1
|
Fonte C, Gruez A, Ghislin S, Frippiat JP. The urodele amphibian Pleurodeles waltl has a diverse repertoire of immunoglobulin heavy chains with polyreactive and species-specific features. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:371-384. [PMID: 26277106 DOI: 10.1016/j.dci.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Abstract
Urodele amphibians are an interesting model because although they possess the cardinal elements of the vertebrate immune system, their immune response is apparently subdued. This phenomenon, sometimes regarded as a state of immunodeficiency, has been attributed by some authors to limited antibody diversity. We reinvestigated this issue in Pleurodeles waltl, a metamorphosing urodele, and noted that upsilon transcripts of its IgY repertoire were as diverse as alpha transcripts of the mammalian IgA repertoire. Mu transcripts encoding the IgM repertoire were less diverse, but could confer more plasticity. Both isotypes present potential polyreactive features that may confer urodele antibodies with the ability to bind to a variety of antigens. Finally, we observed additional cysteines in CDR1 and 2 of the IGHV5 and IGHV6 domains, some of which specific to urodeles, that could allow the establishment of a disulfide bond between these CDRs. Together, these data suggest that urodele antibody diversity is not as low as previously thought.
Collapse
Affiliation(s)
- Coralie Fonte
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France
| | - Arnaud Gruez
- Molecular and Structural Enzymology Group, Université de Lorraine, IMoPA, UMR 7365, F-54500, Vandoeuvre-lès-Nancy, France
| | - Stéphanie Ghislin
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France
| | - Jean-Pol Frippiat
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Chen HS, Hou SC, Jian JW, Goh KS, Shen ST, Lee YC, You JJ, Peng HP, Kuo WC, Chen ST, Peng MC, Wang AHJ, Yu CM, Chen IC, Tung CP, Chen TH, Ping Chiu K, Ma C, Yuan Wu C, Lin SW, Yang AS. Predominant structural configuration of natural antibody repertoires enables potent antibody responses against protein antigens. Sci Rep 2015. [PMID: 26202883 PMCID: PMC5378893 DOI: 10.1038/srep12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Humoral immunity against diverse pathogens is rapidly elicited from natural antibody repertoires of limited complexity. But the organizing principles underlying the antibody repertoires that facilitate this immunity are not well-understood. We used HER2 as a model immunogen and reverse-engineered murine antibody response through constructing an artificial antibody library encoded with rudimentary sequence and structural characteristics learned from high throughput sequencing of antibody variable domains. Antibodies selected in vitro from the phage-displayed synthetic antibody library bound to the model immunogen with high affinity and specificities, which reproduced the specificities of natural antibody responses. We conclude that natural antibody structural repertoires are shaped to allow functional antibodies to be encoded efficiently, within the complexity limit of an individual antibody repertoire, to bind to diverse protein antigens with high specificity and affinity. Phage-displayed synthetic antibody libraries, in conjunction with high-throughput sequencing, can thus be designed to replicate natural antibody responses and to generate novel antibodies against diverse antigens.
Collapse
Affiliation(s)
- Hong-Sen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Shin-Chen Hou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Jhih-Wei Jian
- 1] Genomics Research Center, Academia Sinica, Taipei, Taiwan 115 [2] Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan 112 [3] Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan 115
| | - King-Siang Goh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - San-Tai Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Yu-Ching Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Jhong-Jhe You
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Hung-Pin Peng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Wen-Chih Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Shui-Tsung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Ming-Chi Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Ing-Chien Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Kuo Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Chih Yuan Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan 115
| |
Collapse
|
3
|
Fundamental characteristics of the expressed immunoglobulin VH and VL repertoire in different canine breeds in comparison with those of humans and mice. Mol Immunol 2014; 59:71-8. [DOI: 10.1016/j.molimm.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 11/19/2022]
|
4
|
Kodangattil S, Huard C, Ross C, Li J, Gao H, Mascioni A, Hodawadekar S, Naik S, Min-debartolo J, Visintin A, Almagro JC. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing. MAbs 2014; 6:628-36. [PMID: 24481222 DOI: 10.4161/mabs.28059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To gain insight into the functional antibody repertoire of rabbits, the VH and VL repertoires of bone marrow (BM) and spleen (SP) of a naïve New Zealand White rabbit (NZW; Oryctolagus cuniculus) and that of lymphocytes collected from a NZW rabbit immunized (IM) with a 16-mer peptide were deep-sequenced. Two closely related genes, IGHV1S40 (VH1a3) and IGHV1S45 (VH4), were found to dominate (~90%) the VH repertoire of BM and SP, whereas, IGHV1S69 (VH1a1) contributed significantly (~40%) to IM. BM and SP antibodies recombined predominantly with IGHJ4. A significant proportion (~30%) of IM sequences recombined with IGHJ2. The VK repertoire was encoded by nine IGKV genes recombined with one IGKJ gene, IGKJ1. No significant bias in the VK repertoire of the BM, SP and IM samples was observed. The complementarity-determining region (CDR)-H3 and -L3 length distributions were similar in the three samples following a Gaussian curve with average length of 12.2 ± 2.4 and 11.1 ± 1.1 amino acids, respectively. The amino acid composition of the predominant CDR-H3 and -L3 loop lengths was similar to that of humans and mice, rich in Tyr, Gly, Ser and, in some specific positions, Asp. The average number of mutations along the IGHV/KV genes was similar in BM, SP and IM; close to 12 and 15 mutations for VH and VL, respectively. A monoclonal antibody specific for the peptide used as immunogen was obtained from the IM rabbit. The CDR-H3 sequence was found in 1,559 of 61,728 (2.5%) sequences, at position 10, in the rank order of the CDR-H3 frequencies. The CDR-L3 was found in 24 of 11,215 (0.2%) sequences, ranking 102. No match was found in the BM and SP samples, indicating positive selection for the hybridoma sequence. Altogether, these findings lay foundations for engineering of rabbit V regions to enhance their potential as therapeutics, i.e., design of strategies for selection of specific rabbit V regions from NGS data mining, humanization and design of libraries for affinity maturation campaigns.
Collapse
Affiliation(s)
| | | | | | - Jian Li
- CTI-Boston; Pfizer Inc.; Boston, MA USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Finlay WJJ, Almagro JC. Natural and man-made V-gene repertoires for antibody discovery. Front Immunol 2012; 3:342. [PMID: 23162556 PMCID: PMC3498902 DOI: 10.3389/fimmu.2012.00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/27/2012] [Indexed: 01/15/2023] Open
Abstract
Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.
Collapse
|
6
|
Chailyan A, Marcatili P, Cirillo D, Tramontano A. Structural repertoire of immunoglobulin λ light chains. Proteins 2011; 79:1513-24. [PMID: 21365679 DOI: 10.1002/prot.22979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/03/2010] [Accepted: 12/22/2010] [Indexed: 01/03/2023]
Abstract
The immunoglobulin λ isotype is present in nearly all vertebrates and plays an important role in the human immune system. Despite its importance, few systematic studies have been performed to analyze the structural conformation of its variable regions, contrary to what is the case for κ and heavy chains. We show here that an analysis of the structures of λ chains allows the definition of a discrete set of recurring conformations (canonical structures) of their hypervariable loops and, most importantly, the identification of sequence constraints that can be used to predict their structure. We also show that the structural repertoire of λ chains is different and more varied than that of the κ chains, consistently with the current view of the involvement of the two major light-chain families in complementary strategies of the immune system to ensure a fine tuning between diversity and stability in antigen recognition.
Collapse
Affiliation(s)
- Anna Chailyan
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5-00185 Rome (I), Italy
| | | | | | | |
Collapse
|
7
|
Hwang WYK, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005; 36:35-42. [PMID: 15848073 DOI: 10.1016/j.ymeth.2005.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 01/11/2005] [Accepted: 01/17/2005] [Indexed: 12/16/2022] Open
Abstract
We report a new method of humanizing antibodies by complementarity determining region (CDR) grafting. Our method differs from others in that we choose human framework sequences from the set of human germline genes based on the structural similarity of the human CDRs to those of the mouse antibody to be humanized. The structural similarity is evaluated by scoring residue-to-residue homology of the mouse CDRs to human candidates with the same Chothia canonical structures. The method is illustrated with the humanization of the anti-lysozyme antibody D1.3.
Collapse
Affiliation(s)
- William Ying Khee Hwang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, C3-168, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
8
|
Romo-González T, Vargas-Madrazo E. Substitution patterns in alleles of immunoglobulin V genes in humans and mice. Mol Immunol 2005; 43:731-44. [PMID: 15935479 DOI: 10.1016/j.molimm.2005.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 11/26/2022]
Abstract
Immunoglobulins (Igs) constitute a subfamily of rapidly evolving proteins. It is postulated that this characteristic is due mainly to the participation of these proteins in highly diverse functions of recognition and defense. Although this vision of rapid evolution in Igs is widely accepted, various studies have demonstrated that diverse and contradictory forces not yet completely understood converge in the evolution of these receptors. In a recent study of the substitution patterns in the alleles that form the human IGHV locus, we found that the variation in genetic and structural information does not occur homogeneously among the different genes, nor among the regions and positions conforming said locus. In view of these results and of the importance of a better understanding of the basic evolutionary process in specific receptors (such as Igs) for both immunology and molecular evolution, it is important to explore the nature of the diversification process in these proteins in detail. In this work, therefore, we analyzed the substitution patterns in all the alleles reported for loci IGKV and IGLV in humans and mice, and we compared the results with those previously observed in the human IGHV locus. We found that the process of evolutionary variation of the Igs reflect the diversity of selective pressures operating on the different loci, genes, sub-regions and positions; for example, diversification through substitution is generally centered on CDRs, but only few positions inside the CDRs were frequently substituted. In spite of this general tendency, it is possible to observe differences in the degree of diversification among loci, families and genes. These tendencies to modify only certain attributes of IGV genes seem to be in agreement with differential strategies associated with the restrictions of the molecular immune recognition mechanism. The complexity of the evolutionary patterns observed in this study leads us to think that the predispositions observed herein may also be due in part to processes of DNA dynamics.
Collapse
Affiliation(s)
- Tania Romo-González
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, 2a Schubert No. 4 Indeco Animas, Xalapa, Ver., C.P. 91190, Mexico
| | | |
Collapse
|
9
|
Romo-González T, Morales-Montor J, Rodríguez-Dorantes M, Vargas-Madrazo E. Novel Substitution Polymorphisms of Human Immunoglobulin VH Genes in Mexicans. Hum Immunol 2005; 66:732-40. [PMID: 15993719 DOI: 10.1016/j.humimm.2005.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/26/2005] [Accepted: 03/01/2005] [Indexed: 11/18/2022]
Abstract
It has been proposed that the defense and recognition functions of the immune system, especially those mediated by antibodies, require a great diversity of receptors. Nonetheless, functional and structural evidence has demonstrated the presence of restrictions, both in the use of the repertoire and in the recognition of antigens. Fifty-one functional genes have been described in the IghV locus; however, there is a variety of evidences indicating that only a small fraction of the immunoglobulin genes plays a central role in determining the fundamental properties of the antibody repertoire of the immune system. On the basis of this functional and structural information, we selected four IghV genes and characterized their polymorphism in a sample of Mexican individuals. We also analyzed the implications for the recognition mechanism of the substitutions found in the sequenced alleles. We found that diversification through allelism varies from segment to segment, both in the amount of alleles encountered and in the nature and distribution of mutations in the codifying zone, which might depend on its importance for the repertoire. Such functional characteristics may be useful in the interpretation of differential gene usage in certain physiological, ontological, and/or pathological conditions.
Collapse
Affiliation(s)
- Tania Romo-González
- Departamento de Biología Sistémica, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, México.
| | | | | | | |
Collapse
|
10
|
Laurent TC, Mertens P, Dierick JF, Letesson JJ, Lambert C, De Bolle X. Functional, molecular and structural characterisation of five anti-Brucella LPS mAb. Mol Immunol 2004; 40:1237-47. [PMID: 15128040 DOI: 10.1016/j.molimm.2003.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The O-antigen of the gram negative bacteria Brucella is composed of an homopolymer of 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl (or perosamine). Several mAb interact specifically with only the O-antigen of certain Brucella species. Although, many studies show that this specific recognition results mainly from the ratios of alpha 1-2 and alpha 1-3 link between the different Brucella strain perosamine residues, little is known about the mAb recognising this O-antigen. In this paper, we describe the binding profile of five anti-Brucella O-antigen mAb to the LPS of two Brucella strains and a bacteria possessing a nearly identical O-antigen: Yersinia enterocolitica 0:9. We show that the specificity of these five mAb can be correlated to their germ line gene usage. Besides, their relative affinity to the different LPS is correlated to their ability to protect against Brucella infection by passive transfer in a mouse model. The analysis of their 3D structure gives new hypothesis of the epitopes recognised.
Collapse
Affiliation(s)
- Thierry Cl Laurent
- Unité de Recherche en Biologie Moléculaire, Facultés Universitaires, Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
11
|
Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, Schroeder HW, Kirkham PM. Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol 2004; 334:733-49. [PMID: 14636599 DOI: 10.1016/j.jmb.2003.10.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunoglobulin junctional diversity is concentrated in the third complementarity-determining region of the heavy chain (CDR-H3), which often plays a dominant role in antigen binding. The range of CDR-H3 lengths in mouse is shorter than in human, and thus the murine repertoire could be presumed to be a subset of the human one. To test this presumption, we analyzed 4751 human and 2170 murine unique, functional, published CDR-H3 intervals. Although tyrosine, glycine, and serine were found to predominate in both species, the human sequences contained fewer tyrosine residues, more proline residues, and more hydrophobic residues (p<0.001, respectively). While changes in amino acid utilization as a function of CDR-H3 length followed similar trends in both species, murine and human CDR-H3 intervals of identical length were found to differ from each other. These differences reflect both divergence of germline diversity and joining gene sequence and somatic selection. Together, these factors promote the production of a rather uniform repertoire in mice of tyrosine-enriched CDR-H3 loops with stabilized hydrogen bond-ladders versus a much more diverse repertoire in human that contains CDR-H3 loops sculpted by the presence of intra-chain disulfide bonds due to germline-encoded cysteine residues as well as the enhanced presence of somatically generated proline residues that preclude hydrogen bond ladder formation. Thus, despite the presumed need to recognize a similar range of antigen epitopes, the murine CDR-H3 repertoire is clearly distinct from its human counterpart in its amino acid composition and its predicted range of structures. These findings represent a benchmark to which CDR-H3 repertoires can be compared to better characterize and understand the shaping of the CDR-H3 repertoire over evolution and during immune responses. This information may also be useful for the design of species-specific CDR-H3 sequences in synthetic antibody libraries.
Collapse
Affiliation(s)
- Michael Zemlin
- Department of Medicine, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Conrath KE, Wernery U, Muyldermans S, Nguyen VK. Emergence and evolution of functional heavy-chain antibodies in Camelidae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:87-103. [PMID: 12543123 DOI: 10.1016/s0145-305x(02)00071-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antibodies of jawed-vertebrates are composed of paired heavy (H) and light (L) polypeptide chains. Surprisingly, the sera of camelids, nurse shark and wobbegong shark, and possibly ratfish contain antibodies that lack L-chains. In camelids, these Heavy-chain antibodies (HCAbs) are gamma-isotypes, and are functional in antigen binding. In this review we focus on the dedicated immunoglobulin (Ig) genes that encode the HCAb in Camelidae (camels, dromedaries and llamas), about their origin, and how these camel immunoglobulins evolved and acquire a large and diverse repertoire of antigen binding sites in absence of the H-L combinatorial diversity.
Collapse
Affiliation(s)
- K E Conrath
- Department of Immunology, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640, Sint Genesius Rode, Belgium
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- V K Nguyen
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Sint Genesius Rode, 1050 Bruxelles, Belgium
| | | | | |
Collapse
|
14
|
Rojas G, Almagro JC, Acevedo B, Gavilondo JV. Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions. J Biotechnol 2002; 94:287-98. [PMID: 11861087 DOI: 10.1016/s0168-1656(01)00432-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the construction of a phage antibody fragments library which combines, in a single cloning step, a synthetic human light chain variable region (V(L)) with a diverse set of heavy chain variable regions, from a mouse immunized with the prostate specific antigen (PSA). Despite V(L) restriction, selection from this library rendered two different single chain Fv antibody fragments, specifically recognizing PSA. The human V(L), used as a general partner for mouse heavy chains, was constructed by linking the germline A27 gene and the J(K)1 minigene segment, both of which are prominently involved in human antibody responses. Our approach offers a fast and simple way to produce half-human molecules, while keeping the advantage of immunizing animals for high affinity antibodies.
Collapse
Affiliation(s)
- Gertrudis Rojas
- Recombinant Antibodies Laboratory, Pharmaceuticals Division, P.O. Box 6162, Ave 31 e/158 y 190, Cubanacán, Playa, La Habana 10600, Cuba.
| | | | | | | |
Collapse
|
15
|
Perez A, Lombardero J, Mateo C, Mustelier G, Alfonso M, Vazquez AM, Perez R. Immunogenetic analysis of variable regions encoding AB1 and gamma-type AB2 antibodies from the NeuGc-containing ganglioside family. Hybridoma (Larchmt) 2001; 20:211-21. [PMID: 11604106 DOI: 10.1089/027245701753179785] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The variable regions from P3, a murine monoclonal antibody (MAb) against NeuGc-containing gangliosides, and two anti-idiotype MAbs directed to P3 MAb were cloned and sequenced. Comparisons with previously reported sequences showed that P3 is a germline antibody encoded by genes from the V(H)Q52 and V(kappa)19 families. Analysis of nucleotides at the heavy chain CDR3 (H-CDR3) showed the presence of an extensive 3' N region that contains almost 50% of the nucleotides of this CDR. In addition, amino acid sequence analysis of the H-CDRs of this MAb revealed the presence of three arginines, two of which are present in the H-CDR3, that could be involved in the interaction of P3 MAb with its electronegative epitope on gangliosides. Anti-idiotype 1E10, which seems to define a "regulatory" idiotope on P3 MAb (it induces Id+ Ab3), represents a germline Ab2 that belongs to the V(H)J558 and V(kappa)10 gene families. By contrary, the anti-idiotype 3B11 is an extensively mutated antibody that belongs to the V(H)3660 and V(kappa)4/5 gene families, defining a "private" idiotope on P3 MAb. Even when different V genes contribute to the variable regions of 1E10 and 3B11 MAbs, they share an acidic motif E/D-D-Y/D-Y-D in H-CDR3, suggesting that both Ab2s recognize paratope positive residues on the Ab1. Therefore, complementary electrostatic interactions involving H-CDR3 from both Ab1 and Ab2, might provide a clue to understand the molecular basis for the generation of gamma-type anti-idiotype antibodies to V regions recognizing glycolylated ganglioside antigens.
Collapse
Affiliation(s)
- A Perez
- Department of Antibody Engineering, Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ramirez-Benitez MDC, Moreno-Hagelsieb G, Almagro JC. VIR.II: a new interface with the antibody sequences in the Kabat database. Biosystems 2001; 61:125-31. [PMID: 11716972 DOI: 10.1016/s0303-2647(01)00166-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Kabat database is the source of information par excellence on antibody sequences. In 1995, we developed an interface with the Kabat database, called VIR. VIR has been very useful in conducting studies aiming to find structure-function relationships in antibodies. Here we report a new version adapted to the World Wide Web, called VIR.II. VIR.II allows searches by type of chain (V(H) or V(L)), by species, and by specificity. The species are selected using a pulldown menu, whereas the specificities can be selected from a list containing the unique specificities reported in the Kabat database. These facilities avoid mistakes and redundancies in the searches. Another feature, and probably the most important one, is that VIR.II introduces a classification of specificities in terms of the chemical and biochemical nature of the antigen, like anti-protein, anti-peptide, anti-hapten, etc. This classification has been useful in discovering patterns in the antigen-binding site of antibodies that correlate with the type of antigen the antibody interacts with. To illustrate this, while showing the capabilities of VIR.II, we analyze all the murine anti-peptide and anti-protein antibody sequences compiled as of July, 2000 in the Kabat database.
Collapse
|
17
|
Abstract
A nonrestrictive method for identifying covariance in protein families is described and applied to human and mouse germline Vkappa and VH sequence alignments. Amino acids that occur at each position in a sequence alignment are divided into two sets, called a word, by generating all possible combinations of alternative amino acids. Each word is associated with a pattern of changes. Words with identical patterns identify covariant positions. In antibody variable domains, the number of words generated ranged between 1103 and 2195 depending on the alignment, of which 4 to 12 % occurred in covariant pairs. Despite the nonrestrictive character of pattern generation, covariant residues did not reflect a random selection with respect to the nature of amino acid changes and/or their spatial proximity in a reference crystallographic structure. This approach allowed the identification of a covariance signal for positions with high variability, mostly located in the outer part of the common structural framework of antibody variable domains. Covariance in these regions may reflect the existence of alternative and mutually exclusive atomic arrangements that are compatible with antibody function. The method may be of general applicability to rationalize residue variability in protein families.
Collapse
Affiliation(s)
- L Choulier
- UPR 9021-CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
18
|
Decanniere K, Muyldermans S, Wyns L. Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J Mol Biol 2000; 300:83-91. [PMID: 10864500 DOI: 10.1006/jmbi.2000.3839] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grafting the antigen-binding loops onto a human antibody scaffold is a widely used technique to humanise murine antibodies. The success of this approach depends largely on the observation that the antigen-binding loops adopt only a limited number of canonical structures. Identification of the correct canonical structure is therefore essential. Algorithms that predict the main-chain conformation of the hypervariable loops using only the amino acid sequence often provide this information. Here, we describe new canonical loop conformations for the hypervariable regions H1 and H2 as found in single-domain antibody fragments of dromedaries or llama. Although the occurrence of these new loop conformations was not predicted by the algorithms used, it seems that they could occur in human or mouse antigen-binding loops. Their discovery indicates that the currently used set of canonical structures is incomplete and that the prediction algorithms should be extended to include these new structures.
Collapse
Affiliation(s)
- K Decanniere
- Department Ultrastructure Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, Brussel, B-1640, Belgium.
| | | | | |
Collapse
|
19
|
Abstract
Over recent years databases have become an extremely important resource for biomedical research. Immunology research is increasingly dependent on access to extensive biological databases to extract existing information, plan experiments, and analyse experimental results. This review describes 15 immunological databases that have appeared over the last 30 years. In addition, important issues regarding database design and the potential for misuse of information contained within these databases are discussed. Access pointers are provided for the major immunological databases and also for a number of other immunological resources accessible over the World Wide Web (WWW).
Collapse
Affiliation(s)
- V Brusic
- BIC/KRDL Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore, Singapore.
| | | | | |
Collapse
|
20
|
Wang J, Jarvis GA, Achtman M, Rosenqvist E, Michaelsen TE, Aase A, Griffiss JM. Functional activities and immunoglobulin variable regions of human and murine monoclonal antibodies specific for the P1.7 PorA protein loop of Neisseria meningitidis. Infect Immun 2000; 68:1871-8. [PMID: 10722576 PMCID: PMC97360 DOI: 10.1128/iai.68.4.1871-1878.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meningococcal PorA protein is considered a promising vaccine candidate. Although much is understood regarding the structure of PorA proteins, little is known about the structure-function relationships of PorA antibodies. The aim of this study was to compare the functional and molecular characteristics of a human monoclonal antibody (MAb) and three murine MAbs specific for the PorA P1.7 serosubtype. Murine MAbs 207,B-4 (immunoglobulin G2a [IgG2a]) and MN14C11.6 (IgG2a) were both bactericidal and opsonophagocytic for P1.7-expressing meningococci, whereas human MAb SS269 (IgG3) and murine MAb 208,D-5 (IgA) initiated neither effector function. Epitope mapping with synthetic peptides revealed that MAbs 207,B-4 and 208,D-5 recognized the sequence ASGQ, which is the same specificity motif that a previous study had established for SS269 and MN14C11.6. Nucleotide and amino acid sequence analyses of the variable regions of the four MAbs showed that the SS269 V(H) region belonged to the VH3 family and was approximately 70% homologous to those of the murine MAbs which were all from the 7183 family, whereas the SS269 V(L) region belonged to the Vlambda1-b family and was less than 40% homologous to those of the murine MAbs which were all members of the Vkappa1 family. The Fab fragment of SS269 was cloned and expressed in Escherichia coli and was shown by enzyme-linked immunosorbent assay analyses to bind as well as intact SS269 MAb to P1.7,16 serosubtype group B strain 44/76. We conclude that distinct differences exist in the effector function activities and variable region gene sequences of human and murine P1.7-specific MAbs despite their recognition of similar epitopes.
Collapse
Affiliation(s)
- J Wang
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 2000; 19:921-30. [PMID: 10698934 PMCID: PMC305632 DOI: 10.1093/emboj/19.5.921] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antigen-binding site of the camel heavy-chain antibodies devoid of light chain consists of a single variable domain (V(H)H) that obviously lacks the V(H)-V(L) combinatorial diversity. To evaluate the extent of the V(H)H antigen-binding repertoire, a germline database was constructed from PCR-amplified V(H)H/V(H) segments of a single specimen of Camelus dromedarius. A total of 33 V(H)H and 39 V()H unique sequences were identified, encoded by 42 and 50 different genes, respectively. Sequence comparison indicates that the V(H)Hs evolved within the V(H) subgroup III. Nevertheless, the V(H)H germline segments are highly diverse, leading to a broad structural repertoire of the antigen-binding loops. Seven V(H)H subfamilies were recognized, of which five were confirmed to be expressed in vivo. Comparison of germline and cDNA sequences demonstrates that the rearranged V(H)Hs are extensively diversified by somatic mutation processes, leading to an additional hypervariable region and a high incidence of nucleotide insertions or deletions. These diversification processes are driven by hypermutation and recombination hotspots embedded in the V(H)H germline genes at the regions affecting the structure of the antigen-binding loops.
Collapse
Affiliation(s)
- V K Nguyen
- Department Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium.
| | | | | | | |
Collapse
|