1
|
Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe. Genetics 2017; 206:481-496. [PMID: 28292918 DOI: 10.1534/genetics.117.200972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the Hermes transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single Hermes insertions using a novel S. pombe transient transfection system, and used Hermes excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had <5 bp of sequence loss or mutation, characteristic for NHEJ and similar excision events in metazoans, and in contrast to the more extensive loss seen in S. cerevisiaeS. pombe NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mre11 mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair.
Collapse
|
2
|
Berkowska MA, van der Burg M, van Dongen JJM, van Zelm MC. Checkpoints of B cell differentiation: visualizing Ig-centric processes. Ann N Y Acad Sci 2012; 1246:11-25. [PMID: 22236426 DOI: 10.1111/j.1749-6632.2011.06278.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The generation of antibody responses and B cell memory can only take place following multiple steps of differentiation. Key molecular processes during precursor B cell differentiation in bone marrow generate unique antibodies. These antibodies are further optimized via molecular modifications during immune responses in peripheral lymphoid organs. Multiple checkpoints ensure proper differentiation of precursor and mature B lymphocytes. Many of these checkpoints have been found disrupted in patients with a primary immunodeficiency. Based on studies in these patients and in mouse models, new insights have been generated in B cell differentiation and antibody responses. Still, in many patients with impaired antibody formation, it remains unclear how B cells are affected. In this perspective, we present 11 critical processes in B cell differentiation. We discuss how defects in these processes can result in impaired checkpoint selection and how they can be visualized in healthy subjects and patients with immunodeficiency or other immunological disease.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
3
|
de Miranda NF, Björkman A, Pan-Hammarström Q. DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci 2012; 1246:50-63. [PMID: 22236430 DOI: 10.1111/j.1749-6632.2011.06322.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adaptive component of the immune system depends greatly on the generation of genetic diversity provided by lymphocyte-specific genomic rearrangements. V(D)J recombination, class switch recombination (CSR), and somatic hypermutation (SHM) constitute complex and vulnerable processes that are orchestrated by a multitude of DNA repair pathways. When inherited defects in certain DNA repair proteins are present, lymphocyte development can be compromised and, consequently, patients can develop primary immunodeficiencies (PIDs). PID patients often have a strong predisposition for cancer development as a result of genomic instability generated from defective DNA repair mechanisms. Tumors of lymphoid origin are one of the most common PID-associated cancers, likely due to DNA lesions resulting from defective V(D)J, CSR, and SHM. In this review, we describe PID syndromes that confer an increased risk for cancer development. Furthermore, we discuss the role of the affected proteins in tumorigenesis/lymphomagenesis.
Collapse
Affiliation(s)
- Noel Fcc de Miranda
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
4
|
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive syndrome of chromosomal instability mainly characterized by microcephaly at birth, combined immunodeficiency and predisposition to malignancies. Due to a founder mutation in the underlying NBN gene (c.657_661del5) the disease is encountered most frequently among Slavic populations. The principal clinical manifestations of the syndrome are: microcephaly, present at birth and progressive with age, dysmorphic facial features, mild growth retardation, mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. Combined cellular and humoral immunodeficiency with recurrent sinopulmonary infections, a strong predisposition to develop malignancies (predominantly of lymphoid origin) and radiosensitivity are other integral manifestations of the syndrome. The NBN gene codes for nibrin which, as part of a DNA repair complex, plays a critical nuclear role wherever double-stranded DNA ends occur, either physiologically or as a result of mutagenic exposure. Laboratory findings include: (1) spontaneous chromosomal breakage in peripheral T lymphocytes with rearrangements preferentially involving chromosomes 7 and 14, (2) sensitivity to ionizing radiation or radiomimetics as demonstrated in vitro by cytogenetic methods or by colony survival assay, (3) radioresistant DNA synthesis, (4) biallelic hypomorphic mutations in the NBN gene, and (5) absence of full-length nibrin protein. Microcephaly and immunodeficiency are common to DNA ligase IV deficiency (LIG4 syndrome) and severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation due to NHEJ1 deficiency (NHEJ1 syndrome). In fact, NBS was most commonly confused with Fanconi anaemia and LIG4 syndrome. Genetic counselling should inform parents of an affected child of the 25% risk for further children to be affected. Prenatal molecular genetic diagnosis is possible if disease-causing mutations in both alleles of the NBN gene are known. No specific therapy is available for NBS, however, hematopoietic stem cell transplantation may be one option for some patients. Prognosis is generally poor due to the extremely high rate of malignancies. Zespół Nijmegen (Nijmegen breakage syndrome; NBS) jest rzadkim schorzeniem z wrodzoną niestabilnością chromosomową dziedziczącym się w sposób autosomalny recesywny, charakteryzującym się przede wszystkim wrodzonym małogłowiem, złożonymi niedoborami odporności i predyspozycją do rozwoju nowotworów. Choroba występuje najczęściej w populacjach słowiańskich, w których uwarunkowana jest mutacją założycielską w genie NBN (c.657_661del5). Do najważniejszych objawów zespołu zalicza się: małogłowie obecne od urodzenia i postępujące z wiekiem, charakterystyczne cechy dysmorfii twarzy, opóźnienie wzrastania, niepełnosprawność intelektualną w stopniu lekkim do umiarkowanego oraz hipogonadyzm hipogonadotropowy u dziewcząt. Na obraz choroby składają się także: niedobór odporności komórkowej i humoralnej, który jest przyczyną nawracających infekcji, znaczna predyspozycja do rozwoju nowotworów złośliwych (zwłaszcza układu chłonnego), a także zwiększona wrażliwość na promieniowanie jonizujące. Wyniki badań laboratoryjnych wykazują: (1) spontaniczną łamliwość chromosomów w limfocytach T krwi obwodowej, z preferencją do rearanżacji chromosomów 7 i 14, (2) nadwrażliwość na promieniowanie jonizujące lub radiomimetyki, co można wykazać metodami in vitro, (3) radiooporność syntezy DNA, (4) hipomorficzne mutacje na obu allelach genu NBN, oraz (5) brak w komórkach pełnej cząsteczki białka, nibryny. Małogłowie i niedobór odporności występują także w zespole niedoboru ligazy IV (LIG4) oraz w zespole niedoboru NHEJ1. Rodzice powinni otrzymać poradę genetyczną ze względu na wysokie ryzyko (25%) powtórzenia się choroby u kolejnego potomstwa. Możliwe jest zaproponowanie molekularnej diagnostyki prenatalnej jeżeli znane są obie mutacje będące przyczyną choroby. Nie ma możliwości zaproponowania specyficznej terapii, ale przeszczep szpiku może być alternatywą dla niektórych pacjentów. Generalnie prognoza nie jest pomyślna z uwagi na wysokie ryzyko rozwoju nowotworu.
Collapse
|
5
|
Dual functions of Nbs1 in the repair of DNA breaks and proliferation ensure proper V(D)J recombination and T-cell development. Mol Cell Biol 2010; 30:5572-81. [PMID: 20921278 DOI: 10.1128/mcb.00917-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunodeficiency and lymphoid malignancy are hallmarks of the human disease Nijmegen breakage syndrome (NBS; OMIM 251260), which is caused by NBS1 mutations. Although NBS1 has been shown to bind to the T-cell receptor alpha (TCRα) locus, its role in TCRβ rearrangement is unclear. Hypomorphic mutations of Nbs1 in mice and patients result in relatively mild T-cell deficiencies, raising the question of whether the truncated Nbs1 protein might have clouded a certain function of NBS1 in T-cell development. Here we show that the deletion of the entire Nbs1 protein in T-cell precursors (Nbs1(T-del)) results in severe lymphopenia and a hindrance to the double-negative 3 (DN3)-to-DN4 transition in early T-cell development, due to abnormal TCRβ coding and signal joints as well as the functions of Nbs1 in T-cell expansion. Chromatin immunoprecipitation (ChIP) analysis of the TCR loci reveals that Nbs1 depletion compromises the loading of Mre11/Rad50 to V(D)J-generated DNA double-strand breaks (DSBs) and thereby affects resection of DNA termini and chromatin conformation of the postcleavage complex. Although a p53 deficiency relieves the DN3→DN4 transition block, neither a p53 deficiency nor ectopic expression of TCRαβ rescues the major T-cell loss in Nbs1(T-del) mice. All together, these results demonstrate that Nbs1's functions in both repair of V(D)J-generated DSBs and proliferation are essential for T-cell development.
Collapse
|
6
|
Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell differentiation defect in NBS patients. Blood 2010; 115:4770-7. [PMID: 20378756 DOI: 10.1182/blood-2009-10-250514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Nijmegen breakage syndrome (NBS) is a rare inherited condition, characterized by microcephaly, radiation hypersensitivity, chromosomal instability, an increased incidence of (mostly) lymphoid malignancies, and immunodeficiency. NBS is caused by hypomorphic mutations in the NBN gene (8q21). The NBN protein is a subunit of the MRN (Mre11-Rad50-NBN) nuclear protein complex, which associates with double-strand breaks. The immunodeficiency in NBS patients can partly be explained by strongly reduced absolute numbers of B lymphocytes and T lymphocytes. We show that NBS patients have a disturbed precursor B-cell differentiation pattern and significant disturbances in the resolution of recombination activating gene-induced IGH breaks. However, the composition of the junctional regions as well as the gene segment usage of the reduced number of successful immunoglobulin gene rearrangements were highly similar to healthy controls. This indicates that the NBN defect leads to a quantitative defect in V(D)J recombination through loss of juxtaposition of recombination activating gene-induced DNA ends. The resulting reduction in bone marrow B-cell efflux appeared to be partly compensated by significantly increased proliferation of mature B cells. Based on these observations, we conclude that the quantitative defect will affect the B-cell receptor repertoire, thus contributing to the observed immunodeficiency in NBS patients.
Collapse
|
7
|
Taylor EM, Cecillon SM, Bonis A, Chapman JR, Povirk LF, Lindsay HD. The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis. Nucleic Acids Res 2009; 38:441-54. [PMID: 19892829 PMCID: PMC2811014 DOI: 10.1093/nar/gkp905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.
Collapse
Affiliation(s)
- Elaine M Taylor
- Divisions of Medicine and Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | | | | | | | | | |
Collapse
|
8
|
Deriano L, Stracker TH, Baker A, Petrini JHJ, Roth DB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell 2009; 34:13-25. [PMID: 19362533 DOI: 10.1016/j.molcel.2009.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/28/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Abstract
Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.
Collapse
Affiliation(s)
- Ludovic Deriano
- Department of Pathology, The Helen L and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine and , New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
9
|
Helmink BA, Bredemeyer AL, Lee BS, Huang CY, Sharma GG, Walker LM, Bednarski JJ, Lee WL, Pandita TK, Bassing CH, Sleckman BP. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. ACTA ACUST UNITED AC 2009; 206:669-79. [PMID: 19221393 PMCID: PMC2699138 DOI: 10.1084/jem.20081326] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Mre11–Rad50–Nbs1 (MRN) complex functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle. During HR, the MRN complex functions directly in the repair of DNA DSBs and in the initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM) serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA replication in G0/G1 phase cells has been less clear. In developing G1-phase lymphocytes, DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J recombination. We show that during V(D)J recombination, MRN deficiency leads to the aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover, these defects in V(D)J recombination are remarkably similar to those observed in ATM-deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB response pathways during lymphocyte antigen receptor gene assembly.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gładkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, van Krieken JHJM, Chrzanowska KH, van Dongen JJM, Langerak AW. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol 2008; 216:337-44. [PMID: 18788073 DOI: 10.1002/path.2418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, radiation hypersensitivity, chromosomal instability and increased incidence of malignancies. In Poland 105 NBS cases showing mutations in the NBS gene (nibrin, NBN), have been diagnosed, approximately 53% of which have developed cancer, mainly (>90%) lymphoid malignancies. This study is based upon the largest reported group of NBS-associated lymphomas. The predominant lymphoma types found in these 14 NBS children were diffuse large B cell lymphoma (DLBCL) and T cell lymphoblastic lymphoma (T-LBL/ALL), all showing monoclonal Ig/TCR rearrangements. The spectrum of NBS lymphomas is completely different from sporadic paediatric lymphomas and lymphomas in other immunodeficient patients. Morphological and molecular analysis of consecutive lymphoproliferations in six NBS patients revealed two cases of true secondary lymphoma. Furthermore, 9/13 NBS patients with lymphomas analysed by split-signal FISH showed breaks in the Ig or TCR loci, several of which likely represent chromosome aberrations. The combined data would fit a model in which an NBN gene defect results in a higher frequency of DNA misrejoining during double-strand break (DSB) repair, thereby contributing to an increased likelihood of lymphoma formation in NBS patients.
Collapse
Affiliation(s)
- M Gładkowska-Dura
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007; 8:801-8. [PMID: 17641661 DOI: 10.1038/ni1498] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double-stranded DNA breaks (DSBs) can result in chromosomal abnormalities, including deletions, translocations and aneuploidy, which can promote neoplastic transformation. DSBs arise accidentally during DNA replication and can be induced by environmental factors such as ultraviolet light or ionizing radiation, and they are generated during antigen receptor-diversification reactions in lymphocytes. Cellular pathways that maintain genomic integrity use sophisticated mechanisms that recognize and repair all DSBs regardless of their origin. Such pathways, along with DNA-damage checkpoints, ensure that either the damage is properly repaired or cells with damaged DNA are eliminated. Here we review how impaired DNA-repair or DNA-damage checkpoints can lead to genetic instability and predispose lymphocytes undergoing diversification of antigen receptor genes to malignant transformation.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
12
|
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81:7034-40. [PMID: 17459921 PMCID: PMC1933317 DOI: 10.1128/jvi.00029-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells infected by adenovirus E4 mutants accumulate end-to-end concatemers of the viral genome that are assembled from unit-length viral DNAs by nonhomologous end joining (NHEJ). Genome concatenation can be prevented by expression either of E4 11k (product of E4orf3) or of the complex of E4 34k (product of E4orf6) and E1b 55k. Both E4 11k and the E4 34k/E1b 55k complex prevent concatenation at least in part by inactivation of the host protein Mre11: E4 11k sequesters Mre11 in aggresomes, while the E4 34k/E1b 55k complex participates in a virus-specific E3 ubiquitin ligase that mediates ubiquitination and proteasomal degradation. The E4 34k/E1b 55k complex, but not E4 11k, also inhibits NHEJ activity on internal breaks in the viral genome and on V(D)J recombination substrate plasmids, suggesting that it may interfere with NHEJ independently of its effect on Mre11. We show here that DNA ligase IV, which performs the joining step of NHEJ, is degraded as a consequence of adenovirus infection. Degradation is dependent upon E4 34k and E1b 55k, functional proteasomes, and the activity of cellular cullin 5, a component of the adenoviral ubiquitin ligase. DNA ligase IV also interacts physically with E1b 55k. The data demonstrate that DNA ligase IV, like Mre11, is a substrate for the adenovirus-specific E3 ubiquitin ligase; identify an additional viral approach to prevention of genome concatenation; and provide a mechanism for the general inhibition of NHEJ by adenoviruses.
Collapse
Affiliation(s)
- Amy Baker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
13
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Rollinson S, Kesby H, Morgan GJ. Haplotypic variation in MRE11, RAD50 and NBS1 and risk of non-Hodgkin's lymphoma. Leuk Lymphoma 2006; 47:2567-83. [PMID: 17169801 DOI: 10.1080/10428190600909743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The MRE11-RAD50-NBS1 tri-complex is involved in the cellular response to DNA double strand breaks, detecting DNA damage, activating cell cycle checkpoints and apoptosis. Defects in members of the tri-complex are linked to increased chromosomal instability and in lymphoma predisposition. Using genotyping data from six intronic or gene flanking variants in MRE11, five in NBS1 and six in RAD50 in 461 non-Hodgkin's lymphoma cases and 461 age, sex matched controls, Phase 2.1 was used to impute haplotypes for each of these genes. It was observed that the average variant density (12 kb) was dense enough to capture the majority of genetic variation for each locus examined, encoded by four or five common haplotypes. There were no significant differences in allele or genotype frequency, global haplotype distribution between the cases and control, nor effect for individual haplotypes when analysed by unconditional logistic regression for either RAD50 or NBS1. A protective effect against follicular lymphoma was seen for the MRE11 rs601341 variant, the homozygous T allele being associated with an odds ratio (OR) of 0.50, 95% confidence interval (95% CI) 0.26 - 0.97, while a protective effect was seen for the MRE11 haplotype GCTCA (OR 0.72, 95% CI 0.53 - 0.97) for diffuse large B-cell lymphoma. While reproduction of this data in other datasets is indicated, the results are indicative for a role for MRE11 in non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Sara Rollinson
- Division of Laboratory and Regenerative Medicine, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
15
|
Yang YG, Saidi A, Frappart PO, Min W, Barrucand C, Dumon-Jones V, Michelon J, Herceg Z, Wang ZQ. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks. EMBO J 2006; 25:5527-38. [PMID: 17082765 PMCID: PMC1679756 DOI: 10.1038/sj.emboj.7601411] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 10/06/2006] [Indexed: 12/22/2022] Open
Abstract
NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting techniques. We show that cells lacking Nbs1 display reduced HR of the single DSB in chromosomally integrated substrate, affecting both homology-directed repair (HDR) and single-stranded annealing pathways, and, surprisingly, increased NHEJ-mediated sequence deletion. Moreover, focus formation at DSBs and chromatin recruitment of the Nbs1 partners Rad50 and Mre11 as well as Rad51 and Brca1 are attenuated in these cells, whereas the NHEJ molecule Ku70 binding to chromatin is not affected. These data provide a novel insight into the function of MRN in the branching of DSB repair pathways.
Collapse
Affiliation(s)
- Yun-Gui Yang
- International Agency for Research on Cancer, Lyon, France
| | - Amal Saidi
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | - Wookee Min
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France
| | - Zhao-Qi Wang
- International Agency for Research on Cancer, Lyon, France
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Tel.: +49 3641 656415; Fax: +49 3641 656413; E-mail:
| |
Collapse
|
16
|
Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res 2006; 166:454-62. [PMID: 16972754 DOI: 10.1667/rr3606.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/02/2006] [Indexed: 11/03/2022]
Abstract
NBS1 is essential for the repair of radiation-induced DNA double-strand breaks (DSBs) in yeast and higher vertebrate cells. In this study, we examined whether suppressed NBS1 expression by small interference RNA (siRNA) could enhance radiation sensitivity in cancer cells with different TP53 status. We used human non-small cell lung cancer cells differing in TP53 gene status (H1299/wtp53 cells bearing wild-type TP53 or H1299/mp53 cells bearing mutant TP53). A DNA cassette expressing siRNA targeted for the NBS1 gene was transfected into those cell lines, and radiation sensitivity was examined with a colony-forming assay. Cellular levels of NBS1 and other proteins were analyzed using Western blotting. We found that the radiation sensitivity of H1299/wtp53 and H1299/mp53 cells was enhanced by transfection of the DNA cassette. In the NBS1-siRNA-transfected cells, we observed decreased constitutive expression of NBS1 protein and decreased radiation-induced accumulation of phosphorylated NBS1 protein. In addition, radiation-induced expression of the transcription factor NF-kappaB (NFKB) and XIAP (X-chromosome-linked inhibitor of apoptosis protein) was suppressed by NBS1-siRNA. Enhanced X-ray sensitivity after NBS1-siRNA transfection was achieved in TP53 wild-type cells and sensitivity was even more pronounced in TP53 mutant cells. The transfection of siRNA targeted for XIAP also enhanced X-ray sensitivity even more for TP53 mutant cells compared to TP53 wild-type cells. Our data suggest that the sensitization to radiation results from NBS1-siRNA-mediated suppression of DNA repair and/ or X-ray-induced cell survival signaling pathways through NFKB and XIAP. siRNA targeting appears to be a novel radiation-sensitizing agent, particularly in human TP53 mutant cancer cells.
Collapse
Affiliation(s)
- Ken Ohnishi
- Department of Biology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 2006; 16:45-54. [PMID: 16467875 DOI: 10.1038/sj.cr.7310007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance of telomere stability.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, 80523, USA.
| | | | | |
Collapse
|
19
|
Clejan I, Boerckel J, Ahmed S. Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 2006; 173:1301-17. [PMID: 16702421 PMCID: PMC1526663 DOI: 10.1534/genetics.106.058628] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.
Collapse
Affiliation(s)
- Iuval Clejan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
20
|
Kegel A, Martinez P, Carter SD, Åström SU. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 2006; 34:1633-45. [PMID: 16549875 PMCID: PMC1405753 DOI: 10.1093/nar/gkl064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/21/2006] [Accepted: 02/28/2006] [Indexed: 11/13/2022] Open
Abstract
Illegitimate recombination (IR) is the process by which two DNA molecules not sharing homology to each other are joined. In Kluyveromyces lactis, integration of heterologous DNA occurred very frequently therefore constituting an excellent model organism to study IR. IR was completely dependent on the nonhomologous end-joining (NHEJ) pathway for DNA double strand break (DSB) repair and we detected no other pathways capable of mediating IR. NHEJ was very versatile, capable of repairing both blunt and non-complementary ends efficiently. Mapping the locations of genomic IR-events revealed target site preferences, in which intergenic regions (IGRs) and ribosomal DNA were overrepresented six-fold compared to open reading frames (ORFs). The IGR-events occurred predominantly within transcriptional regulatory regions. In a rad52 mutant strain IR still preferentially occurred at IGRs, indicating that DSBs in ORFs were not primarily repaired by homologous recombination (HR). Introduction of ectopic DSBs resulted in the efficient targeting of IR to these sites, strongly suggesting that IR occurred at spontaneous mitotic DSBs. The targeting efficiency was equal when ectopic breaks were introduced in an ORF or an IGR. We propose that spontaneous DSBs arise more frequently in transcriptional regulatory regions and in rDNA and such DSBs can be mapped by analyzing IR target sites.
Collapse
Affiliation(s)
- Andreas Kegel
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Paula Martinez
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Sidney D. Carter
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Howlett NG, Scuric Z, D'Andrea AD, Schiestl RH. Impaired DNA double strand break repair in cells from Nijmegen breakage syndrome patients. DNA Repair (Amst) 2006; 5:251-7. [PMID: 16309973 DOI: 10.1016/j.dnarep.2005.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/19/2005] [Accepted: 10/07/2005] [Indexed: 11/30/2022]
Abstract
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.
Collapse
Affiliation(s)
- Niall G Howlett
- Department of Human Genetics, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
22
|
Clatworthy AE, Valencia-Burton MA, Haber JE, Oettinger MA. The MRE11-RAD50-XRS2 Complex, in Addition to Other Non-homologous End-joining Factors, Is Required for V(D)J Joining in Yeast. J Biol Chem 2005; 280:20247-52. [PMID: 15757898 DOI: 10.1074/jbc.m500126200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.
Collapse
Affiliation(s)
- Anne E Clatworthy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
23
|
Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N. ATM signaling and genomic stability in response to DNA damage. Mutat Res 2005; 569:123-32. [PMID: 15603757 DOI: 10.1016/j.mrfmmm.2004.04.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/09/2004] [Indexed: 01/10/2023]
Abstract
DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Cancer Fund Research Unit, The Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
DNA double strand breaks (DSBs) are among the most dangerous lesions that can occur in the genome of eukaryotic cells. Proper repair of chromosomal DSBs is critical for maintaining cellular viability and genomic integrity and, in multi-cellular organisms, for suppression of tumorigenesis. Thus, eukaryotic cells have evolved specialized and redundant molecular mechanisms to sense, respond to, and repair DSBs. In this chapter, we provide an overview of the progress that has been made over the last decade in elucidating the identity and function of components that participate in the cellular response to chromosomal DSBs. Then, we discuss, in more depth, the response to DSBs that occur in the context of the V(D)J recombination and IgH class switch recombination reactions that occur in cells of the lymphocyte lineage.
Collapse
Affiliation(s)
- Craig H Bassing
- Department of Genetics, The CBR Institute for Biomedical Research, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Budman J, Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 2005; 24:849-60. [PMID: 15692565 PMCID: PMC549622 DOI: 10.1038/sj.emboj.7600563] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/03/2005] [Indexed: 12/22/2022] Open
Abstract
In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of opposing ends by base pairing. To achieve this, polymerase activity efficiently synthesized DNA across discontinuities in the template strand, and nuclease activity removed a limited number of nucleotides back to regions of microhomology. Processing was suppressed for DNA ends that could be ligated directly, biasing the reaction to preserve DNA sequence and maintain genomic integrity. DNA sequence internal to the ends influenced the spectrum of processing events for noncompatible ends. Furthermore, internal DNA sequence strongly influenced joining efficiency, even in the absence of processing. These results support a model in which DNA-PKcs plays a central role in regulating the processing of ends for NHEJ.
Collapse
Affiliation(s)
- Joe Budman
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
- Departments of Medicine and Biochemistry, Stanford University, CCSR Building Room 1145, 269 Campus Drive, Stanford, CA 94305-5151, USA. Tel.: +1 650 725 6442; Fax: +1 650 736 2282; E-mail:
| |
Collapse
|
26
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
27
|
Toyooka T, Ibuki Y, Koike M, Ohashi N, Takahashi S, Goto R. Coexposure to benzo[a]pyrene plus UVA induced DNA double strand breaks: visualization of Ku assembly in the nucleus having DNA lesions. Biochem Biophys Res Commun 2004; 322:631-6. [PMID: 15325276 DOI: 10.1016/j.bbrc.2004.07.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant with potential carcinogenicity. It has been shown that BaP, upon UVA irradiation, synergistically induced oxidative DNA damage, but other DNA damage was not confirmed. In this study, we examined whether coexposure to BaP plus UVA induces double strand breaks (DSBs) using xrs-5 cells, deficient in the repair of DSBs (Ku80 mutant), and whether Ku translocates involving the formation of DSBs. BaP plus UVA had a significant cytotoxic effect on CHO-K1 cells and an even more drastic effect on Ku80-deficient, xrs-5 cells, suggesting that the DSBs were generated by coexposure to BaP plus UVA. The DSBs were repaired in CHO-K1 cells within 30 min, but not in xrs-5 cells, indicating the involvement of a non-homologous end joining, which needs Ku proteins. Furthermore, we succeeded in visualizing that Ku80 rapidly assembled to the exposed region, in which DSBs might be generated, and clarified that the presence of both Ku70 and Ku80 was important for their accumulation.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stöckl L, Varon R, Herceg Z, Sperling K, Wang ZQ, Digweed M. An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 2004; 13:2385-97. [PMID: 15333589 DOI: 10.1093/hmg/ddh278] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human genetic disorder, Nijmegen breakage syndrome, is characterized by radiosensitivity, immunodeficiency, chromosomal instability and an increased risk for cancer of the lymphatic system. The NBS1 gene codes for a protein, nibrin, involved in the processing/repair of DNA double strand breaks and in cell cycle checkpoints. Most patients are homozygous for a founder mutation, a 5 bp deletion, which might not be a null mutation, as functionally relevant truncated nibrin proteins are observed, at least in vitro. In agreement with this hypothesis, null mutation of the homologous gene, Nbn, is lethal in mice. Here, we have used Cre recombinase/loxP technology to generate an inducible Nbn null mutation allowing the examination of DNA-repair and cell cycle-checkpoints in the complete absence of nibrin. Induction of Nbn null mutation leads to the loss of the G2/M checkpoint, increased chromosome damage, radiomimetic-sensitivity and cell death. In vivo, this particularly affects the lymphatic tissues, bone marrow, thymus and spleen, whereas liver, kidney and muscle are hardly affected. In vitro, null mutant murine fibroblasts can be rescued from cell death by transfer of human nibrin cDNA and, more significantly, by a cDNA carrying the 5 bp deletion. This demonstrates, for the first time, that the common human mutation is hypomorphic and that the expression of a truncated protein is sufficient to restore nibrin's vital cellular functions.
Collapse
Affiliation(s)
- Ilja Demuth
- Institut für Humangenetik, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 2004; 3:1207-17. [PMID: 15279809 DOI: 10.1016/j.dnarep.2004.03.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nijmegen breakage syndrome is a rare autosomal recessive genetic disease belonging to a group of disorders often called chromosome instability syndromes. In addition to a characteristic facial appearance and microcephaly, patients suffering from Nijmegen breakage syndrome have a range of symptoms including radiosensitivity, immunodeficiency, increased cancer risk and growth retardation. The underlying gene, NBS1, is located on human chromosome 8q21 and codes for a protein product termed nibrin, Nbs1 or p95. Over 90% of patients are homozygous for a founder mutation: a deletion of five base pairs which leads to a framehift and protein truncation. The protein nibrin/Nbs1 is suspected to be involved in the cellular response to DNA damage caused by ionising irradiation, thus accounting for the radiosensitivity of Nijmegen breakage syndrome. We review here some of the more recent findings on the NBS1 gene and discuss how they impinge on the clinical manifestation of the disease.
Collapse
Affiliation(s)
- Martin Digweed
- Institute of Human Genetics, Charité-University Medicine Berlin, Augustenburger platz 1, Berlin 13353, Germany.
| | | |
Collapse
|
30
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 2004; 3:817-26. [PMID: 15279766 DOI: 10.1016/j.dnarep.2004.03.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertebrate immune system generates double-strand DNA (dsDNA) breaks to generate the antigen receptor repertoire of lymphocytes. After those double-strand breaks have been created, the DNA joinings required to complete the process are carried out by the nonhomologous DNA end joining pathway, or NHEJ. The NHEJ pathway is present not only in lymphocytes, but in all eukaryotic cells ranging from yeast to humans. The NHEJ pathway is needed to repair these physiologic breaks, as well as challenging pathologic breaks that arise from ionizing radiation and oxidative damage to DNA.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Ctr., Rm. 5428, University of Southern California Keck School of Medicine, Department of Pathology, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
31
|
Le Deist F, Poinsignon C, Moshous D, Fischer A, de Villartay JP. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200:142-55. [PMID: 15242402 DOI: 10.1111/j.0105-2896.2004.00169.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(D)J recombination represents one of the three mechanisms that contribute to the diversity of the immune repertoire of B lymphocytes and T lymphocytes. It also constitutes a major checkpoint during the development of the immune system. Indeed, any V(D)J recombination deficiency leads to a block of B-cell and T-cell maturation in humans and animal models, leading to severe combined immunodeficiency (T-B-SCID). Nine factors have been identified so far to participate in V(D)J recombination. The discovery of Artemis, mutated in a subset of T-B-SCID, provided some new information regarding one of the missing V(D)J recombinase activities: hairpin opening at coding ends prior to DNA repair of the recombination activating genes 1/2-generated DNA double-strand break. New conditions of immune deficiency in humans are now under investigations and should lead to the identification of additional V(D)J recombination/DNA repair factors.
Collapse
Affiliation(s)
- Françoise Le Deist
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Schwarz K, Ma Y, Pannicke U, Lieber MR. Human severe combined immune deficiency and DNA repair. Bioessays 2004; 25:1061-70. [PMID: 14579247 DOI: 10.1002/bies.10344] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human severe combined immune deficiency (SCID) is the most serious inherited immunological deficit. Recent work has revealed defects in the predominant pathway for double-strand break repair called nonhomologous DNA end joining, or NHEJ. Progress in the biochemistry and genetics of NHEJ and of human SCID has proven to be synergistic between these two fields in a manner that covers the range from biochemical etiology to considerations about possible gene therapy for the B- SCID patients.
Collapse
Affiliation(s)
- Klaus Schwarz
- Department of Transfusion Medicine, University of Ulm, Germany.
| | | | | | | |
Collapse
|
33
|
de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol 2004; 3:962-72. [PMID: 14647478 DOI: 10.1038/nri1247] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-Pierre de Villartay
- Dévelopement Normal et Pathologique du Système Immunitaire (INSERM U429), Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | |
Collapse
|
34
|
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004; 24:708-18. [PMID: 14701743 PMCID: PMC343805 DOI: 10.1128/mcb.24.2.708-718.2004] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/04/2003] [Accepted: 10/23/2003] [Indexed: 12/29/2022] Open
Abstract
The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4:712-20. [PMID: 14506474 DOI: 10.1038/nrm1202] [Citation(s) in RCA: 711] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-homologous DNA end-joining (NHEJ)--the main pathway for repairing double-stranded DNA breaks--functions throughout the cell cycle to repair such lesions. Defects in NHEJ result in marked sensitivity to ionizing radiation and ablation of lymphocytes, which rely on NHEJ to complete the rearrangement of antigen-receptor genes. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes, but which might also contribute to some of the genetic changes that underlie cancer and ageing.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California School of Medicine, 1441 Eastlake Avenue, MS 9176, Los Angeles, California 90089, USA.
| | | | | | | |
Collapse
|
36
|
Zhang K. Accessibility control and machinery of immunoglobulin class switch recombination. J Leukoc Biol 2003; 73:323-32. [PMID: 12629145 DOI: 10.1189/jlb.0702339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immunoglobulin (Ig) class switching is a process by which B lymphocytes shift from production of IgM to other Ig classes and subclasses via Ig class switch recombination (CSR). Multiple cellular and molecular processes are involved in CSR. Induction of a given IgH germline transcription initiates CSR processes. Ig germline transcription is selectively activated and induced by specific cytokine(s) via cytokine-specific signal pathways, synergized by CD40 signaling, and optimized by the 3' Ig alpha enhancers through locus control region function. Following Ig germline transcription, the switch-region DNA undergoes conformational changes so that it can serve as an appropriate substrate for nicking and cleavage by switch recombination machinery. Finally, the double-strand breaks in donor and acceptor switch DNAs are processed, repaired, and ligated through a general nonhomologous end join pathway. CSR generates a new transcriptional unit for production of a class-switched Ig isotype.
Collapse
Affiliation(s)
- Ke Zhang
- The Hart and Louse Lyon Laboratory, Division of Clinical Immunology/Allergy, Department of Medicine, University of California Los Angeles, School of Medicine, 90095-1680, USA.
| |
Collapse
|
37
|
Tauchi H, Matsuura S, Kobayashi J, Sakamoto S, Komatsu K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 2002; 21:8967-80. [PMID: 12483513 DOI: 10.1038/sj.onc.1206136] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA double-strand breaks represent the most potentially serious damage to a genome and hence, at least two pathways of DNA repair have evolved; namely, homologous recombination repair and non-homologous end joining. Defects in both rejoining processes result in genomic instability including chromosome rearrangements, LOH and gene mutations, which may lead to development of malignancies. Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation that induces double-strand breaks, and high frequency of malignancies. NBS1, the product of the gene underlying the disease, forms a multimeric complex with hMRE11/hRAD50 nuclease and recruits them to the vicinity of sites of DNA damage by direct binding to phosphorylated histone H2AX. The combination of the highly-conserved NBS1 forkhead associated domain and BRCA1 C-terminus domain has a crucial role for recognition of damaged sites. Thereafter, the NBS1-complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates. This process collaborates with cell-cycle checkpoints at S and G2 phase to facilitate DNA repair. NBS1 is also associated with telomere maintenance and DNA replication. Based on recent knowledge regarding NBS1, we propose here a two-step binding mechanism for damage recognition by repair proteins, and describe the molecular links to factors for genome stability.
Collapse
Affiliation(s)
- Hiroshi Tauchi
- Department of Environmental Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | | | | | | | | |
Collapse
|
38
|
Frank-Vaillant M, Marcand S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol Cell 2002; 10:1189-99. [PMID: 12453425 DOI: 10.1016/s1097-2765(02)00705-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stability of DNA ends generated by the HO endonuclease in yeast is surprisingly high with a half-life of more than an hour. This transient stability is unaffected by mutations that abolish nonhomologous end joining (NHEJ). The unprocessed ends interact with Yku70p and Yku80p, two proteins required for NHEJ, but not significantly with Rad52p, a protein involved in homologous recombination (HR). Repair of a double-strand break by NHEJ is unaffected by the possibility of HR, although the use of HR is increased in NHEJ-defective cells. Partial in vitro 5' strand processing suppresses NHEJ but not HR. These results show that NHEJ precedes HR temporally, and that the availability of substrate dictates the particular pathway used. We propose that transient stability of DNA ends is a foundation for the permanent stability of telomeres.
Collapse
Affiliation(s)
- Marie Frank-Vaillant
- Laboratoire du Cycle Cellulaire, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif sur Yvette Cedex, France
| | | |
Collapse
|
39
|
Gregorek H, Chrzanowska KH, Michałkiewicz J, Syczewska M, Madaliński K. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin Exp Immunol 2002; 130:319-24. [PMID: 12390322 PMCID: PMC1906518 DOI: 10.1046/j.1365-2249.2002.01971.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During an 8-year period of observation, defects of immune responses were characterized and monitored in 40 of 50 Polish children with Nijmegen breakage syndrome referred to the Children's Memorial Health Institute in Warsaw. The following parameters were determined at diagnosis: (1) concentrations of serum IgM, IgG, IgA; (2) concentrations of IgG subclasses; and (3) lymphocyte subpopulations. In addition, naturally acquired specific antibodies against Streptococcus pneumoniae were determined in 20 patients with a history of recurrent respiratory infections. During follow-up, total serum immunoglobulins and IgG subclasses were monitored systematically in 17 patients who did not receive immunomodulatory therapy. Moreover, anti-HBs antibody response was measured after vaccination of 20 children against HBV. We found that the immune deficiency in NBS is profound, highly variable, with a tendency to progress over time. Systematic monitoring of the humoral response, despite good clinical condition, is essential for early medical intervention.
Collapse
Affiliation(s)
- H Gregorek
- Department of Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
41
|
D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3:317-27. [PMID: 11988766 DOI: 10.1038/nrm805] [Citation(s) in RCA: 675] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Mre11 complex is a multisubunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2. Mutations in the genes that encode components of this complex result in DNA- damage sensitivity, genomic instability, telomere shortening and aberrant meiosis. The molecular defect that underlies these phenotypes has long been thought to be related to a DNA repair deficiency. However, recent studies have uncovered functions for the Mre11 complex in checkpoint signalling and DNA replication.
Collapse
Affiliation(s)
- Damien D'Amours
- Wellcome Trust and Cancer Research, UK Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
42
|
Abstract
The RAG proteins were long thought to serve merely as a nuclease, initiating recombination by cleaving DNA. Recent work has shown, however, that these proteins are essential for many steps in the recombination pathway, such as opening hairpins and joining broken DNA ends, and that they can also act as a transposase, targeting distorted DNA structures such as hairpins.
Collapse
Affiliation(s)
- Vicky L Brandt
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002; 108:781-94. [PMID: 11955432 DOI: 10.1016/s0092-8674(02)00671-2] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the Artemis protein in humans result in hypersensitivity to DNA double-strand break-inducing agents and absence of B and T lymphocytes (radiosensitive severe combined immune deficiency [RS-SCID]). Here, we report that Artemis forms a complex with the 469 kDa DNA-dependent protein kinase (DNA-PKcs) in the absence of DNA. The purified Artemis protein alone possesses single-strand-specific 5' to 3' exonuclease activity. Upon complex formation, DNA-PKcs phosphorylates Artemis, and Artemis acquires endonucleolytic activity on 5' and 3' overhangs, as well as hairpins. Finally, the Artemis:DNA-PKcs complex can open hairpins generated by the RAG complex. Thus, DNA-PKcs regulates Artemis by both phosphorylation and complex formation to permit enzymatic activities that are critical for the hairpin-opening step of V(D)J recombination and for the 5' and 3' overhang processing in nonhomologous DNA end joining.
Collapse
Affiliation(s)
- Yunmei Ma
- Norris Comprehensive Cancer Center, Rm. 5428, Departments of Biochemistry & Molecular Biology, Pathology, Biological Sciences, and Molecular Microbiology & Immunology, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
44
|
van Engelen BG, Hiel JA, Gabreëls FJ, van den Heuvel LP, van Gent DC, Weemaes CM. Decreased immunoglobulin class switching in Nijmegen Breakage syndrome due to the DNA repair defect. Hum Immunol 2001; 62:1324-7. [PMID: 11756000 DOI: 10.1016/s0198-8859(01)00345-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nijmegen breakage syndrome (NBS) is a rare chromosomal-instability syndrome associated with defective DNA repair. Approximately 90% of NBS patients are homozygous for a truncating mutation of the NBS1 gene. As development of the immune system relies on recombination, which involves repair of DNA breaks, one might predict that mutations in the NBS1 gene could cause immunodeficiency. We immunologically investigated the world's largest series of NBS patients (n = 74), confirmed immunodeficiency, and found a discrepancy between relatively normal IgM concentrations, and decreased IgG and IgA concentrations. In addition, a significant relation between low IgA and low IgG levels was found. These data are compatible with a defective class switching in NBS and can be explained by a role of the NBS1 protein in DNA repair, signal transduction, cell cycle regulation or apoptosis.
Collapse
Affiliation(s)
- B G van Engelen
- Institute of Neurology, University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Frank-Vaillant M, Marcand S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev 2001; 15:3005-12. [PMID: 11711435 PMCID: PMC312823 DOI: 10.1101/gad.206801] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, DNA double strand break (DSB) repair by nonhomologous end-joining (NHEJ) requires the DNA end-binding heterodimer Yku70p-Yku80p and the ligase Dnl4p associated with its cofactor Lif1p. NHEJ efficiency is down-regulated in MATa/MATalpha cells relative to MATa or MATalpha cells, but the mechanism of this mating type regulation is unknown. Here we report the identification of Lif2p, a S. cerevisiae protein that interacts with Lif1p in a two-hybrid system. Disruption of LIF2 abolishes the capacity of cells to repair DSBs by end-joining to the same extent than lif1 and dnl4 mutants. In MATa/MATalpha cells, Lif2p steady-state level is strongly repressed when other factors involved in NHEJ are unaffected. Increasing the dosage of the Lif2p protein can suppress the NHEJ defect in a/alpha cells. Together, these results indicate that NHEJ regulation by mating type is achieved, at least in part, by a regulation of Lif2p activity.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire du cycle cellulaire, Service de biochimie et de génétique moléculaire, CEA/Saclay, 91191 Gif sur Yvette cedex, France
| | | |
Collapse
|