 24:1819-27. [PMID: 25258178 DOI: 10.1016/j.euroneuro.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Brain steroid receptors are involved in mediating stress responses and cognitive processes throughfast non-genomic signaling of membrane-bound receptors or through the slower genomic actions of cytosolic receptors. Although the contribution of these different pathways in the formation and maintenance of memories has been widely discussed, little is known about the regulation of membrane versus cytosolic receptors during a learning task. Besides the relatively well studied corticosterone-binding glucocorticoid (GR) and mineralocorticoid (MR) receptors, sex steroid hormone receptors, such as the androgen and estrogen (ERα and ERβ) receptors, have also been shown to be involved in the regulation of stress and cognition. Moreover, the latter receptors are known to be functional in both sexes. Therefore, we studied the expression of hippocampal receptors in both cellular fractions during spatial learning in male rats. Membrane and cytosolic GR were shown to be downregulated after memory acquisition and unaffected after consolidation, whereas membrane MR was upregulated after both learning phases and unaffected in the cytosol. Cytosolic ERα was downregulated after both phases and unaffected in the membrane. The remaining receptors were not regulated. The data suggest a specific role of MR and ERα during training as fast and slow mediators, respectively.
Collapse
Affiliation(s)
- Sunetra Sase
- University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Katrin Meyer
- Leibniz Institute for Neurobiology, Magdeburg, Germany; University of Magdeburg, Institute of Biology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Gert Lubec
- University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Volker Korz
- University of Magdeburg, Institute of Biology, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
37
|
Miller-Rhodes P, Popescu M, Goeke C, Tirabassi T, Johnson L, Markowski VP. Prenatal exposure to the brominated flame retardant hexabromocyclododecane (HBCD) impairs measures of sustained attention and increases age-related morbidity in the Long-Evans rat. Neurotoxicol Teratol 2014; 45:34-43. [PMID: 24995466 DOI: 10.1016/j.ntt.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant that is widely-used in foam building materials and to a lesser extent, furniture and electronic equipment. After decades of use, HBCD and its metabolites have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Emerging evidence suggests that HBCD can affect early brain development and produce behavioral consequences for exposed organisms. The current study examined some of the developmental and lifelong neurobehavioral effects of prenatal HBCD exposure in a rat model. Pregnant rats were gavaged with 0, 3, 10, or 30mg/kg HBCD from gestation day 1 to parturition. A functional observation battery was used to assess sensorimotor behaviors in neonates. Locomotor and operant responding under random ratio and Go/no-go schedules of food reinforcement were examined in cohorts of young adult and aged rats. HBCD exposure was associated with increased reactivity to a tailpinch in neonates, decreased forelimb grip strength in juveniles, and impaired sustained attention indicated by Go/no-go responding in aged rats. In addition, HBCD exposure was associated with a significant increase in morbidity in the aged cohort. One health complication, a progressive loss of hindleg function, was observed only in the aged, 3mg/kg HBCD animals. These effects suggest that HBCD is a developmental neurotoxicant that can produce long-term behavioral impairments that emerge at different points in the lifespan following prenatal exposure.
Collapse
Affiliation(s)
- Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Maria Popescu
- Department of Psychology, University of Southern Maine, Portland, ME, 04104, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Toni Tirabassi
- Department of Psychology, University of Southern Maine, Portland, ME, 04104, United States
| | - Lauren Johnson
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| |
Collapse
|
38
|
Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol 2014; 171:4595-619. [PMID: 24697577 DOI: 10.1111/bph.12710] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories.
Collapse
Affiliation(s)
- N Kokras
- Department of Pharmacology, Medical School, University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, University of Athens, Greece
| | | |
Collapse
|
39
|
Locklear MN, Kritzer MF. Assessment of the effects of sex and sex hormones on spatial cognition in adult rats using the Barnes maze. Horm Behav 2014; 66:298-308. [PMID: 24937438 PMCID: PMC4127089 DOI: 10.1016/j.yhbeh.2014.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Although sex differences and hormone effects on spatial cognition are observed in humans and animals, consensus has not been reached regarding exact impact on spatial working or reference memory. Recent studies in rats suggest that stress and/or reward, which are often different in tasks used to assess spatial cognition, can contribute to the inconsistencies in the literature. To minimize the impact of these sex- and sex hormone-sensitive factors, we used the Barnes maze to compare spatial working memory, spatial reference memory and spatial learning strategy in adult male, female, gonadectomized (GDX) male, and GDX male rats supplemented with 17β-estradiol (E) or testosterone propionate (TP). Rats received four acquisition trials, four trials 24h later, and a single retention trial one week after. Males and females acquired the task during the first four trials and retained the task thereafter. In contrast, GDX rats took longer to acquire the task and showed retention deficits at 1week. All deficits were attenuated similarly by TP and E. Assessment of search patterns also showed that strategies in the males transitioned from random to spatially focused and eventually direct approaches to the goal. However, this transition was faster in control and GDX-TP than in GDX and GDX-E rats. In contrast, the females almost invariantly followed the maze edge in thigmotactic, serial searches. Thus, while Barnes maze reveals activational, in part estrogenic effects on spatial cognition in males, its amenability to animals' use of multiple strategies may limit its ability to resolve mnemonic differences across sex.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA; Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| | - M F Kritzer
- Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Navarro-Francés CI, Arenas MC. Influence of trait anxiety on the effects of acute stress on learning and retention of the passive avoidance task in male and female mice. Behav Processes 2014; 105:6-14. [PMID: 24565981 DOI: 10.1016/j.beproc.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/25/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022]
Abstract
The influence of anxiety on the effects of acute stress for the acquisition and retention of passive avoidance conditioned task was evaluated in male and female mice. Animals were categorized as high-, medium-, and low-anxiety according to their performance in the elevated plus-maze test. Subsequently, half of the mice in each group were exposed to an acute stressor and assayed in an aversive conditioning test two days later. Exposure to restraint stress before inhibitory avoidance conditioning had a differential impact on the conditioned response of males and females according to their trait anxiety. The acute stressor significantly altered the conditioned response of mice with a high-anxiety level. The long-term effect of the stressor varied for each sex; high-anxiety stressed males showed an enhanced conditioned response with respect to their controls, whereas high-anxiety stressed females presented an impaired performance. These results lead us to believe that the characterization of individuality is an important factor in understanding the interaction between stress and memory for each sex; the trait anxiety of our animals modulated the effects of stress on the conditioned response so that males and females performed in contrasting manners to the same environmental stimuli and experimental conditions.
Collapse
Affiliation(s)
- Concepción I Navarro-Francés
- Facultad de Psicología, Departamento de Psicobiología, Universitat de València, Avda. Blasco Ibañez, 21, Valencia, 46010, Spain
| | - M Carmen Arenas
- Facultad de Psicología, Departamento de Psicobiología, Universitat de València, Avda. Blasco Ibañez, 21, Valencia, 46010, Spain.
| |
Collapse
|
41
|
Burke HM, Robinson CM, Wentz B, McKay J, Dexter KW, Pisansky JM, Talbot JN, Zoladz PR. Sex-specific impairment of spatial memory in rats following a reminder of predator stress. Stress 2013; 16:469-76. [PMID: 23550585 DOI: 10.3109/10253890.2013.791276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It has been suggested that cognitive impairments exhibited by people with post-traumatic stress disorder (PTSD) result from intrusive, flashback memories transiently interfering with ongoing cognitive processing. Researchers have further speculated that females are more susceptible to developing PTSD because they form stronger traumatic memories than males, hence females may be more sensitive to the negative effects of intrusive memories on cognition. We have examined how the reminder of a naturalistic stress experience would affect rat spatial memory and if sex was a contributing factor to such effects. Male and female Sprague-Dawley rats were exposed, without contact, to an adult female cat for 30 min. Five weeks later, the rats were trained to locate a hidden platform in the radial-arm water maze and given a single long-term memory test trial 24 h later. Before long-term memory testing, the rats were given a 30-min reminder of the cat exposure experienced 5 weeks earlier. The results indicated that the stress reminder impaired spatial memory in the female rats only. Control manipulations revealed that this effect was not attributable to the original cat exposure adversely impacting learning that occurred 5 weeks later, or to merely exposing rats to a novel environment or predator-related cues immediately before testing. These findings provide evidence that the reminder of a naturalistic stressful experience can impair cognitive processing in rats; moreover, since female rats were more susceptible to the memory-impairing effects of the stress reminder, the findings could lend insight into the existing sex differences in susceptibility to PTSD.
Collapse
Affiliation(s)
- Hanna M Burke
- Department of Psychology and Sociology, Raabe College of Pharmacy, Ohio Northern University, Ada, OH 45810, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Porter-Stransky KA, Seiler JL, Day JJ, Aragona BJ. Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens. Eur J Neurosci 2013; 38:2572-88. [PMID: 23692625 DOI: 10.1111/ejn.12253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/28/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
To survive in a dynamic environment, animals must identify changes in resource availability and rapidly apply adaptive strategies to obtain resources that promote survival. We have utilised a behavioral paradigm to assess differences in foraging strategy when resource (reward) availability unexpectedly changes. When reward magnitude was reduced by 50% (receive one reward pellet instead of two), male and female rats developed a preference for the optimal choice by the second session. However, when an expected reward was omitted (receive no reward pellets instead of one), subjects displayed a robust preference for the optimal choice during the very first session. Previous research shows that, when an expected reward is omitted, dopamine neurons phasically decrease their firing rate, which is hypothesised to decrease dopamine release preferentially affecting D2-like receptors. As robust changes in behavioral preference were specific to reward omission, we tested this hypothesis and the functional role of D1- and D2-like receptors in the nucleus accumbens in mediating the rapid development of a behavioral preference for the rewarded option during reward omission in male rats. Blockade of both receptor types had no effect on this behavior; however, holding D2-like, but not D1-like, receptor tone via infusion of dopamine receptor agonists prevented the development of the preference for the rewarded option during reward omission. These results demonstrate that avoiding an outcome that has been tagged with aversive motivational properties is facilitated through decreased dopamine transmission and subsequent functional disruption of D2-like, but not D1-like, receptor tone in the nucleus accumbens.
Collapse
Affiliation(s)
- Kirsten A Porter-Stransky
- Department of Psychology, Biopsychology Area, University of Michigan, 530 Church Street, Ann Arbor, 48109 MI, USA.
| | | | | | | |
Collapse
|
43
|
The Effects of Sex and Chronic Restraint on Instrumental Learning in Rats. NEUROSCIENCE JOURNAL 2013; 2013:893126. [PMID: 26317104 PMCID: PMC4437261 DOI: 10.1155/2013/893126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
Abstract
Chronic stress has been shown to impact learning, but studies have been sparse or nonexistent examining sex or task differences. We examined the effects of sex and chronic stress on instrumental learning in adult rats. Rats were tested in an aversive paradigm with or without prior appetitive experience, and daily body weight data was collected as an index of stress. Relative to control animals, reduced body weight was maintained across the stress period for males (−7%, P ≤ .05) and females (−5%, P ≤ .05). For males, there were within-subject day-by-day differences after asymptotic transition, and all restrained males were delayed in reaching asymptotic performance. In contrast, stressed females were facilitated in appetitive and aversive-only instrumental learning but impaired during acquisition of the aversive transfer task. Males were faster than females in reaching the appetitive shaping criterion, but females were more efficient in reaching the appetitive tone-signaled criterion. Finally, an effect of task showed that while females reached aversive shaping criterion at a faster rate when they had prior appetitive learning, they were impaired in tone-signaled avoidance learning only when they had prior appetitive learning. These tasks reveal important nuances on the effect of stress and sex differences on goal-directed behavior.
Collapse
|
44
|
Swithers SE, Sample CH, Katz DP. Influence of ovarian and non-ovarian estrogens on weight gain in response to disruption of sweet taste--calorie relations in female rats. Horm Behav 2013; 63:40-8. [PMID: 23146838 PMCID: PMC3540164 DOI: 10.1016/j.yhbeh.2012.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 12/23/2022]
Abstract
Regulation of energy balance in female rats is known to differ along a number of dimensions compared to male rats. Previous work from our lab has demonstrated that in female rats fed dietary supplements containing high-intensity sweeteners that may disrupt a predictive relation between sweet tastes and calories, excess weight gain is demonstrated only when females are also fed a diet high in fat and sugar, and is evidenced primarily in animals already prone to gain excess weight. In contrast, male rats show excess weight gain when fed saccharin-sweetened yogurt supplements when fed both standard chow diets and diets high in fat and sugar, and regardless of their proneness to excess weight gain. The goal of the present experiments was to determine whether ovarian, or other sources of estrogens, contributes to the resistance to excess weight gain in female rats fed standard chow diets along with dietary supplements sweetened with yogurt. Results of the first experiment indicated that when the ovaries were removed surgically in adult female rats, patterns of weight gain were similar in animals fed saccharin-sweetened compared to glucose-sweetened yogurt supplements. In the second experiment, when the ovaries were surgically removed in adult female rats, and local production of estrogens was suppressed with the aromatase inhibitor anastrozole, females fed the saccharin-sweetened yogurt consumed more energy and gained more weight than females fed the glucose-sweetened yogurt. However, when the ovaries were surgically removed prior to the onset of puberty (at 24-25 days of age), females given saccharin-sweetened yogurt along with vehicle gained excess weight. In contrast, weight gain was similar in those given saccharin-sweetened and glucose-sweetened yogurt along with anastrozole. The results suggest that behavioral differences between males and females in response to disruption of sweet→calorie relations may result from differences in patterns of local estrogen production. These differences may be established developmentally during the pubertal period in females.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
45
|
Rabin BM, Carrihill-Knoll KL, Long LV, Pitts SC, Hale BS. Effects of 17<i>β</i>-Estradiol on Cognitive Performance of Ovariectomized Female Rats Exposed to Space Radiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
McConnell SEA, Alla J, Wheat E, Romeo RD, McEwen B, Thornton JE. The role of testicular hormones and luteinizing hormone in spatial memory in adult male rats. Horm Behav 2012; 61:479-86. [PMID: 22265851 DOI: 10.1016/j.yhbeh.2012.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 01/23/2023]
Abstract
Attempts to determine the influence of testicular hormones on learning and memory in males have yielded contradictory results. The present studies examined whether testicular hormones are important for maximal levels of spatial memory in young adult male rats. To minimize any effect of stress, we used the Object Location Task which is a spatial working memory task that does not involve food or water deprivation or aversive stimuli for motivation. In Experiment 1 sham gonadectomized male rats demonstrated robust spatial memory, but gonadectomized males showed diminished spatial memory. In Experiment 2 subcutaneous testosterone (T) capsules restored spatial memory performance in gonadectomized male rats, while rats with blank capsules demonstrated compromised spatial memory. In Experiment 3, gonadectomized male rats implanted with blank capsules again showed compromised spatial memory, while those with T, dihydrotestosterone (DHT), or estradiol (E) capsules demonstrated robust spatial memory, indicating that T's effects may be mediated by its conversion to E or to DHT. Gonadectomized male rats injected with Antide, a gonadotropin-releasing hormone receptor antagonist which lowers luteinizing hormone levels, also demonstrated spatial memory, comparable to that shown by T-, E-, or DHT-treated males. These data indicate that testicular androgens are important for maximal levels of spatial working memory in male rats, that testosterone may be converted to E and/or DHT to exert its effects, and that some of the effects of these steroid hormones may occur via negative feedback effects on LH.
Collapse
|
47
|
Neese SL, Schantz SL. Testosterone impairs the acquisition of an operant delayed alternation task in male rats. Horm Behav 2012; 61:57-66. [PMID: 22047777 PMCID: PMC3308684 DOI: 10.1016/j.yhbeh.2011.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
The current study examined the effects of gonadectomy (GDX) and subsequent testosterone treatment of male Long-Evans rats on an operant variable delay spatial alternation task (DSA). Gonadally-intact rats (intact-B), GDX rats receiving implants that delivered a physiological level of testosterone (GDX-T), and GDX rats receiving blank implants (GDX-B) were tested for 25 sessions on a DSA task with variable inter-trial delays ranging from 0 to 18 s. Acquisition of the DSA task was found to be enhanced following GDX in a time and delay dependent manner. Both the GDX-T and the intact-B rats had lower performance accuracies across delays initially, relative to GDX-B rats, and this deficit persisted into subsequent testing sessions at longer delays. The GDX-T and intact-B rats also had a tendency to commit more perseverative errors during the early testing sessions, with both groups persisting in pressing a lever which had not been associated with reinforcement for at least two consecutive trials. However, both the GDX-T and intact-B groups were able to achieve performance accuracy similar to that of the GDX-B rats by the final sessions of testing. Overall, these results suggest that castration of adult male rats enhances their acquisition of an operant DSA task.
Collapse
Affiliation(s)
- Steven L Neese
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA.
| | | |
Collapse
|
48
|
Merz CJ, Tabbert K, Schweckendiek J, Klucken T, Vaitl D, Stark R, Wolf OT. Neuronal correlates of extinction learning are modulated by sex hormones. Soc Cogn Affect Neurosci 2011; 7:819-30. [PMID: 21990419 DOI: 10.1093/scan/nsr063] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In emotional learning tasks, sex differences, stress effects and an interaction of these two moderators have often been observed. The sex hormones estradiol (E2) and progesterone (P4) vary over the menstrual cycle. We tested groups with different sex hormone status: 39 men, 30 women in the luteal phase (LU, high E2+P4) and 29 women taking oral contraceptives (OC, low E2+P4). They received either 30 mg cortisol or placebo prior to instructed differential fear conditioning consisting of neutral conditioned stimuli (CS) and an electrical stimulation (unconditioned stimulus; UCS). One figure (CS+) was paired with the UCS, the other figure (CS-) never. During extinction, no electrical stimulation was administered. Regarding fear acquisition, results showed higher skin conductance and higher brain responses to the CS+ compared to the CS- in several structures that were not modulated by cortisol or sex hormones. However, OC women exhibited higher CS+/CS- differentiations than men and LU women in the amygdala, thalamus, anterior cingulate and ventromedial prefrontal cortex during extinction. The suppression of endogenous sex hormones by OC seems to alter neuronal correlates of extinction. The observation that extinction is influenced by the current sex hormone availability is relevant for future studies and might also be clinically important.
Collapse
Affiliation(s)
- Christian J Merz
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Aubele T, Kritzer MF. Androgen influence on prefrontal dopamine systems in adult male rats: localization of cognate intracellular receptors in medial prefrontal projections to the ventral tegmental area and effects of gonadectomy and hormone replacement on glutamate-stimulated extracellular dopamine level. Cereb Cortex 2011; 22:1799-812. [PMID: 21940701 DOI: 10.1093/cercor/bhr258] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although androgens are known to modulate dopamine (DA) systems and DA-dependent behaviors of the male prefrontal cortex (PFC), how this occurs remains unclear. Because relatively few ventral tegmental area (VTA) mesoprefrontal DA neurons contain intracellular androgen receptors (ARs), studies presented here combined retrograde tracing and immunolabeling for AR in male rats to determine whether projections afferent to the VTA might be more AR enriched. Results revealed PFC-to-VTA projections to be substantially AR enriched. Because these projections modulate VTA DA cell firing and PFC DA levels, influence over this pathway could be means whereby androgens modulate PFC DA. To assess the hormone sensitivity of glutamate stimulation of PFC DA tone, additional studies utilized microdialysis/reverse dialysis application of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptor subtype-selective antagonists which act locally within the PFC and tegmentally via inhibition or disinhibition of PFC-to-VTA afferents to modulate intracortical DA levels. Here, we compared the effects of these drug challenges in control, gonadectomized, and gonadectomized rats given testosterone or estradiol. This revealed complex effects of gonadectomy on antagonist-stimulated PFC DA levels that together with the anatomical data above suggest that androgen stimulation of PFC DA systems does engage glutamatergic circuitry and perhaps that of the AR-enriched glutamatergic projections from PFC-to-VTA specifically.
Collapse
Affiliation(s)
- T Aubele
- Graduate Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
50
|
Sutcliffe JS. Female rats are smarter than males: influence of test, oestrogen receptor subtypes and glutamate. Curr Top Behav Neurosci 2011; 8:37-56. [PMID: 21365438 DOI: 10.1007/7854_2011_120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Interest in the influence of sex hormones within the central nervous system is a rapidly expanding area of research. A considerable amount of evidence has recently been obtained to support an important role of the gonadal steroids in cognitive processing. Not only are distinct and complementary behavioural phenotypes evident for each gender, in the case of the female but they are also reliant upon hormonal status. Gender influences and hormonal status are thus paramount and should encourage the development of more hypothesis-driven research strategies to understand gender differences in both normal behaviour and where this is altered in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jane Suzanne Sutcliffe
- Maccine Pte Ltd, 10 Science Park Road, #01-05 The Alpha, Singapore Science Park II, Singapore, 117684, Singapore.
| |
Collapse
|