1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Peng J, Zhang S, Han F, Wang Z. C1QBP is a critical component in the immune response of large yellow croaker (Larimichthys crocea) against visceral white spot disease caused by Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109372. [PMID: 38218420 DOI: 10.1016/j.fsi.2024.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The large yellow croaker (Larimichthys crocea) stands as a cornerstone of mariculture in China due to its significant value. However, the threat of Pseudomonas plecoglossicida infection looms large, capable of triggering "visceral white spot disease" and subsequently inflicting severe economic ramifications. Through a prior genome-wide association analysis (GWAS) aimed at understanding the resistance of the large yellow croaker to this ailment, a pivotal player emerged: the complement component 1q binding protein, aptly named LcC1qbp. This protein assumes a crucial role in the activation of the complement system. This study delves deeper into the immune response by examining the expression patterns of LcC1QBP when confronted with P. plecoglossicida. The investigation into gene expression patterns reveals LcC1qbp's widespread presence, with its highest transcriptional abundance identified in the kidney tissues. Upon infection by P. plecoglossicida, the up-regulation of LcC1qbp in major immune organs manifests at both the transcriptional and translational levels. In the context of RNA interference, transcriptome analysis of C1qbp in HEK 293T cells uncovers 1327 differentially expressed genes (DEGs), featuring 41 significant immune genes. This includes pivotal components such as C1S and C3 of the complement system, along with IL11, IL12RB2, and Myd88, among others. The outcomes of enrichment analysis spotlight the prevalence of DEGs within key pathways like immune system development, myeloid leukocyte-mediated immunity, MAPK signaling, and other immune-related routes. By unveiling the immune response mechanisms of the large yellow croaker to P. plecoglossicida infection, this study bolsters our understanding. Furthermore, it lays the groundwork for pursuing effective strategies in both preventing and treating "visceral white spot disease" in the large yellow croaker.
Collapse
Affiliation(s)
- Jia Peng
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Sen Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| | - Zhiyong Wang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| |
Collapse
|
4
|
Daman K, Yan J, Burzenski LM, Kady J, Shultz LD, Brehm MA, Emerson CP. A human immune/muscle xenograft model of FSHD muscle pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567590. [PMID: 38014123 PMCID: PMC10680822 DOI: 10.1101/2023.11.17.567590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) disease progression is associated with muscle inflammation, although its role in FSHD muscle pathology is unknown. Methods We have developed a novel humanized mouse strain, NSG-SGM3-W41, that supports the co- engraftment of human hematopoietic stem cells (HSCs) and muscle myoblasts as an experimental model to investigate the role of innate immunity in FSHD muscle pathology. Results The NSG-SGM3-W41 mouse supports the selective expansion of human innate immune cell lineages following engraftment of human HSCs and the co-engraftment and differentiation of patient-derived FSHD or control muscle myoblasts. Immunohistological and NanoString RNA expression assays establish that muscle xenografts from three FSHD subjects were immunogenic compared to those from unaffected first-degree relatives. FSHD muscle xenografts preferentially accumulated human macrophages and B cells and expressed early complement genes of the classical and alternative pathways including complement factor C3 protein, which is a mediator of early complement function through opsonization to mark damaged cells for macrophage engulfment. FSHD muscle xenografts also underwent immune donor dependent muscle turnover as assayed by human spectrin β1 immunostaining of muscle fibers and by NanoString RNA expression assays of muscle differentiation genes. Conclusions The NSG-SGM3-W41 mouse provides an experimental model to investigate the role of innate immunity and complement in FSHD muscle pathology and to develop FSHD therapeutics targeting DUX4 and the innate immunity inflammatory responses.
Collapse
|
5
|
Cavalera S, Colitti B, De Mia GM, Feliziani F, Giudici SD, Angioi PP, D'Errico F, Scalas D, Scollo A, Serra T, Chiarello M, Testa V, Di Nardo F, Baggiani C, Oggiano A, Rosati S, Anfossi L. Development of molecular and antigenic-based rapid tests for the identification of African swine fever virus in different tissues. Talanta 2023; 258:124443. [PMID: 36933298 DOI: 10.1016/j.talanta.2023.124443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
African swine fever (ASF) is a severe haemorrhagic infectious disease affecting suids, thus representing a great economic concern. Considering the importance of the early diagnosis, rapid point of care testing (POCT) for ASF is highly demanded. In this work, we developed two strategies for the rapid onsite diagnosis of ASF, based on Lateral Flow Immunoassay (LFIA) and Recombinase Polymerase Amplification (RPA) techniques. The LFIA was a sandwich-type immunoassay exploiting a monoclonal antibody directed towards the p30 protein of the virus (Mab). The Mab was anchored onto the LFIA membrane to capture the ASFV and was also labelled with gold nanoparticles for staining the antibody-p30 complex. However, the use of the same antibody for capturing and as detector ligand showed a significant competitive effect for antigen binding, so required an experimental design to minimize reciprocal interference and maximize the response. The RPA assay, employing primers to the capsid protein p72 gene and an exonuclease III probe, was performed at 39 °C. The limit of detection of the method was assessed using a plasmid encoding the target gene and resulted in 5 copy/μL. The new LFIA and RPA were applied for ASFV detection in the animal tissues usually analysed by conventional assays (i.e., real-time PCR), such as kidney, spleen, and lymph nodes. A simple and universal virus extraction protocol was applied for sample preparation, followed by DNA extraction and purification for the RPA. The LFIA only required the addition of 3% H2O2 to limit matrix interference and prevent false positive results. The two rapid methods (25 min and 15 min were needed to complete the analysis for RPA and LFIA, respectively) showed high diagnostic specificity (100%) and sensitivity (93% and 87% for LFIA and RPA, respectively) for samples with high viral load (Ct < 27). False negative results were observed for samples with low viral load (Ct > 28) and/or also containing specific antibodies to ASFV, which decreased antigen availability and were indicative of a chronic, poorly transmissible infection. The simple and rapid sample preparation and the diagnostic performance of the LFIA suggested its large practical applicability for POC diagnosis of ASF.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Turin, TO, Italy.
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Turin, TO, Italy.
| | - Gian Mario De Mia
- National Reference Laboratory for Asfivirus and Pestivirus Istituto Zooprofilattico Sperimentale Dell'Umbria e Delle Marche (IZSUM), Perugia, PG, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Asfivirus and Pestivirus Istituto Zooprofilattico Sperimentale Dell'Umbria e Delle Marche (IZSUM), Perugia, PG, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, SS, Italy
| | - Pier Paolo Angioi
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, SS, Italy
| | - Federica D'Errico
- National Reference Laboratory for Asfivirus and Pestivirus Istituto Zooprofilattico Sperimentale Dell'Umbria e Delle Marche (IZSUM), Perugia, PG, Italy
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, Turin, TO, Italy
| | - Annalisa Scollo
- Department of Veterinary Sciences, University of Turin, Turin, TO, Italy
| | - Thea Serra
- Department of Chemistry, University of Turin, Turin, TO, Italy
| | | | - Valentina Testa
- Department of Chemistry, University of Turin, Turin, TO, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Turin, TO, Italy
| | | | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, SS, Italy
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, Turin, TO, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Turin, TO, Italy
| |
Collapse
|
6
|
Amberger A, Pertoll J, Traunfellner P, Kapferer-Seebacher I, Stoiber H, Klimaschewski L, Thielens N, Gaboriaud C, Zschocke J. Degradation of collagen I by activated C1s in periodontal Ehlers-Danlos Syndrome. Front Immunol 2023; 14:1157421. [PMID: 36960056 PMCID: PMC10028100 DOI: 10.3389/fimmu.2023.1157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, lack of attached gingiva and thin and fragile gums leading to gingival recession. Connective tissue abnormalities of pEDS typically include easy bruising, pretibial plaques, distal joint hypermobility, hoarse voice, and less commonly manifestations such as organ or vessel rupture. pEDS is caused by heterozygous missense mutations in C1R and C1S genes of the classical complement C1 complex. Previously we showed that pEDS pathogenic variants trigger intracellular activation of C1r and/or C1s, leading to extracellular presence of activated C1s. However, the molecular link relating activated C1r and C1s proteases to the dysregulated connective tissue homeostasis in pEDS is unknown. Using cell- and molecular-biological assays, we identified activated C1s (aC1s) as an enzyme which degrades collagen I in cell culture and in in vitro assays. Matrix collagen turnover in cell culture was assessed using labelled hybridizing peptides, which revealed fast and comprehensive collagen protein remodeling in patient fibroblasts. Furthermore, collagen I was completely degraded by aC1s when assays were performed at 40°C, indicating that even moderate elevated temperature has a tremendous impact on collagen I integrity. This high turnover is expected to interfere with the formation of a stable ECM and result in tissues with loose compaction a hallmark of the EDS phenotype. Our results indicate that pathogenesis in pEDS is not solely mediated by activation of the complement cascade but by inadequate C1s-mediated degradation of matrix proteins, confirming pEDS as a primary connective tissue disorder.
Collapse
Affiliation(s)
- Albert Amberger
- Institute of Human Genetics, Med. Univ. Innsbruck, Innsbruck, Austria
- *Correspondence: Albert Amberger, ; Johannes Zschocke,
| | - Johanna Pertoll
- Institute of Human Genetics, Med. Univ. Innsbruck, Innsbruck, Austria
| | - Pia Traunfellner
- Institute of Human Genetics, Med. Univ. Innsbruck, Innsbruck, Austria
| | - Ines Kapferer-Seebacher
- Department of Conservative Dentistry and Periodontology, Med. Univ. Innsbruck, Innsbruck, Austria
| | | | | | - Nicole Thielens
- Univ. Grenoble Alpes, Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Christine Gaboriaud
- Univ. Grenoble Alpes, Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Johannes Zschocke
- Institute of Human Genetics, Med. Univ. Innsbruck, Innsbruck, Austria
- *Correspondence: Albert Amberger, ; Johannes Zschocke,
| |
Collapse
|
7
|
Song G, Wang S, Barkestani MN, Mullan C, Fan M, Jiang B, Jiang Q, Li X, Jane-wit D. Membrane attack complexes, endothelial cell activation, and direct allorecognition. Front Immunol 2022; 13:1020889. [PMID: 36211400 PMCID: PMC9539657 DOI: 10.3389/fimmu.2022.1020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.
Collapse
Affiliation(s)
- Guiyu Song
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoxun Wang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mahsa Nouri Barkestani
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Clancy Mullan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Fan
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Li
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dan Jane-wit
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiology, West Haven VA Medical Center, West Haven, CT, United States
| |
Collapse
|
8
|
Mabrook M, Abd El-Aziz AM, Youssif M A, Hassan R. Inhibition of CL-11 reduces pulmonary inflammation in a mouse model of Klebsiella pneumoniae lung infection. Microb Pathog 2022; 164:105408. [PMID: 35063609 DOI: 10.1016/j.micpath.2022.105408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Infection caused by K. pneumoniae is associated with severe inflammation due to stimulation of the innate immune components including the complement system, which is the main player of the innate immune response. Excessive complement-mediated inflammation may cause severe lung injury. Here we clearly show that K. pneumoniae binds to different lectin pathway carbohydrate recognition molecules and activates the complement cascade via the LP. Administration of anti-CL-11 antibodies 6 h before the infection impairs LP functional activity but it shows no effect on the survival time of mice infected with K. pneumoniae. Similarly, no significant difference in bacterial load in blood and lung tissues was observed between mice that received anti-CL-11 and control group treated with an isotype antibody. Interestingly, treatment of mice with anti-CL-11 prior to infection significantly improved histopathological changes and lung injury score induced by K. pneumoniae. Moreover, administration of anti-CL-11 reduced leukocytes infiltration into lung tissues and decreased the levels of the inflammatory mediators TNF-α, IL-6, and IL-1β in the infected mice. These findings indicate that inhibition of the LP could secure a significant level of protection against lung injury during the infection caused by K. pneumoniae.
Collapse
Affiliation(s)
- Maha Mabrook
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Youssif M
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Naseraldeen N, Michelis R, Barhoum M, Chezar J, Tadmor T, Aviv A, Shvidel L, Litmanovich A, Shehadeh M, Stemer G, Shaoul E, Braester A. The Role of Alpha 2 Macroglobulin in IgG-Aggregation and Chronic Activation of the Complement System in Patients With Chronic Lymphocytic Leukemia. Front Immunol 2021; 11:603569. [PMID: 33643290 PMCID: PMC7905172 DOI: 10.3389/fimmu.2020.603569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in the western world. One of the treatments offered for CLL is immunotherapy. These treatments activate various cellular and biochemical mechanisms, using the complement system. Recently it was shown that the complement system in CLL patients is persistently activated at a low level through the classical pathway (CP). The mechanism of chronic CP activation involves the formation of IgG-hexamers (IgG-aggregates). According to recent studies, formation of ordered IgG-hexamers occurs on cell surfaces via specific interactions between Fc regions of the IgG monomers, which occur after antigen binding. The present study investigated the formation of IgG-hexamers in CLL patients and normal (non-malignant) controls (NC), their ability to activate complement, their incidence as cell-free and cell-bound forms and the identity of the antigen causing their formation. Sera from 30 patients and 12 NC were used for separation of IgG- aggregates. The obtained IgG- aggregates were measured and used for assessment of CP activation. For evaluation of the presence of IgG- aggregates on blood cells, whole blood samples were stained and assessed by flow cytometry. Serum levels of IgG- aggregates were higher in CLL and they activated the complement system to a higher extent than in NC. Alpha 2 macroglobulin (A2M) was identified as the antigen causing the hexamerization/aggregation of IgG, and was found to be part of the hexamer structure by mass spectrometry, Western blot and flow cytometry analysis. The presence of A2M-IgG-hexamers on B-cells suggests that it may be formed on B cells surface and then be detached to become cell-free. Alternatively, it may form in the plasma and then attach to the cell surface. The exact time course of A2M-IgG-hexamers formation in CLL should be further studied. The results in this study may be useful for improvement of current immunotherapy regimens.
Collapse
Affiliation(s)
- Naseba Naseraldeen
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Regina Michelis
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Masad Barhoum
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.,Institute of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Judith Chezar
- Institute of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Tamar Tadmor
- Hematology Unit, Bnai Zion Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ariel Aviv
- Department of Hematology, Emek Medical Center, Afula, Israel
| | - Lev Shvidel
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel.,Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Adi Litmanovich
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Mona Shehadeh
- Biochemistry Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Galia Stemer
- Department of Hematology, Emek Medical Center, Afula, Israel
| | - Ety Shaoul
- Institute of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Andrei Braester
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.,Institute of Hematology, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
10
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
11
|
Goicoechea de Jorge E, López Lera A, Bayarri-Olmos R, Yebenes H, Lopez-Trascasa M, Rodríguez de Córdoba S. Common and rare genetic variants of complement components in human disease. Mol Immunol 2018; 102:42-57. [PMID: 29914697 DOI: 10.1016/j.molimm.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Genetic variability in the complement system and its association with disease has been known for more than 50 years, but only during the last decade have we begun to understand how this complement genetic variability contributes to the development of diseases. A number of reports have described important genotype-phenotype correlations that associate particular diseases with genetic variants altering specific aspects of the activation and regulation of the complement system. The detailed functional characterization of some of these genetic variants provided key insights into the pathogenic mechanisms underlying these pathologies, which is facilitating the design of specific anti-complement therapies. Importantly, these analyses have sometimes revealed unknown features of the complement proteins. As a whole, these advances have delineated the functional implications of genetic variability in the complement system, which supports the implementation of a precision medicine approach based on the complement genetic makeup of the patients. Here we provide an overview of rare complement variants and common polymorphisms associated with disease and discuss what we have learned from them.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Immunology, Complutense University, Madrid, Spain; Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alberto López Lera
- Research Institute Hospital Universitario La Paz (IdiPaz), Madrid, Spain; Ciber de Enfermedades Raras, Madrid, Spain
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Yebenes
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Santiago Rodríguez de Córdoba
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
12
|
Premzl M. Comparative genomic analysis of eutherian adiponectin genes. Heliyon 2018; 4:e00647. [PMID: 30003153 PMCID: PMC6040601 DOI: 10.1016/j.heliyon.2018.e00647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022] Open
Abstract
The present study proposed updated and standardized classification and nomenclature of eutherian adiponectin genes implicated in regulation of systemic metabolism and inflammation and activation of classical complement pathway. The revisions of comprehensive adiponectin gene data sets used eutherian comparative genomic analysis protocol and public reference genomic sequence assemblies. Among 438 potential coding sequences, the tests of reliability of eutherian public genomic sequences annotated most comprehensive curated third-party data gene data set of eutherian adiponectin genes that included 211 complete coding sequences. There were 18 major gene clusters of eutherian adiponectin genes described, one of which included evidence of differential gene expansions. For example, the present analysis initially described human ADIF2 and ADIR genes. Finally, the tests of protein molecular evolution using relative synonymous codon usage statistics confirmed protein primary structure similarities between eutherian adiponectins and tumor necrosis factor ligands.
Collapse
|
13
|
Nilojan J, Bathige SDNK, Kugapreethan R, Yang H, Kim MJ, Nam BH, Lee J. Molecular features and the transcriptional and functional delineation of complement system activators C1r and C1s from Sebastes schlegelii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:279-290. [PMID: 29247723 DOI: 10.1016/j.dci.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
C1r and C1s are serine proteases responsible for activating the classical complement pathway to initiate the complement cascade, which plays a crucial role in eliminating invading pathogenic microbes. In this study, cDNA sequences of C1r and C1s were identified from black rockfish and designated as SsC1r and SsC1s, respectively. In both sequences, two CUB domains, an EGF-like domain, two CCP domains, and a trypsin-like serine protease domain were identified. Multiple sequence alignments with known vertebrate homologs demonstrated that both sequences were highly conserved and, especially, the catalytic and substrate binding residues were completely conserved. In the constructed phylogenetic tree, C1r and C1s formed two separate clusters, which further branched into groups of related organisms. SsC1r and SsC1s joined with their respective teleostean clusters. Transcriptional analysis showed that the highest mRNA expression level was in the liver under normal physiological conditions. Significantly upregulated expression of both mRNAs in spleen and liver after pathologic stress, by intraperitoneal injection with different stimuli, suggested their vital role in immunity. The serine protease domains of SsC1r and SsC1s were cloned and the recombinant proteins were expressed and purified. A protease assay, conducted to confirm their functionality, indicated that both recombinant proteins had proteolytic activity. Taken together, these results indicate that SsC1r and SsC1s have significant properties to aid in the immunity of black rockfish by activating the complement system by proteolytic cleavage.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Roopasingam Kugapreethan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
14
|
Zhong X, Chen M, Ding M, Zhong M, Li B, Wang Y, Fu S, Yin X, Guo Z, Ye J. C1r and C1s from Nile tilapia (Oreochromis niloticus): Molecular characterization, transcriptional profiling upon bacterial and IFN-γ inductions and potential role in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:240-251. [PMID: 28882800 DOI: 10.1016/j.fsi.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The complement components C1r and C1s play a vital role in immunity with the activation of C1 complex in the classical complement pathway against pathogen infection. In this study, Nile tilapia (Oreochromis niloticus) C1r and C1s orthologs (OnC1r and OnC1s) were identified and characterized. The cDNA of OnC1r and OnC1s ORFs consisted of 1902 bp and 2100 bp of nucleotide sequence encoding polypeptides of 633 and 699 amino acids, respectively. The deduced OnC1r and OnC1s proteins both possessed CUB, EGF, CCP and SP domains, which were significantly homology to teleost. Spatial mRNA expression analysis revealed that the OnC1r and OnC1s were highly expressed in liver. After the in vivo challenges of Streptococcus agalactiae (S. agalactiae) and lipopolysaccharide (LPS), the mRNA expressions of OnC1r and OnC1s were significantly up-regulated in liver and spleen, which were consistent with immunohistochemical detection at the protein level. The up-regulation of OnC1r and OnC1s expressions were also demonstrated in head kidney monocytes/macrophages in vitro stimulated with LPS, S. agalactiae, and recombinant OnIFN-γ. Taken together, the results of this study indicated that OnC1r and OnC1s were likely to get involved in the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Meng Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Mingmei Ding
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Meiqi Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yuhong Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China.
| |
Collapse
|
15
|
Yan J, Han D, Liu C, Gao Y, Li D, Liu Y, Yang G. Staphylococcus aureus VraX specifically inhibits the classical pathway of complement by binding to C1q. Mol Immunol 2017; 88:38-44. [PMID: 28582645 DOI: 10.1016/j.molimm.2017.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 04/25/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
VraX is a protein secreted by Staphylococcus aureus, an important human pathogen. A dramatic over expression of VraX is observed when S. aureus is exposed to several antimicrobial agents; however, its function remains unclear. Here, we aimed to reveal the function of this protein and the mechanism by which it affects the immune system to enhance the pathogenesis of the bacterium. Our results showed that VraX specifically inhibited the classical pathway of the complement system. In particular, VraX could bind to the C1q protein and block the formation of the C1 complex. Deletion of VraX decreased the pathogenesis of S. aureus. Our findings indicate that over expression of VraX might be a protective response for S. aureus survival.
Collapse
Affiliation(s)
- Jun Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Dianpeng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Di Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
16
|
Reyes-López FE, Romeo JS, Vallejos-Vidal E, Reyes-Cerpa S, Sandino AM, Tort L, Mackenzie S, Imarai M. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:210-221. [PMID: 26123889 DOI: 10.1016/j.dci.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility.
Collapse
Affiliation(s)
- Felipe E Reyes-López
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jose S Romeo
- Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Eva Vallejos-Vidal
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sebastián Reyes-Cerpa
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Ana M Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Simon Mackenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - Mónica Imarai
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| |
Collapse
|
17
|
Godahewa GI, Bathige SDNK, Herath HMLPB, Noh JK, Lee J. Characterization of rock bream (Oplegnathus fasciatus) complement components C1r and C1s in terms of molecular aspects, genomic modulation, and immune responsive transcriptional profiles following bacterial and viral pathogen exposure. FISH & SHELLFISH IMMUNOLOGY 2015; 46:656-668. [PMID: 26241508 DOI: 10.1016/j.fsi.2015.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
The complement components C1r and C1s play a crucial role in innate immunity via activation of the classical complement cascade system. As initiators of the pathogen-induced signaling cascade, C1r and C1s modulate innate immunity. In order to understand the immune responses of teleost C1r and C1s, Oplegnathus fasciatus C1r and C1s genes (OfC1r and OfC1s) were identified and characterized. The genomic sequence of OfC1r was enclosed with thirteen exons that represented a putative peptide with 704 amino acids (aa), whereas eleven exons of OfC1s represented a 691 aa polypeptide. In addition, genomic analysis revealed that both OfC1r and OfC1s were located on a single chromosome. These putative polypeptides were composed of two CUB domains, an EGF domain, two CCP domains, and a catalytically active serine protease domain. Phylogenetic analysis of C1r and C1s showed that OfC1r and OfC1s were evolutionary close to the orthologs of Pundamilia nyererei (identity = 73.4%) and Oryzias latipes (identity = 58.0%), respectively. Based on the results of quantitative real-time qPCR analysis, OfC1r and OfC1s transcripts were detected in all the eleven different tissues, with higher levels of OfC1r in blood and OfC1s in liver. The putative roles of OfC1r and OfC1s in response to pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and virus (rock bream iridovirus, RBIV) were investigated in liver and head kidney tissues. The transcription of OfC1r and OfC1s was found to be significantly upregulated in response to pathogenic bacterial and viral infections. Overall findings of the present study demonstrate the potential immune responses of OfC1r and OfC1s against invading microbial pathogens and the activation of classical signaling cascade in rock bream.
Collapse
Affiliation(s)
- G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
18
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1110] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
19
|
|
20
|
Yadav S, Gupta S, Selvaraj C, Doharey PK, Verma A, Singh SK, Saxena JK. In silico and in vitro studies on the protein-protein interactions between Brugia malayi immunomodulatory protein calreticulin and human C1q. PLoS One 2014; 9:e106413. [PMID: 25184227 PMCID: PMC4153637 DOI: 10.1371/journal.pone.0106413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022] Open
Abstract
Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro(126), Glu(132), His(147), Arg(151), His(153), Met(154), Lys(156), Ala(196) and Lys(212)) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca(+2) in BmCRT-HuC1q complex formation and deactivation of C1r2-C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from ∼ 0.4 nm to ∼ 1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% α helix, 9.6% β sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q/CRT interaction and preventing parasite infection.
Collapse
Affiliation(s)
- Sunita Yadav
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram extension, Lucknow, Uttar Pradesh, India
| | - Smita Gupta
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram extension, Lucknow, Uttar Pradesh, India
| | - Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Pawan Kumar Doharey
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram extension, Lucknow, Uttar Pradesh, India
| | - Anita Verma
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram extension, Lucknow, Uttar Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Jitendra Kumar Saxena
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram extension, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Low-dose recombinant properdin provides substantial protection against Streptococcus pneumoniae and Neisseria meningitidis infection. Proc Natl Acad Sci U S A 2014; 111:5301-6. [PMID: 24706855 DOI: 10.1073/pnas.1401011111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Modern medicine has established three central antimicrobial therapeutic concepts: vaccination, antibiotics, and, recently, the use of active immunotherapy to enhance the immune response toward specific pathogens. The efficacy of vaccination and antibiotics is limited by the emergence of new pathogen strains and the increased incidence of antibiotic resistance. To date, immunotherapy development has focused mainly on cytokines. Here we report the successful therapeutic application of a complement component, a recombinant form of properdin (Pn), with significantly higher activity than native properdin, which promotes complement activation via the alternative pathway, affording protection against N. menigitidis and S. pneumoniae. In a mouse model of infection, we challenged C57BL/6 WT mice with N. menigitidis B-MC58 6 h after i.p. administration of Pn (100 µg/mouse) or buffer alone. Twelve hours later, all control mice showed clear symptoms of infectious disease while the Pn treated group looked healthy. After 16 hours, all control mice developed sepsis and had to be culled, while only 10% of Pn treated mice presented with sepsis and recoverable levels of live Meningococci. In a parallel experiment, mice were challenged intranasally with a lethal dose of S. pneumoniae D39. Mice that received a single i.p. dose of Pn at the time of infection showed no signs of bacteremia at 12 h postinfection and had prolonged survival times compared with the saline-treated control group (P < 0.0001). Our findings show a significant therapeutic benefit of Pn administration and suggest that its antimicrobial activity could open new avenues for fighting infections caused by multidrug-resistant neisserial or streptococcal strains.
Collapse
|
22
|
Jlajla H, Sellami MK, Sfar I, Laadhar L, Zerzeri Y, Abdelmoula MS, Gorgi Y, Dridi MF, Makni S. New C1q mutation in a Tunisian family. Immunobiology 2014; 219:241-6. [DOI: 10.1016/j.imbio.2013.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
23
|
Wijeyewickrema LC, Yongqing T, Tran TP, Thompson PE, Viljoen JE, Coetzer TH, Duncan RC, Kass I, Buckle AM, Pike RN. Molecular determinants of the substrate specificity of the complement-initiating protease, C1r. J Biol Chem 2013; 288:15571-80. [PMID: 23589288 PMCID: PMC3668718 DOI: 10.1074/jbc.m113.451757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
The serine protease, C1r, initiates activation of the classical pathway of complement, which is a crucial innate defense mechanism against pathogens and altered-self cells. C1r both autoactivates and subsequently cleaves and activates C1s. Because complement is implicated in many inflammatory diseases, an understanding of the interaction between C1r and its target substrates is required for the design of effective inhibitors of complement activation. Examination of the active site specificity of C1r using phage library technology revealed clear specificity for Gln at P2 and Ile at P1', which are found in these positions in physiological substrates of C1r. Removal of one or both of the Gln at P2 and Ile at P1' in the C1s substrate reduced the rate of C1r activation. Substituting a Gln residue into the P2 of the activation site of MASP-3, a protein with similar domain structure to C1s that is not normally cleaved by C1r, enabled efficient activation of this enzyme. Molecular dynamics simulations and structural modeling of the interaction of the C1s activation peptide with the active site of C1r revealed the molecular mechanisms that particularly underpin the specificity of the enzyme for the P2 Gln residue. The complement control protein domains of C1r also made important contributions to efficient activation of C1s by this enzyme, indicating that exosite interactions were also important. These data show that C1r specificity is well suited to its cleavage targets and that efficient cleavage of C1s is achieved through both active site and exosite contributions.
Collapse
Affiliation(s)
- Lakshmi C. Wijeyewickrema
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tang Yongqing
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Thuy P. Tran
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip E. Thompson
- the Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia, and
| | - Jacqueline E. Viljoen
- the Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Theresa H. Coetzer
- the Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Renee C. Duncan
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M. Buckle
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Robert N. Pike
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Lee G, Cheung AP, Ge B, Zhu M, Giolma B, Li B, Wong E, Li Y, Wang Y, Chen Z, Gu J. CA215 and GnRH receptor as targets for cancer therapy. Cancer Immunol Immunother 2012; 61:1805-17. [PMID: 22430628 PMCID: PMC11028410 DOI: 10.1007/s00262-012-1230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/20/2012] [Indexed: 01/10/2023]
Abstract
Two monoclonal antibodies (Mabs), RP215 and GHR106, were selected for the preclinical evaluations of anti-cancer drugs targeting various human cancers including those of the ovary, cervix, lung, and liver. Both Mabs were shown to react with pan cancer markers, which are over-expressed on the surface of almost all human cancers. RP215 Mab was shown to react with the carbohydrate-associated epitope(s) of cancer cell-expressed glycoproteins, mainly consisting of immunoglobulin superfamily (IgSF) proteins and mucins, generally known as CA215. GHR106 Mab was generated against the extracellular domain of human GnRH receptor, which is also highly expressed on the cancer cell surface. Preclinical studies were performed to evaluate the efficacy of these two Mabs as anti-cancer drugs for treating human cancers. High tumor specificity of RP215 Mab was demonstrated with immunohistochemical staining studies of various cancer cell lines, as well as normal and cancerous tissue sections. These two Mabs were shown to induce apoptosis as well as complement-dependent cytotoxicity upon treatment to many cultured cancer cells. Significant dose-dependent growth inhibition of tumor cells from several different tissue origins were demonstrated by nude mouse experiments. It was further demonstrated that GHR106 Mab can function as long-acting GnRH analogs in its biological actions. Efforts were made to generate human/mouse chimeric forms of the GHR106 Mab. Based on the results of these preclinical studies, we believe that these two Mabs, in chimeric or humanized forms, can be developed into suitable therapeutic agents for treatment of human cancers as anti-cancer drugs.
Collapse
Affiliation(s)
- Gregory Lee
- Andrology Laboratory, University of British Columbia Center for Reproductive Health, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A missense mutation (c.1963A<G) of the complementary component 2 (C2) gene is associated with serum Ca⁺⁺ concentrations in pigs. Mol Biol Rep 2012; 39:9291-7. [PMID: 22763733 DOI: 10.1007/s11033-012-1679-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Serum Ca(++) levels play important roles in the humoral immunity. The aim of this study was to detect quantitative trait loci and the associated positional candidate genes affecting baseline serum Ca(++) concentrations. A genome-wide association study was conducted in an F(2) intercross population between Landrace and Korean native pigs using the porcine single nucleotide polymorphism (SNP) 60 K beadchip and the PLINK program based on linear regression. Data used in the study included 410 F(2) pigs. All experimental animals were genotyped with 36,613 SNP markers located throughout the pig autosomes. We identified a strong association between a SNP marker on chromosome 7 and serum Ca(++) levels (DIAS0002191, genomic control-corrected P = 7.7 × 10(-5)). The position of DIAS0002191 was closely located to SLA class III region containing the C2 gene encoding the complementary component 2 protein, a protein which is important in the humoral immune responses. De novo sequencing of the porcine C2 gene revealed a missense mutation [c.1963A<G (N655D)] and this missense mutation was also strongly associated with serum Ca(++) concentrations (genomic control-corrected P = 5.9 × 10(-5)). Further studies are necessary to investigate the effect of this missense mutation at a functional-molecular level. In conclusion, the missense mutation of the C2 gene identified in this study may help in elucidating the genetic factors underlying humoral immune reactions.
Collapse
|
26
|
Forneris F, Wu J, Gros P. The modular serine proteases of the complement cascade. Curr Opin Struct Biol 2012; 22:333-41. [PMID: 22560446 DOI: 10.1016/j.sbi.2012.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
Abstract
Modular serine proteases are central to the complement cascade of the mammalian humoral immune system. These proteases form protein complexes through multi-domain interactions to achieve their proteolytic activity. We review the structural insights into complement initiation by auto-activation of the hetero-tetrameric proteases of the large danger-recognition protein complexes, amplification and labelling of particles by the formation and activity of C3 convertases, and regulation by convertase dissociation and degradation to prevent 'bystander' damage to healthy host cells and tissues. The data reveal that complex formation and large domain-domain rearrangements underlie the proteolytic reactions of the complement cascade, which enables the host to recognize and clear invading microbes and host debris from its blood and fluids surrounding tissues.
Collapse
Affiliation(s)
- Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
27
|
Huntington's Disease: An Immune Perspective. Neurol Res Int 2011; 2011:563784. [PMID: 21876800 PMCID: PMC3163125 DOI: 10.1155/2011/563784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/31/2011] [Accepted: 05/12/2011] [Indexed: 01/28/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is caused by abnormal expansion of CAG trinucleotide repeats. Neuroinflammation is a typical feature of most neurodegenerative diseases that leads to an array of pathological changes within the affected areas in the brain. The neurodegeneration in HD is also caused by aberrant immune response in the presence of aggregated mutant huntingtin protein. The effects of immune activation in HD nervous system are a relatively unexplored area of research. This paper summarises immunological features associated with development and progression of HD.
Collapse
|
28
|
Tsirogianni A, Pipi E, Soufleros K. Relevance of anti-C1q autoantibodies to lupus nephritis. Ann N Y Acad Sci 2009; 1173:243-51. [PMID: 19758158 DOI: 10.1111/j.1749-6632.2009.04750.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first component of the classical pathway of the complement system (C1q) is considered to have a crucial role in the clearance of immune complexes (ICs) as well as in the removal of waste material originating from apoptotic cells. A prolonged exposure of C1q epitopes to the immune system could eventually lead to an autoimmune response against itself. Although autoantibodies against C1q are found in several diseases, their clinical interest originates from their strong association to active lupus nephritis (LN). Several studies indicate that anti-C1q autoantibodies could serve as a reliable serologic marker in the assessment of LN activity compared to other immunological tests. Additionally, it was suggested that anti-C1q autoantibodies could play a role in LN pathogenesis. Their potential pathogenic actions likely depend on genetic background, titers, Ig classes and subclasses, and specific epitopes of anti-C1q autoantibodies as well as C1q availability and allocation. It is still unclear which different types of anti-C1q autoantibodies dominate in each case and if their upregulation is pathogenic, an epiphenomenon of aberrant tissue damage, or compensatory to an uncontrolled immune response.
Collapse
Affiliation(s)
- Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece.
| | | | | |
Collapse
|
29
|
Bally I, Rossi V, Lunardi T, Thielens NM, Gaboriaud C, Arlaud GJ. Identification of the C1q-binding Sites of Human C1r and C1s: a refined three-dimensional model of the C1 complex of complement. J Biol Chem 2009; 284:19340-8. [PMID: 19473974 PMCID: PMC2740559 DOI: 10.1074/jbc.m109.004473] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/07/2009] [Indexed: 11/06/2022] Open
Abstract
The C1 complex of complement is assembled from a recognition protein C1q and C1s-C1r-C1r-C1s, a Ca(2+)-dependent tetramer of two modular proteases C1r and C1s. Resolution of the x-ray structure of the N-terminal CUB(1)-epidermal growth factor (EGF) C1s segment has led to a model of the C1q/C1s-C1r-C1r-C1s interaction where the C1q collagen stem binds at the C1r/C1s interface through ionic bonds involving acidic residues contributed by the C1r EGF module (Gregory, L. A., Thielens, N. M., Arlaud, G. J., Fontecilla-Camps, J. C., and Gaboriaud, C. (2003) J. Biol. Chem. 278, 32157-32164). To identify the C1q-binding sites of C1s-C1r-C1r-C1s, a series of C1r and C1s mutants was expressed, and the C1q binding ability of the resulting tetramer variants was assessed by surface plasmon resonance. Mutations targeting the Glu(137)-Glu-Asp(139) stretch in the C1r EGF module had no effect on C1 assembly, ruling out our previous interaction model. Additional mutations targeting residues expected to participate in the Ca(2+)-binding sites of the C1r and C1s CUB modules provided evidence for high affinity C1q-binding sites contributed by the C1r CUB(1) and CUB(2) modules and lower affinity sites contributed by C1s CUB(1). All of the sites implicate acidic residues also contributing Ca(2+) ligands. C1s-C1r-C1r-C1s thus contributes six C1q-binding sites, one per C1q stem. Based on the location of these sites and available structural information, we propose a refined model of C1 assembly where the CUB(1)-EGF-CUB(2) interaction domains of C1r and C1s are entirely clustered inside C1q and interact through six binding sites with reactive lysines of the C1q stems. This mechanism is similar to that demonstrated for mannan-binding lectin (MBL)-MBL-associated serine protease and ficolin-MBL-associated serine protease complexes.
Collapse
Affiliation(s)
| | | | | | | | - Christine Gaboriaud
- the Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, CNRS-CEA-Université Joseph Fourier, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | |
Collapse
|
30
|
Westereng B, Coenen GJ, Michaelsen TE, Voragen AGJ, Samuelsen AB, Schols HA, Knutsen SH. Release and characterization of single side chains of white cabbage pectin and their complement-fixing activity. Mol Nutr Food Res 2009; 53:780-9. [DOI: 10.1002/mnfr.200800199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Gadjeva MG, Rouseva MM, Zlatarova AS, Reid KBM, Kishore U, Kojouharova MS. Interaction of human C1q with IgG and IgM: revisited. Biochemistry 2009; 47:13093-102. [PMID: 19006321 DOI: 10.1021/bi801131h] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step of activation of the classical complement pathway involves the binding of the globular C1q domain (gC1q) to the antigen-bound IgG or IgM. To improve our understanding of the mechanism of interaction of gC1q with IgG and IgM, we compared the immunoglobulin binding properties of single-residue mutants of individual globular modules of A and C chains. We found that Lys(A200) and Lys(C170) are significant for binding with both immunoglobulins. In addition, two C1q-specific scFv antibodies known as potent inhibitors of C1q-IgG and -IgM interactions were used in the epitope mapping analysis. A set of important residues, which participate in the C1q epitopes for scFv, were identified: Lys(C170) for the scFv3(V) epitope and Arg(B108) and Arg(B109) for the scFv10(V) epitope. The ability of scFv3(V) and scFv10(V) to bind preformed C1q-IgG or C1q-IgM complexes differed: scFv3(V) retained its ability to bind C1q, while scFv10(V) lost it. Given the different locations of the epitopes and the varying abilities of both antibodies to bind C1q-IgG and C1q-IgM complexes, we found that residues from the apical surface of C1q [where the scFv3(V) epitope was located] were involved in the initial recognition of IgG and IgM, while Arg(B108) and Arg(B109) are able to interact during the initial recognition as well as during the final binding of immunoglobulins. The reported results provide the first experimental evidence supporting the notion that apical and equatorial surfaces of gC1q have consecutive involvement following the gC1q reorientation during the interaction with specific C1q ligands.
Collapse
Affiliation(s)
- Mihaela G Gadjeva
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Sjöberg AP, Trouw LA, Blom AM. Complement activation and inhibition: a delicate balance. Trends Immunol 2009; 30:83-90. [PMID: 19144569 DOI: 10.1016/j.it.2008.11.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/29/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022]
Abstract
Complement is part of the innate immune defence and not only recognizes microbes but also unwanted host molecules to enhance phagocytosis and clearance. This process of opsonisation must be tightly regulated to prevent immunopathology. Endogenous ligands such as dying cells, extracellular matrix proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement activation. Disturbances to the complement regulation on endogenous ligands can lead to diseases such as age-related macular degeneration, neurological and rheumatic disorders. A thorough understanding of these processes might be crucial to developing new therapeutic strategies.
Collapse
Affiliation(s)
- A P Sjöberg
- University of Copenhagen, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, DK-2200, Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Abstract
The efficient and selective removal of apoptotic cells is an important feature of tissue development, homeostasis and pathology. In the nervous system, synapses and distal axons are selectively eliminated as part of the remodelling that underpins development and pathology, through a process that has some features in common with apoptotic cell removal. Components of the complement cascade are implicated in the efficient removal of apoptotic cells outside the nervous system, and recent evidence suggests that the complement components C1q and C3 have a role in the selective tagging of supernumerary synapses in the developing visual system and in their efficient removal by as yet unidentified cells.
Collapse
Affiliation(s)
- V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK.
| | | |
Collapse
|
34
|
Roumenina L, Bureeva S, Kantardjiev A, Karlinsky D, Andia-Pravdivy JE, Sim R, Kaplun A, Popov M, Kishore U, Atanasov B. Complement C1q-target proteins recognition is inhibited by electric moment effectors. J Mol Recognit 2008; 20:405-15. [PMID: 17929239 DOI: 10.1002/jmr.853] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Classical complement pathway is an important innate immune mechanism, which is usually triggered by binding of C1q to immunoglobulins, pentraxins and other target molecules. Although the activation of the classical pathway is crucial in the host defence, its undesirable and uncontrolled activation can lead to tissue damage. Thus, understanding the molecular basis of complement activation and its inhibition are of great biomedical importance. Recently, we proposed a mechanism for target recognition and classical pathway activation by C1q, which is likely governed by calcium-controlled reorientation of macromolecular electric moment vectors. Here we sought to define the mechanism of C1q inhibition by low molecular weight disulphate compounds that bind to the globular (gC1q) domain, using experimental, computational docking and theoretical modelling approaches. Our experimental results demonstrate that betulin disulphate (B2S) and 9,9-bis(4'-hydroxyphenyl)fluorene disulphate (F2S) inhibit the interaction of C1q and its recombinant globular modules with target molecules IgG1, C-reactive protein (CRP) and long pentraxin 3 (PTX3). In most C1q-inhibitor docked complexes, there is a reduction of electric moment scalar values and similarly altered direction of electric/dipole moment vectors. This could explain the inhibitory effect by impaired electrostatic steering, lacking optimal target recognition and formation of functional complex. In the presence of the inhibitor, the tilt of gC1q domains is likely to be blocked by the altered direction of the electric moment vector. Thus, the transition from the inactive (closed) towards the active (open) conformation of C1q (i.e. the complement activation signal transmission) will be impaired and the cascade initiation disrupted. These results could serve as a starting point for the exploration of a new form of 'electric moment inhibitors/effectors'.
Collapse
Affiliation(s)
- Lubka Roumenina
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov St., Sofia 1164, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Structural polymorphism of oligomeric adiponectin visualized by electron microscopy. J Mol Biol 2008; 381:419-30. [PMID: 18614177 DOI: 10.1016/j.jmb.2008.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 12/11/2022]
Abstract
Adiponectin, a macromolecular complex similar to the members of the C1q and other collagenous homologues, elicits diverse biological functions, including anti-diabetes, anti-atherosclerosis, anti-inflammation and anti-tumor activities, which have been directly linked to the high molecular weight (HMW) oligomeric structures formed by multiples of adiponectin trimers. Here, we report the 3-D reconstructions of isolated full-length, recombinant murine C39A adiponectin trimer and hexamer of wild-type trimers (the major HMW form) determined by single-particle analysis of electron micrographs. The pleiomorphic ensemble of collagen-like stretches of the trimers leads to a dynamic structure of HMW that partition into two major classes, the fan-shaped (class I) and bouquet-shaped (class II). In both of these, while the N termini cluster into a compact ellipsoid-shaped (approximately 60 Ax45 Ax45 A) volume, the collagenous domains assume a variety of arrangements. The domains are splayed by up to approximately 90 degrees in class I, can form a close-packed, up to approximately 100x40 A cylindrical assembly in class II, which can house about half of the 66 putative collagen-like sequence and the rest, tethered to the trimeric globular domains at the C terminus, are highly dynamic. As a result, the globular domains elaborate a variety of arrangements, covering an area of up to approximately 4.9x10(5) A(2) and up to approximately 320 A apart, some of which were captured in reconstructions of class II. Our reconstructions suggest that the N-terminal structured domain, agreeing approximately with the expected volume for the octadecameric assembly of the terminal 27 amino acids, is crucial to the formation of the functionally active HMW. On the other hand, conformational flexibility of the trimers at the C terminus can allow the HMW to access and cluster disparate target ligands binding to the globular domains, which may be necessary to activate cellular signaling leading to the remarkable functional diversity of adiponectin.
Collapse
|
36
|
Sou K, Tsuchida E. Electrostatic interactions and complement activation on the surface of phospholipid vesicle containing acidic lipids: Effect of the structure of acidic groups. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1035-41. [DOI: 10.1016/j.bbamem.2008.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/22/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
37
|
Purification and characterization of a recombinant human testican-2 expressed in baculovirus-infected Sf9 insect cells. Protein Expr Purif 2008; 58:132-9. [DOI: 10.1016/j.pep.2007.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/23/2007] [Accepted: 09/10/2007] [Indexed: 11/20/2022]
|
38
|
Travins JM, Ali F, Huang H, Ballentine SK, Khalil E, Hufnagel HR, Pan W, Gushue J, Leonard K, Bone RF, Soll RM, DesJarlais RL, Crysler CS, Ninan N, Kirkpatrick J, Cummings MD, Huebert N, Molloy CJ, Gaul M, Tomczuk BE, Subasinghe NL. Biphenylsulfonyl-thiophene-carboxamidine inhibitors of the complement component C1s. Bioorg Med Chem Lett 2008; 18:1603-6. [PMID: 18242991 DOI: 10.1016/j.bmcl.2008.01.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 11/28/2022]
Abstract
Complement activation has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury, acute respiratory distress syndrome, and acute transplant rejection. Even though the complement cascade provides several protein targets for potential therapeutic intervention only two complement inhibitors have been approved so far for clinical use including anti-C5 antibodies for the treatment of paroxysmal nocturnal hemoglobinuria and purified C1-esterase inhibitor replacement therapy for the control of hereditary angioedema flares. In the present study, optimization of potency and physicochemical properties of a series of thiophene amidine-based C1s inhibitors with potential utility as intravenous agents for the inhibition of the classical pathway of complement is described.
Collapse
Affiliation(s)
- Jeremy M Travins
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, PA 19341, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gaboriaud C, Teillet F, Gregory LA, Thielens NM, Arlaud GJ. Assembly of C1 and the MBL- and ficolin-MASP complexes: structural insights. Immunobiology 2006; 212:279-88. [PMID: 17544813 DOI: 10.1016/j.imbio.2006.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
The classical pathway C1 complex, and the MBL-MASP and ficolin-MASP complexes involved in activation of the lectin pathway have several features in common. Both types of complexes are assembled from two subunits: an oligomeric recognition protein (C1q, MBL, L-, H- or M-ficolin), and a protease component, which is either a tetramer (C1s-C1r-C1r-C1s) or a dimer ((MASP)(2)). Recent functional and 3-D structural investigations have revealed that C1r/C1s and the MASPs associate through a common mechanism involving their N-terminal CUB1-EGF region. In contrast, the C1s-C1r-C1r-C1s tetramer and the (MASP)(2) dimers appear to have evolved distinct strategies to associate with their partner proteins. The purpose of this article is to review these recent advances.
Collapse
|
40
|
Arumugam TV, Magnus T, Woodruff TM, Proctor LM, Shiels IA, Taylor SM. Complement mediators in ischemia–reperfusion injury. Clin Chim Acta 2006; 374:33-45. [PMID: 16872589 DOI: 10.1016/j.cca.2006.06.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury occurs when a tissue is temporarily deprived of blood supply and the return of the blood supply triggers an intense inflammatory response. Pathologically, increased complement activity can cause substantial damage to blood vessels, tissues and also facilitate leukocyte activation and recruitment following I/R injury. Herein, previously published studies are reported and critically reviewed. METHODS Medline and the World Wide Web were searched and the relevant literature was classified under the following categories: (1) Complement pathways; (2) The complement system and the inflammatory response; (3) Complement in ischemia-reperfusion injuries; and (4) Therapeutic approaches against complement in I/R injuries. RESULTS AND CONCLUSIONS I/R injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient and is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. Complement activation leads to the release of biologically active potent inflammatory complement substances including the anaphylatoxins (C3a and C5a) and the cytolytic terminal membrane attack complement complex C5b-9 (MAC). The use of specific complement inhibitors to block complement activation at various levels of the cascade has been shown to prevent or reduce local tissue injury after I/R. Several agents that inhibit all or part of the complement system, such as soluble complement receptor type 1 (sCR1), C1 inhibitor (C1-INH), C5a monoclonal antibodies, a C5a receptor antagonist and soluble CD59 (sCD59) have been shown to reduce I/R injury of various organs. The novel inhibitors of complement products may eventually find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
41
|
Roumenina LT, Ruseva MM, Zlatarova A, Ghai R, Kolev M, Olova N, Gadjeva M, Agrawal A, Bottazzi B, Mantovani A, Reid KBM, Kishore U, Kojouharova MS. Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains. Biochemistry 2006; 45:4093-104. [PMID: 16566583 PMCID: PMC3874390 DOI: 10.1021/bi052646f] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C1q is the first subcomponent of the classical complement pathway that can interact with a range of biochemically and structurally diverse self and nonself ligands. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure composed of the C-terminal regions of A (ghA), B (ghB), and C (ghC) chains. The expression and functional characterization of ghA, ghB, and ghC modules have revealed that each chain has specific and differential binding properties toward C1q ligands. It is largely considered that C1q-ligand interactions are ionic in nature; however, the complementary ligand-binding sites on C1q and the mechanisms of interactions are still unclear. To identify the residues on the gC1q domain that are likely to be involved in ligand recognition, we have generated a number of substitution mutants of ghA, ghB, and ghC modules and examined their interactions with three selected ligands: IgG1, C-reactive protein (CRP), and pentraxin 3 (PTX3). Our results suggest that charged residues belonging to the apex of the gC1q heterotrimer (with participation of all three chains) as well as the side of the ghB are crucial for C1q binding to these ligands, and their contribution to each interaction is different. It is likely that a set of charged residues from the gC1q surface participate via different ionic and hydrogen bonds with corresponding residues from the ligand, instead of forming separate binding sites. Thus, a recently proposed model suggesting the rotation of the gC1q domain upon ligand recognition may be extended to C1q interaction with CRP and PTX3 in addition to IgG1.
Collapse
Affiliation(s)
- Lubka T. Roumenina
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| | - Marieta M. Ruseva
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| | - Alexandra Zlatarova
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| | - Rohit Ghai
- Institute of Medical Microbiology, Faculty of Medicine, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | - Martin Kolev
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| | - Neli Olova
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| | - Mihaela Gadjeva
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Alok Agrawal
- Department of Pharmacology, East Tennessee State University, Johnson City, Tennessee 37614
| | - Barbara Bottazzi
- Istituto Clinico Humanitas, Rozzano Milan, and Institute of General Pathology, Faculty of Medicine, University of Milan, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas, Rozzano Milan, and Institute of General Pathology, Faculty of Medicine, University of Milan, Italy
| | - Kenneth B. M. Reid
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, U. K
| | - Uday Kishore
- Institute of Medical Microbiology, Faculty of Medicine, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, U. K
| | - Mihaela S. Kojouharova
- Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Street, Sofia 1164, Bulgaria
| |
Collapse
|
42
|
McGrath FDG, Brouwer MC, Arlaud GJ, Daha MR, Hack CE, Roos A. Evidence That Complement Protein C1q Interacts with C-Reactive Protein through Its Globular Head Region. THE JOURNAL OF IMMUNOLOGY 2006; 176:2950-7. [PMID: 16493053 DOI: 10.4049/jimmunol.176.5.2950] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C1q acts as the recognition unit of the first complement component, C1, and binds to immunoglobulins IgG and IgM, as well as to non-Ig ligands, such as C-reactive protein (CRP). IgG and IgM are recognized via the globular head regions of C1q (C1qGR), whereas CRP has been postulated to interact with the collagen-like region (C1qCLR). In the present study, we used a series of nine mAbs to C1q, five directed against C1qGR and four against C1qCLR, to inhibit the interaction of C1q with CRP. The F(ab')(2) of each of the five mAbs directed against C1qGR inhibited binding of C1q to polymerized IgG. These five mAbs also successfully inhibited the interaction of C1q with CRP. Moreover, these five mAbs inhibited C1 activation by CRP as well as by polymerized IgG in vitro. In contrast, none of the four mAbs against C1qCLR inhibited C1q interaction with CRP or IgG, or could reduce activation of complement by CRP or polymerized IgG. These results provide the first evidence that the interaction of C1q with CRP or IgG involves sites located in the C1qGR, whereas sites in the CLR do not seem to be involved in the physiological interaction of C1q with CRP.
Collapse
Affiliation(s)
- Fabian D G McGrath
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Subasinghe NL, Travins JM, Ali F, Huang H, Ballentine SK, Marugán JJ, Khalil E, Hufnagel HR, Bone RF, DesJarlais RL, Crysler CS, Ninan N, Cummings MD, Molloy CJ, Tomczuk BE. A novel series of arylsulfonylthiophene-2-carboxamidine inhibitors of the complement component C1s. Bioorg Med Chem Lett 2006; 16:2200-4. [PMID: 16460935 DOI: 10.1016/j.bmcl.2006.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/23/2022]
Abstract
Inhibiting the classical pathway of complement activation by attenuating the proteolytic activity of the serine protease C1s is a potential strategy for the therapeutic intervention in disease states such as hereditary angioedema, ischemia-reperfusion injury, and acute transplant rejection. A series of arylsulfonylthiophene-2-carboxamidine inhibitors of C1s were synthesized and evaluated for C1s inhibitory activity. The most potent compound had a Ki of 10nM and >1000-fold selectivity over uPA, tPA, FX(a), thrombin, and plasmin.
Collapse
Affiliation(s)
- Nalin L Subasinghe
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, PA 19341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Takahashi K, Ip WE, Michelow IC, Ezekowitz RAB. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr Opin Immunol 2005; 18:16-23. [PMID: 16368230 PMCID: PMC7126801 DOI: 10.1016/j.coi.2005.11.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 11/25/2005] [Indexed: 11/25/2022]
Abstract
The innate immune system is comprised of a sophisticated network of recognition and effector molecules that act together to protect the host in the first minutes or hours of exposure to an infectious challenge. The mannose-binding lectin (MBL) is an evolutionary conserved circulating host defense protein that acts as a broad-spectrum recognition molecule against a wide variety of infectious agents. Target binding triggers the MBL pathway of complement activation. MBL can be considered conceptually as an 'ante-antibody' because it has a role in mammals during the lag period that is required to develop an antibody response against infectious agents. Additionally, there are MBL-like homologues in animals that lack adaptive immunity that activate a primitive complement system, and under these circumstances these MBL-like molecules play an analogous role to antibodies in higher animals. These molecules might be considered to be functional antecedents of antibodies. Recent work also indicates that MBL recognizes altered self-antigens, and as such MBL has a role that extends beyond a traditional role in first line host defense as it appears to play a role as a modulator of inflammation.
Collapse
Affiliation(s)
- Kazue Takahashi
- Laboratory of Developmental Immunology, Massachusetts General Hospital, Harvard Department of Pediatrics, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
45
|
Chen J, Xu XM, Underhill CB, Yang S, Wang L, Chen Y, Hong S, Creswell K, Zhang L. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res 2005; 65:4614-22. [PMID: 15930279 DOI: 10.1158/0008-5472.can-04-2253] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tachyplesin is a small, cationic peptide that possesses antitumor properties. However, little is known about its action mechanism. We used phage display to identify a protein that interacted with tachyplesin and isolated a sequence corresponding to the collagen-like domain of C1q, a key component in the complement pathway. Their interaction was subsequently confirmed by both ELISA and affinity precipitation. Tachyplesin seemed to activate the classic complement cascade because it triggered several downstream events, including the cleavage and deposition of C4 and C3 and the formation of C5b-9. When TSU tumor cells were treated with tachyplesin in the presence of serum, activated C4b and C3b could be detected on tumor cells by flow cytometry, Western blotting, and confocal microscopy. However, this effect was blocked when the tumor cells were treated with hyaluronidase or a large excess of hyaluronan, indicating that hyaluronan or related glycosaminoglycans were involved in this process. Treatment of cells with tachyplesin and serum increased in membrane permeability as indicated by the ability of FITC-dextran to enter the cytoplasm. Finally, the combination of tachyplesin and human serum markedly inhibited the proliferation and caused death of TSU cells, and these effects were attenuated if the serum was heat-inactivated or if hyaluronidase was added. Taken together, these observations suggest that tachyplesin binds to both hyaluronan on the cell surface and C1q in the serum and activates the classic complement cascade, which damages the integrity of the membranes of the tumor cells resulting in their death.
Collapse
Affiliation(s)
- Jinguo Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sontheimer RD, Racila E, Racila DM. C1q: Its Functions within the Innate and Adaptive Immune Responses and its Role in Lupus Autoimmunity. J Invest Dermatol 2005; 125:14-23. [PMID: 15982298 DOI: 10.1111/j.0022-202x.2005.23673.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade is a multi-faced effector component of the innate immune response. C1q is the recognition component of the classical pathway of complement activation. In addition, C1q has been recognized to serve a number of other biological functions including a modulating role on cellular functions within the adaptive immune response. The importance of C1q to normal immune regulation is reflected by the fact that greater than 90% of individuals who have complete congenital deficiency of C1q have been observed to develop early-onset photosensitive systemic lupus erythematosus (SLE). As a number of single nucleotide polymorphisms have been identified in three C1q genes, it is possible that more subtle variations in C1q expression could be a risk factor for cutaneous LE and SLE. Thus, a more comprehensive delineation of complotype could be of increasing clinical importance in the future.
Collapse
Affiliation(s)
- Richard D Sontheimer
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
47
|
Kishore U, Ghai R, Greenhough TJ, Shrive AK, Bonifati DM, Gadjeva MG, Waters P, Kojouharova MS, Chakraborty T, Agrawal A. Structural and functional anatomy of the globular domain of complement protein C1q. Immunol Lett 2005; 95:113-28. [PMID: 15388251 PMCID: PMC3818097 DOI: 10.1016/j.imlet.2004.06.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/23/2004] [Indexed: 02/06/2023]
Abstract
C1q is the first subcomponent of the classical pathway of the complement system and a major connecting link between innate and acquired immunity. As a versatile charge pattern recognition molecule, C1q is capable of engaging a broad range of ligands via its heterotrimeric globular domain (gC1q) which is composed of the C-terminal regions of its A (ghA), B (ghB) and C (ghC) chains. Recent studies using recombinant forms of ghA, ghB and ghC have suggested that the gC1q domain has a modular organization and each chain can have differential ligand specificity. The crystal structure of the gC1q, molecular modeling and protein engineering studies have combined to illustrate how modular organization, charge distribution and the spatial orientation of the heterotrimeric assembly offer versatility of ligand recognition to C1q. Although the biochemical and structural studies have provided novel insights into the structure-function relationships within the gC1q domain, they have also raised many unexpected issues for debate.
Collapse
Affiliation(s)
- Uday Kishore
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rozanov DV, Sikora S, Godzik A, Postnova TI, Golubkov V, Savinov A, Tomlinson S, Strongin AY. Non-proteolytic, receptor/ligand interactions associate cellular membrane type-1 matrix metalloproteinase with the complement component C1q. J Biol Chem 2004; 279:50321-8. [PMID: 15375167 DOI: 10.1074/jbc.m409174200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP), a prototypic member of the membrane-tethered MMP family, is an essential component of a cellular proteolysis apparatus. Recognition of protein cleavage targets followed by proteolysis is a main function of MT1-MMP. For the first time, however, we present evidence that MT1-MMP and other structurally related membrane MMPs bind C1q, the recognition unit of the first component of complement C1 that initiates activation of the classical pathway of complement. These interactions involve the catalytic domain of MT1-MMP and the C1q globular domain. In silico modeling followed by mutagenesis and the in vitro and cell-based binding studies showed that the His(171)-Glu-Lys-Gln-Ala-Asp(176) and Val(223)-Arg-Asn(224) peptide sequences of MT1-MMP are directly involved in the binding with C1q. These sequence regions are spatially distant from the active site of the protease. As a result, the catalytically active and the catalytically latent forms of cellular MT1-MMP are both efficient in binding with C1q. In agreement, despite the MT1-MMP/C1q interactions, C1q is totally resistant to MT1-MMP proteolysis. The discovery of the unconventional, receptor/ligand-like interactions of MT1-MMP with C1q, an essential component of immunity, is a significant step toward a more complete understanding of the role of this membrane-tethered protease in cancer.
Collapse
|
49
|
Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol 2004; 25:368-73. [PMID: 15207504 DOI: 10.1016/j.it.2004.04.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Christine Gaboriaud
- Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale Jean Pierre Ebel, CEA-CNRS-Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | |
Collapse
|
50
|
Cline AM, Radic MZ. Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 2004; 112:175-82. [PMID: 15240161 DOI: 10.1016/j.clim.2004.02.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 02/27/2004] [Indexed: 01/09/2023]
Abstract
Firm evidence links the process of apoptosis to the induction of autoimmune disease. However, questions remain regarding the precise interactions of dying cells with the immune system. Genetic analyses indicate that deficiencies in serum proteins or receptors that mediate clearance of apoptotic cells increase the risk of autoimmunity. Moreover, administration of apoptotic cells to naive animals elicits transient autoimmune responses. Because known autoantigens are covalently modified and redistributed to cell surface blebs during the execution stage of apoptosis, increasing attention is being directed at this stage of programmed cell death, and researchers have identified a variety of autoantigens that are sequestered within blebs. However, blebs are merely a transition stage toward the complete cellular fragmentation, as blebs quickly convert into apoptotic bodies, subcellular particles (SCPs) of heterogeneous size, surface composition, and cargo. Because certain types of subcellular particles represent packets of highly enriched autoantigens, we propose that they are relevant to our understanding of autoimmunity.
Collapse
Affiliation(s)
- Amy M Cline
- Department of Molecular Science, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | | |
Collapse
|