1
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
2
|
Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons. Sci Rep 2018; 8:17379. [PMID: 30478340 PMCID: PMC6255804 DOI: 10.1038/s41598-018-35690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (CaV2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of CaV2.2 channel inhibition by FFAR3 in a global population of rat sympathetic neurons. Therefore, we focused on a small subpopulation of mouse sympathetic neurons using an FFAR3 antibody and an Ffar3 reporter mouse to perform immunofluorescent and electrophysiological studies. Whole-cell patch-clamp recordings of identified FFAR3-expressing neurons from reporter mice revealed a 2.5-fold decrease in the CaV2.2-FFAR3 inhibitory coupling variability and 1.5-fold increase in the mean ICa2+ inhibition, when compared with unlabeled neurons from wild-type mice. Further, we found that the ablation of Ffar3 gene expression in two knockout mouse models led to a complete loss-of-function. Subpopulations of sympathetic neurons are associated with discrete functional pathways. However, little is known about the neural pathways of the FFAR3-expressing subpopulation. Our data indicate that FFAR3 is expressed primarily in neurons with a vasoconstrictor phenotype. Thus, fine-tuning of chemically-coded neurotransmitters may accomplish an adequate outcome.
Collapse
|
3
|
Hosaka F, Yamamoto M, Cho KH, Jang HS, Murakami G, Abe SI. Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation. Anat Cell Biol 2016; 49:132-7. [PMID: 27382515 PMCID: PMC4927428 DOI: 10.5115/acb.2016.49.2.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 02/08/2023] Open
Abstract
The frontal nerve is characterized by its great content of sympathetic nerve fibers in contrast to cutaneous branches of the maxillary and mandibular nerves. However, we needed to add information about composite fibers of cutaneous branches of the nasociliary nerve. Using cadaveric specimens from 20 donated cadavers (mean age, 85), we performed immunohistochemistry of tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal polypeptide (VIP). The nasocilliary nerve contained abundant nNOS-positive fibers in contrast to few TH- and VIP-positive fibers. The short ciliary nerves also contained nNOS-positive fibers, but TH-positive fibers were more numerous than nNOS-positive ones. Parasympathetic innervation to the sweat gland is well known, but the original nerve course seemed not to be demonstrated yet. The present study may be the first report on a skin nerve containing abundant nNOS-positive fibers. The unique parasympathetic contents in the nasocilliary nerve seemed to supply the forehead sweat glands as well as glands in the eyelid and nasal epithelium.
Collapse
Affiliation(s)
- Fumio Hosaka
- Division of Ophthalmology, Iwamizawa Municipal Hospital, Iwamizawa, Japan
| | | | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Hyung Suk Jang
- Division of Physical Therapy, Ongoul Rehabilitation Hospital, Jeonju, Korea
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
4
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Hamada H, Ueno K, Kataoka T. Evidence for centrally induced cholinergic vasodilatation in skeletal muscle during voluntary one-legged cycling and motor imagery in humans. Physiol Rep 2013; 1:e00092. [PMID: 24303156 PMCID: PMC3831904 DOI: 10.1002/phy2.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/28/2022] Open
Abstract
We have recently reported that central command contributes to increased blood flow in both noncontracting and contracting vastus lateralis (VL) muscles at the early period of voluntary one-legged cycling. The purpose of this study was to examine whether sympathetic cholinergic vasodilatation mediates the increases in blood flows of both muscles during one-legged exercise. Following intravenous administration of atropine (10 μg/kg), eight subjects performed voluntary 1-min one-legged cycling (at 35% of maximal voluntary effort) and mental imagery of the exercise. The relative concentrations of oxygenated- and deoxygenated-hemoglobin (Oxy- and Deoxy-Hb) in the bilateral VL were measured as an index of muscle tissue blood flow with near-infrared spectroscopy (NIRS). The Oxy-Hb in both noncontracting and contracting VL increased at the early period of one-legged cycling, whereas the Deoxy-Hb did not alter at that period. Atropine blunted (P < 0.05) the Oxy-Hb responses of both VL muscles but did not affect the Deoxy-Hb responses. The time course and magnitude of the atropine-sensitive component in the Oxy-Hb response were quite similar between the noncontracting and contracting VL muscles. With no changes in the Deoxy-Hb and hemodynamics, imagery of one-legged cycling induced the bilateral increases in the Oxy-Hb, which were completely abolished by atropine. In contrast, imagery of a circle (with no relation to exercise) did not alter the NIRS signals, irrespective of the presence or absence of atropine. It is concluded that central command evokes cholinergic vasodilatation equally in bilateral VL muscles during voluntary one-legged cycling and motor imagery.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hieda K, Cho KH, Arakawa T, Fujimiya M, Murakami G, Matsubara A. Nerves in the intersphincteric space of the human anal canal with special reference to their continuation to the enteric nerve plexus of the rectum. Clin Anat 2013; 26:843-54. [PMID: 23512701 DOI: 10.1002/ca.22227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
Abstract
In the intersphincteric space of the anal canal, nerves are thought to "change" from autonomic to somatic at the level of the squamous-columnar epithelial junction of the anal canal. To compare the nerve configuration in the intersphincteric space with the configuration in adjacent areas of the human rectum, we immunohistochemically assessed tissue samples from 12 donated cadavers, using antibodies to S100, neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH). Antibody to S100 revealed a clear difference in intramuscular nerve distribution patterns between the circular and longitudinal muscle layers of the most inferior part of the rectum, with the former having a plexus-like configuration, while the latter contained short, longitudinally running nerves. Most of the intramural ganglion cells in the anal canal were restricted to above the epithelial junction, but some were located just below that level. Near or at the level of the epithelial junction, the nerves along the rectal adventitia and Auerbach's nerve plexus joined to form intersphincteric nerves, with all these nerves containing both nNOS-positive parasympathetic and TH-positive sympathetic nerve fibers. Thus, it was histologically difficult to distinguish somatic intersphincteric nerves from the autonomic Auerbach's plexus. In the intersphincteric space, the autonomic nerve elements with intrapelvic courses seemed to "borrow" a nerve pathway in the peripheral branches of the pudendal nerve. Injury to the intersphincteric nerve during surgery may result in loss of innervation in the major part of the internal anal sphincter.
Collapse
Affiliation(s)
- Keisuke Hieda
- Department of Urology, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Shinbara H, Okubo M, Kimura K, Mizunuma K, Sumiya E. Participation of Calcitonin Gene Related Peptide Released via Axon Reflex in the Local Increase in Muscle Blood Flow following Manual Acupuncture. Acupunct Med 2013; 31:81-7. [DOI: 10.1136/acupmed-2012-010253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective The purpose of this study was to determine how calcitonin gene related peptide (CGRP) via axon reflex participates in increasing local muscle blood flow (MBF) following manual acupuncture (MA). Methods Male Sprague–Dawley rats (N=56, 270–350 g) were used. We examined (1) the effects of MA on MBF in the tibialis anterior (TA) muscle in normal rats; (2) the effects of MA on MBF in the TA injected with saline or hCGRP8-37 (low: 2×10−4 mol/litre; high: 2×10−3 mol/litre), a competitive CGRP receptor antagonist, in rats; and (3) the effects of MA on MBF in the TA in capsaicin-treated rats. The capsaicin-treated rats were injected with capsaicin dissolved in an ethanol solution within 24 h after birth (50 mg/kg subcutaneously). MA was applied to the right TA for 1 min. 51Cr-labelled microspheres (15 μm in diameter) were used to measure MBF. Results MA significantly increased MBF without changing arterial blood pressure in normal rats (p<0.05). MA also significantly increased MBF in saline-injected, low hCGRP8-37-injected and high hCGRP8-37-injected rats (p<0.001, 005 and 0.05, respectively). The increases in low and high hCGRP8-37-injected rats were lower than those in saline-injected rats, but the difference was not significant. However, MA did not significantly increase MBF in capsaicin-treated rats (p=0.38). Conclusions We obtained conflicting results, suggesting that the participation of CGRP released via axon reflex may be limited to a local increase in MBF following MA.
Collapse
Affiliation(s)
- Hisashi Shinbara
- Department of Basic Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan-shi, Kyoto, Japan
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya-shi, Hyogo, Japan
| | - Keisaku Kimura
- Department of Health Promoting and Preventive Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan-shi, Kyoto, Japan
| | - Kunio Mizunuma
- Department of Traditional Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan-shi, Kyoto, Japan
| | - Eiji Sumiya
- Department of Basic Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan-shi, Kyoto, Japan
| |
Collapse
|
8
|
Matsukawa K, Ishii K, Liang N, Endo K. Have we missed that neural vasodilator mechanisms may contribute to exercise hyperemia at onset of voluntary exercise? Front Physiol 2013; 4:23. [PMID: 23422870 PMCID: PMC3573268 DOI: 10.3389/fphys.2013.00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/30/2013] [Indexed: 11/13/2022] Open
Abstract
Whether neurally-mediated vasodilatation may contribute to exercise hyperemia has not been completely understood. Bülbring and Burn (1935) found for the first time the existence of sympathetic cholinergic nerve to skeletal muscle contributing to vasodilatation in animals. Blair et al. (1959) reported that atropine-sensitive vasodilatation in skeletal muscle appeared during arousal behavior or mental stress in humans. However, such sympathetic vasodilator mechanism for muscle vascular bed in humans is generally denied at present, because surgical sympathectomy, autonomic blockade, and local anesthesia of sympathetic nerves cause no substantial influence on vasodilatation in muscle not only during mental stress but also during exercise. On the other hand, neural mechanisms may play an important role in regulating blood flow to non-contracting muscle. Careful consideration of the neural mechanisms may lead us to an insight about a possible neural mechanism responsible for exercise hyperemia in contracting muscle. Referring to our recent study measuring muscle tissue blood flow with higher time resolution, this review has focused on whether or not central command may transmit vasodilator signal to skeletal muscle especially at the onset of voluntary exercise.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Minami-ku, Hiroshima, Japan
| | | | | | | |
Collapse
|
9
|
Hanada K, Kishimoto S, Bellier JP, Kimura H. Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry. Cell Tissue Res 2012; 351:497-510. [PMID: 23250574 DOI: 10.1007/s00441-012-1536-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022]
Abstract
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.
Collapse
Affiliation(s)
- Keiji Hanada
- Department of Dermatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | | | | | | |
Collapse
|
10
|
Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318:34-43. [PMID: 19747957 PMCID: PMC2826518 DOI: 10.1016/j.mce.2009.08.031] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/14/2022]
Abstract
Circulating factors are typically invoked to explain bidirectional communication between the CNS and white adipose tissue (WAT). Thus, initiation of lipolysis has been relegated primarily to adrenal medullary secreted catecholamines and the inhibition of lipolysis primarily to pancreatic insulin, whereas signals of body fat levels to the brain have been ascribed to adipokines such as leptin. By contrast, evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue. Using retrograde transneuronal viral tract tracers, the SNS outflow from brain to WAT has been defined. Functionally, sympathetic denervation of WAT blocks lipolysis to a variety of lipolytic stimuli. Using anterograde transneuronal viral tract tracers, the sensory input from WAT to brain has been defined. Functionally, these WAT sensory nerves respond electrophysiologically to increases in WAT SNS drive suggesting a possible neural negative feedback loop to regulate lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|
11
|
Absence of pain with hyperhidrosis: A new syndrome where vascular afferents may mediate cutaneous sensation. Pain 2009; 147:287-98. [DOI: 10.1016/j.pain.2009.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 12/22/2022]
|
12
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
13
|
Li Y, Dahlström A. Peripheral projections of NESP55 containing neurons in the rat sympathetic ganglia. Auton Neurosci 2008; 141:1-9. [PMID: 18539096 DOI: 10.1016/j.autneu.2008.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 12/26/2022]
Abstract
The peripheral projections of neurons expressing neuroendocrine secretory protein 55 (NESP55), a novel member of the chromogranin family, were studied by retrograde tracing technique. It was found that NESP55 positive neurons in the rat superior cervical ganglion projected to a number of targets including the submandibular gland, the cervical lymph nodes, the forehead skin, the iris, but not to the thyroid. Among these NESP55 positive target-projecting neurons, a subpopulation contained neuropeptide Y (NPY), a vasoconstrictor. Forepaw pad projecting neurons were found exclusively in the stellate ganglion, almost all of which (approximately 90%) were immunoreactive to NESP55. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP), a peptide involved in sudomotor effects, was observed in a subpopulation of these paw pad projecting neurons, as was colocalization of NESP55 and NPY. The data suggest that NESP55 may have a functional role in some populations of sympathetic neurons.
Collapse
Affiliation(s)
- Yongling Li
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden.
| | - Annica Dahlström
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden
| |
Collapse
|
14
|
Castro J, Negredo P, Avendaño C. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 2008; 1190:65-77. [DOI: 10.1016/j.brainres.2007.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/05/2007] [Accepted: 11/11/2007] [Indexed: 11/25/2022]
|
15
|
|
16
|
Anderson CR, Bergner A, Murphy SM. How many types of cholinergic sympathetic neuron are there in the rat stellate ganglion? Neuroscience 2006; 140:567-76. [PMID: 16600516 DOI: 10.1016/j.neuroscience.2006.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/21/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Sympathetic cholinergic postganglionic neurons are present in many sympathetic ganglia. Three classes of sympathetic cholinergic neuron have been reported in mammals; sudomotor neurons, vasodilator neurons and neurons innervating the periosteum. We have examined thoracic sympathetic ganglia in rats to determine if any other classes of cholinergic neurons exist. We could identify cholinergic sudomotor neurons and neurons innervating the rib periosteum, but confirmed that cholinergic sympathetic vasodilator neurons are absent in this species. Sudomotor neurons contained vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) and always lacked calbindin. Cholinergic neurons innervating the periosteum contained VIP and sometimes calbindin, but always lacked CGRP. Cholinergic neurons innervating the periosteum were usually surrounded by terminals immunoreactive for CGRP. We conclude that if any undiscovered populations of cholinergic neurons exist in the rat thoracic sympathetic chain, then they are indistinguishable in size, neurochemistry and inputs from sudomotor or cholinergic neurons innervating the periosteum. It may be that the latter two populations account for all cholinergic neurons in the rat thoracic sympathetic chain ganglia.
Collapse
Affiliation(s)
- C R Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
17
|
Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schütz G, Rohrer H. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 2005; 133:141-50. [PMID: 16319110 DOI: 10.1242/dev.02189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathetic neurons are generated through a succession of differentiation steps that initially lead to noradrenergic neurons innervating different peripheral target tissues. Specific targets, like sweat glands in rodent footpads, induce a change from noradrenergic to cholinergic transmitter phenotype. Here, we show that cytokines acting through the gp 130 receptor are present in sweat glands. Selective elimination of the gp 130 receptor in sympathetic neurons prevents the acquisition of cholinergic and peptidergic features (VAChT, ChT1, VIP) without affecting other properties of sweat gland innervation. The vast majority of cholinergic neurons in the stellate ganglion, generated postnatally, are absent in gp 130-deficient mice. These results demonstrate an essential role of gp 130-signaling in the target-dependent specification of the cholinergic neurotransmitter phenotype.
Collapse
Affiliation(s)
- Matthias Stanke
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/M, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The precise coordination of the many events in nervous system development is absolutely critical for the correct establishment of functional circuits. The postganglionic sympathetic neuron has been an amenable model for studying peripheral nervous system formation. Factors that control several developmental events, including multiple stages of axon extension, neuron survival and death, dendritogenesis, synaptogenesis, and establishment of functional diversity, have been identified in this neuron type. This knowledge allows us to integrate the various intricate processes involved in the formation of a functional sympathetic nervous system and thereby create a paradigm for understanding neuronal development in general.
Collapse
Affiliation(s)
- Natalia O Glebova
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
19
|
Burniston JG, Tan LB, Goldspink DF. β2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol (1985) 2005; 98:1379-86. [PMID: 15591297 DOI: 10.1152/japplphysiol.00642.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High doses of the β2-adrenergic receptor (AR) agonist clenbuterol can induce necrotic myocyte death in the heart and slow-twitch skeletal muscle of the rat. However, it is not known whether this agent can also induce myocyte apoptosis and whether this would occur at a lower dose than previously reported for myocyte necrosis. Male Wistar rats were given single subcutaneous injections of clenbuterol. Immunohistochemistry was used to detect myocyte-specific apoptosis (detected on cryosections via a caspase 3 antibody and confirmed with annexin V, single-strand DNA labeling, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). Myocyte apoptosis was first detected at 2 h and peaked 4 h after clenbuterol administration. The lowest dose of clenbuterol to induce cardiomyocyte apoptosis was 1 μg/kg, with peak apoptosis (0.35 ± 0.05%; P < 0.05) occurring in response to 5 mg/kg. In the soleus, peak apoptosis (5.8 ± 2%; P < 0.05) was induced by the lower dose of 10 μg/kg. Cardiomyocyte apoptosis was detected throughout the ventricles, atria, and papillary muscles. However, this damage was most abundant in the left ventricular subendocardium at a point 1.6 mm, that is, approximately one-quarter of the way, from the apex toward the base. β-AR antagonism (involving propranolol, bisoprolol, or ICI 118551) or reserpine was used to show that clenbuterol-induced myocardial apoptosis was mediated through neuromodulation of the sympathetic system and the cardiomyocyte β1-AR, whereas in the soleus direct stimulation of the myocyte β2-AR was involved. These data show that, when administered in vivo, β2-AR stimulation by clenbuterol is detrimental to cardiac and skeletal muscles even at low doses, by inducing apoptosis through β1- and β2-AR, respectively.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-Agonists/administration & dosage
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Clenbuterol/administration & dosage
- Dose-Response Relationship, Drug
- Heart/drug effects
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sports and Exercise Sciences, Liverpool John Moores Univ., Webster St., Liverpool, L3 2ET, United Kingdom.
| | | | | |
Collapse
|
20
|
Masliukov PM, Timmermans JP. Immunocytochemical properties of stellate ganglion neurons during early postnatal development. Histochem Cell Biol 2004; 122:201-9. [PMID: 15338227 DOI: 10.1007/s00418-004-0692-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2004] [Indexed: 12/21/2022]
Abstract
Neurotransmitter features in sympathetic neurons are subject to change during development. To better understand the neuroplasticity of sympathetic neurons during early postnatal ontogenesis, this study was set up to immunocytochemically investigate the development of the catecholaminergic, cholinergic, and peptidergic phenotypes in the stellate ganglion of mice and rats. The present study was performed on Wistar rats and Swiss mice of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, and 60-day-old). To this end, double labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), vasoactive intestinal (poly)peptide (VIP), neuropeptide Y (NPY), galanin (GAL), and somatostatin (SOM) was applied. The results obtained indicate that the majority of the neurons in the stellate ganglion of both species were TH-positive from birth onward and that a large part of these neurons also contained NPY. The percentage of neurons containing TH and NPY invariably increased with age up to 60 days postnatally. A smaller portion of the stellate ganglion neurons contained other types of neuropeptides and showed a distinct chronological pattern. The proportion of VIP- and ChAT-positive neurons was maximal in 10-day-old animals and then decreased up to 60 days of age, whereas the number of SOM-positive cells in rats significantly decreased from birth onward. In newborn rats, VIP-, ChAT- and SOM-positive neurons were largely TH-positive, while their proportions decreased in 10-day-old and older rats. Accordingly, the largest part of VIP-positive neurons also expressed SOM immunoreactivity at birth, after which the number of neurons containing both peptides diminished. The VIP- and SOM-positive cells did not contain NPY in any of the age groups studied. In rats up to 10 days of life, GAL-immunoreactive (-IR) neurons were scarce, after which their number increased to reach a maximal value in 30-day-old animals and then declined again. The SOM-reactive cells had the smallest size in all rats, while the largest neurons were those containing ChAT. In the mouse stellate ganglion, VIP- and ChAT-IR neurons were larger in comparison to NPY- and TH-IR cells. Our study further revealed some species differences: compared to mice the proportion of neurons containing TH and NPY was higher in rats at all ages under study. Furthermore, no GAL-immunostained neurons were found in mice and the number of SOM-positive cells in mice was limited compared to that observed in rats. In conclusion, the development of neurotransmitter composition is complete in rats and mice by their second month of life. At this age, the percentages of immunopositive cells have become similar to those reported in adult animals.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical Academy, Revoliucionnaya 5, 150000, Russia.
| | | |
Collapse
|
21
|
Michel F, Duriez M, Lévy BI, Boulanger CM. Minimally Invasive, In Vivo Exploration of Mouse Small Artery Reactivity. J Cardiovasc Pharmacol 2004; 43:271-5. [PMID: 14716216 DOI: 10.1097/00005344-200402000-00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the study was to investigate in vivo arterial reactivity in the mouse hind limb using Orthogonal Polarisation Spectral (OPS) imaging, which delivers high-contrast images of vascular beds by visualizing red blood cells. After minimal skin invasion of anesthetized mice, the OPS probe was placed on the hind limb continuously superfused with physiological saline solution. Then, the response of the saphenous artery (average luminal diameter 127 +/- 3 microm; n = 15) to topical application of increasing concentrations of acetylcholine or phenylephrine was examined. Mean carotid arterial blood pressure was unaffected during the experiment. The basal diameter decreased by 70% during exposure to phenylephrine (pD2: 5.65 +/- 0.08; n = 9), while acetylcholine augmented basal diameter up to 199% (pD2: 6.55 +/- 0.12; n = 6). Application of sodium nitroprusside did not further increase arterial diameter following acetylcholine exposure. After washing out, arterial luminal diameters returned to initial values. Second exposure to vasoactive agents demonstrated that changes in diameter were reproducible with time and not different between left and right saphenous arteries. Thus, OPS imaging is an in vivo dye-free, simple and minimally invasive approach, which provides unique information regarding the behavior of vascular network within conditions of cellular and physiological homeostasis.
Collapse
Affiliation(s)
- Frédéric Michel
- INSERM U541, Hôpital Lariboisiére, IFR Jules Marey, Université Paris 7, France
| | | | | | | |
Collapse
|
22
|
Abstract
The development of the nervous system entails the coordination of the spatial and chemical development of both pre- and postsynaptic elements. This coordination is accomplished by signals passing between neurons and the target cells that they innervate. This review focuses on well-characterized examples of target-mediated neuronal differentiation in the central and peripheral nervous systems. These include control of neurogenesis in the leech by male genitalia, presynaptic differentiation induced by postsynaptic molecules expressed by skeletal muscle, postsynaptic adhesion molecules that induce presynaptic differentiation in the central nervous system (CNS), target-mediated control of neurotransmitter phenotype in peripheral neurons, and target-regulated control of neuronal nicotinic acetylcholine receptors (nAChRs) and large conductance calcium-activated potassium channels (BK). The detailed understanding of these processes will uncover signals critical for the directed differentiation of stem cells as well as identify future targets for therapies in neural regeneration that promote the reestablishment of functional connections.
Collapse
Affiliation(s)
- Rae Nishi
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, HSRF 406, 149 Beaumont Avenue, Burlington 05405-0075, USA.
| |
Collapse
|
23
|
Wanigasekara Y, Kepper ME, Keast JR. Immunohistochemical characterisation of pelvic autonomic ganglia in male mice. Cell Tissue Res 2003; 311:175-85. [PMID: 12596037 DOI: 10.1007/s00441-002-0673-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 11/05/2002] [Indexed: 11/25/2022]
Abstract
Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.
Collapse
Affiliation(s)
- Yewlan Wanigasekara
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
24
|
Loaiza LA, Yamaguchi S, Ito M, Ohshima N. Vasodilatation of muscle microvessels induced by somatic afferent stimulation is mediated by calcitonin gene-related peptide release in the rat. Neurosci Lett 2002; 333:136-40. [PMID: 12419499 DOI: 10.1016/s0304-3940(02)01030-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In anesthesized rats, the effects of electrical stimulation (ES) to the saphenous nerve on the microcirculation of the gracilis muscle were assessed through the measurement of two different hemodynamic parameters: (a). the muscle blood flow (MBF) using a laser Doppler flowmeter; and (b). the changes in diameter of the muscle arterioles observed directly using an intravital microscope system. Ipsilateral ES (5 V, 20 Hz, for 30 s) produced increases in MBF and mean arterial pressure (47+/-10% and 18+/-5%) over the baseline, while no significant changes in MBF were observed in the contralateral muscle. Neither selective nor simultaneous alpha- and beta-adrenergic blockade altered the increases in MBF induced by ipsilateral ES. The arteriolar diameter was found to increase by 38.9+/-5% following ipsilateral ES. This response in diameter was abolished after the topical application of a calcitonin gene-related peptide receptor antagonist (CGRP(8-37)). Contralateral ES produced a decrease in arteriolar diameter by 26+/-14%. Thus, ipsilateral nerve ES produced vasodilative responses in the muscle accompanied by increases in MBF independently of the sympathetic activity. Furthermore, CGRP was found directly involved in the reflex neural regulation of the muscle microcirculation, which suggests the participation of an axon reflex mechanism.
Collapse
Affiliation(s)
- Lázaro A Loaiza
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
25
|
Funakoshi K, Atobe Y, Hisajima T, Nakano M, Kadota T, Goris RC, Kishida R. Choline acetyltransferase immunoreactive sympathetic ganglion cells in a teleost, Stephanolepis cirrhifer. Auton Neurosci 2002; 99:31-9. [PMID: 12171254 DOI: 10.1016/s1566-0702(02)00061-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study showed neurons immunoreactive for choline acetyltransferase (ChAT) in the cranial sympathetic ganglia lying close to the trigeminal-facial nerve complex of the filefish. In these ganglia, less than 1% of ganglion cells were positive for choline acetyltransferase. Choline acetyltransferase-positive neurons were significantly larger than the randomly sampled neurons in this ganglion. The majority of choline acetyltransferase-positive neurons were negative for tyrosine hydroxylase, but many of them were positive for galanin (GAL). Some neurons were positive for both choline acetyltransferase and tyrosine hydroxylase, but these neurons were rarely immunoreactive for dopamine beta hydroxylase, suggesting that they are not adrenergic. In the cranial sympathetic ganglia and the celiac ganglia, many nerve fibers immunoreactive for galanin were seen, and varicose terminals were in contact selectively with neurons negative for both choline acetyltransferase and tyrosine hydroxylase, but not with those positive for choline acetyltransferase or tyrosine hydroxylase. Nerve fibers immunoreactive for choline acetyltransferase were found to be present in contact with the deep layer of chromatophores, which was observed only in the labial region. These results suggest that cholinergic postganglionic neurons are present in the filefish cranial sympathetic ganglia, and that they also contain galanin. As few cholinergic sympathetic neurons express tyrosine hydroxylase and none express dopamine beta hydroxylase, they are unlikely to synthesize noradrenaline or adrenaline.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Anatomy, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wittwer M, Flück M, Hoppeler H, Müller S, Desplanches D, Billeter R. Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 2002; 16:884-6. [PMID: 11967225 DOI: 10.1096/fj.01-0792fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using commercially available microarray technology, we investigated a series of transcriptional adaptations caused by atrophy of rat m. soleus due to 35 days of hindlimb suspension. We detected 395 out of 1,200 tested transcripts, which reflected 1%-5% of totally expressed genes. From various cellular functional pathways, we detected multiple genes that spanned a 200-fold range of gene expression levels. Statistical analysis combining L1 regression with the sign test based on the conservative Bonferroni correction identified 105 genes that underwent transcriptional adaptations with atrophy. Generally, expressional changes were discrete (<50%) and pointed in the same direction for genes belonging to the same cellular functional units. In particular, a distinct expressional adaptation of genes involved in fiber transformation; that is, metabolism, protein turnover, and cell regulation were noted and matched to corresponding transcriptional changes in nutrient trafficking. Expressional changes of extracellular proteases, and of genes involved in nerve-muscle interaction and excitation-contraction coupling identify previously not recognized adaptations that occur in atrophic m. soleus. Considerations related to technical and statistical aspects of the array approach for profiling the skeletal muscle genome and the impact of observed novel adaptations of the m. soleus transcriptome are put into perspective of the physiological adaptations occurring with muscular atrophy.
Collapse
|
27
|
Loaiza LA, Yamaguchi S, Ito M, Ohshima N. Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Auton Neurosci 2002; 97:103-9. [PMID: 12132642 DOI: 10.1016/s1566-0702(02)00051-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent reports have focused on the mechanisms of the action of electro-acupuncture stimulation (EAS) in the regulation of blood flow to different tissues. In the knee joint, blood flow is known to be modulated mainly by sympathetic postganglionic fibers, but recently the release or induction of nitric oxide (NO) synthesis in response to electrical stimulation has also been suggested. Therefore, a direct observation of the microcirculation is needed to further understand the mechanism by which blood flow is regulated by somatic afferent stimulation. In the present study, the effects of EAS to the vastus medialis muscle on systemic hemodynamics and the knee joint microcirculation were observed in vivo using a real-time confocal laser-scanning microscope system (CLMS). Electrical stimulation (5 mA, 0.5 ms, 5 Hz) was applied for 30 min using a pair of acupuncture needles introduced into the vastus medialis muscle. To clarify a plausible involvement of NO in the responses to EAS, the stimulus was applied either in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME). Stimulation to either the muscle or the skin of the thigh after blockade of neuromuscular transmission was performed to determine the involvement of muscle contraction during EAS treatment. The changes in mean arterial pressure (MAP) and diameter of the arterioles supplying the knee joint were monitored continuously until 60 min poststimulus. Significant and persistent increases in arteriolar diameter by 26 +/- 6% and MAP by 17 +/- 2%, respectively, were observed after EAS to the muscle. Electro-acupuncture to the vastus medialis in the presence of L-NAME produced a strong decrease in diameter of the knee joint arterioles by -38 +/- 14% under the baseline with a simultaneous increase of 35 +/- 5% in MAP. EAS to the skin did not produce changes in arteriolar diameter while a slight increase in MAP by 12 +/- 6% over the baseline occurred after the stimulus. EAS to the muscle after neuromuscular blockade did not produce significant changes in diameter, while an increase in MAP by 24 +/- 8% was still observed, which facts suggest that the muscle contraction is required to produce vasodilatation. These responses suggest that a dynamic balance between the autonomic nervous system and the release of NO is the primary mechanism mediating the EAS effects on knee joint microcirculation.
Collapse
Affiliation(s)
- Lázaro A Loaiza
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | | | | | | |
Collapse
|
28
|
Duong CV, Geissen M, Rohrer H. The developmental expression of vasoactive intestinal peptide (VIP) in cholinergic sympathetic neurons depends on cytokines signaling through LIFRβ-containing receptors. Development 2002; 129:1387-96. [PMID: 11880348 DOI: 10.1242/dev.129.6.1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. Cholinergic sympathetic neurons are characterized by the expression of choline acetyl transferase (ChAT), vesicular acetylcholine transporter (VAChT) and the vasoactive intestinal peptide (VIP). To investigate the role of cytokine growth factor family members in the development of cholinergic sympathetic neurons, we interfered in vivo with the function of the subclass of cytokine receptors that contains LIFRβ as essential receptor subunit. Expression of LIFRβ antisense RNA interfered with LIFRβ expression and strongly reduced the developmental induction of VIP expression. By contrast, ganglion size and the number of ChAT-positive cells were not reduced. These results demonstrate a physiological role of cytokines acting through LIFRβ-containing receptors in the control of VIP expression in sympathetic neurons.
Collapse
Affiliation(s)
- Chi Vinh Duong
- Max-Planck-Institut für Hirnforschung, Abteilung Neurochemie, Deutschordenstr. 46, 60528 Frankfurt / Main, Germany
| | | | | |
Collapse
|
29
|
Takeuchi Y, Tino S, Asamoto K, Nojyo Y. Differences in the density of sympathetic nerve fibers in the arteriolar walls of the rat extensor digitorum longus muscle. Anat Sci Int 2002; 77:51-7. [PMID: 12418084 DOI: 10.1046/j.0022-7722.2002.00005.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we electron-microscopically investigated a number of sympathetic axons in the arteriolar walls of the extensor digitorum longus muscles of the rat rear leg. Arterioles in the muscle were divided into two groups: (i) one group consisted of arterioles with accompanying muscle spindles, and (ii) the other consisted of arterioles without accompanying muscle spindles. The number of sympathetic axons present in the arteriolar walls and the ratios to the total number of sympathetic and non-sympathetic axons were compared between the groups. For electron-microscopic identification of sympathetic axons, 5-hydroxydopamine, a pseudotransmitter agent, was used. The number and ratio of sympathetic axons were significantly higher in arterioles with accompanying muscle spindles than arterioles possibly unrelated to muscle spindles. Additionally, amine- and immunohistochemistry were used to confirm the above observation.
Collapse
Affiliation(s)
- Yoshitaka Takeuchi
- Department of Orthopaedic Surgery, Teikyo University, School of Medicine, 359 Otsuka, Hachioji-shi, Tokyo 192-0395, Japan.
| | | | | | | |
Collapse
|
30
|
Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001; 94:1-13. [PMID: 11775697 DOI: 10.1016/s1566-0702(01)00336-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fine-tuned operation of the nervous system is accomplished by a diverse set of neurons which differ in their morphology, biochemistry and, consequently, their functional properties. The accurate interconnection between different neuron populations and their target tissues is the prerequisite for physiologically appropriate information processing. This is exemplified by the regulatory action of the autonomic nervous system in vertebrates to sustain homeostasis under changing physiological demands. For this purpose, the coordination of divergent regulatory responses is required in a multitude of tissues spread over the entire body. To meet this task, diverse neuronal populations interact at different levels. In the sympathetic system. chemical relations between preganglionic and postganglionic neurons appear to differ along the rostrocaudal axis. In addition, postganglionic neurons innervating different target tissues at a segmental level have distinct properties. Differences in their preganglionic innervation and their integrative membrane properties result in diverse activation patterns upon reflex stimulation. Moreover, postganglionic neurons differ in the transmitter molecules they employ to convey information to the target tissues. The segregation of noradrenaline and acetylcholine to different populations of postganglionic sympathetic neurons is well established. A combination of cellular and molecular approaches has begun to uncover how such a complex system may be generated during development. Growth and transcription factors involved in noradrenergic and cholinergic differentiation are characterised. Interestingly, they can also promote the expression of proteins involved in transmitter secretion. As the proteins participating in the vesicle cycle are expressed in many neuron populations, whereas the enzymes of transmitter biosynthesis are restricted to subpopulations of neurons, the findings suggest that early in neuronal development subpopulation-specific and more widely expressed neuronal properties can be commonly induced. Still, many details concerning the signals involved in the induction of the neurotransmitter synthesis and release machinery remain to be worked out. Likewise, the regulatory processes resulting in differences of electrophysiological membrane properties and the specific recognition between pre- and postganglionic neurons have to be determined. Ultimately, this will lead to an understanding at the molecular level of the development of a nervous system with diverse neuronal populations that are specifically interconnected to distinct input neurons and target tissues as required for the performance of a complex regulatory function.
Collapse
Affiliation(s)
- U Ernsberger
- Interdisziplinäres Zentrum für Neurowissenschaften, Institut für Anatomie und Zellbiologie III, Heidelberg, Germany.
| |
Collapse
|