1
|
Walker SN, Tennyson RL, Chapman AM, Kennan AJ, McNaughton BR. GLUE that sticks to HIV: a helix-grafted GLUE protein that selectively binds the HIV gp41 N-terminal helical region. Chembiochem 2014; 16:219-22. [PMID: 25477243 DOI: 10.1002/cbic.201402531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 12/11/2022]
Abstract
Methods for the stabilization of well-defined helical peptide drugs and basic research tools have received considerable attention in the last decade. Here, we report the stable and functional display of an HIV gp41 C-peptide helix mimic on a GRAM-Like Ubiquitin-binding in EAP45 (GLUE) protein. C-peptide helix-grafted GLUE selectively binds a mimic of the N-terminal helical region of gp41, a well-established HIV drug target, in a complex cellular environment. Additionally, the helix-grafted GLUE is folded in solution, stable in human serum, and soluble in aqueous solutions, and thus overcomes challenges faced by a multitude of peptide drugs, including those derived from HIV gp41 C-peptide.
Collapse
Affiliation(s)
- Susanne N Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523 (USA)
| | | | | | | | | |
Collapse
|
2
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|
3
|
Pang HB, Hevroni L, Kol N, Eckert DM, Tsvitov M, Kay MS, Rousso I. Virion stiffness regulates immature HIV-1 entry. Retrovirology 2013; 10:4. [PMID: 23305456 PMCID: PMC3564805 DOI: 10.1186/1742-4690-10-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/29/2012] [Indexed: 01/29/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. Results In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. Conclusions This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.
Collapse
Affiliation(s)
- Hong-Bo Pang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
5
|
Sowmya G, Shamini G, Anita S, Sakharkar M, Mathura V, Rodriguez H, Levine AJ, Singer E, Commins D, Somboonwit C, Sinnott JT, Sidhu HS, Rajaseger G, Pushparaj PN, Kangueane P, Shapshak P. HIV-1 envelope accessible surface and polarity: clade, blood, and brain. Bioinformation 2011; 6:48-56. [PMID: 21544164 PMCID: PMC3082861 DOI: 10.6026/97320630006048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus type-1 (HIV-1) gp160 (gp120-gp41 complex) trimer envelope (ENV) protein is a potential vaccine candidate for HIV/AIDS. HIV-1 vaccine development has been problematic and charge polarity as well as sequence variation across clades may relate to the difficulties. Further obstacles are caused by sequence variation between blood and brain-derived sequences, since the brain is a separate compartment for HIV-1 infection. We utilize a threedimensional residue measure of solvent exposure, accessible surface area (ASA), which shows that major segments of gp120 and gp41 known structures are solvent exposed across clades. We demonstrate a large percent sequence polarity for solvent exposed residues in gp120 and gp41. The range of sequence polarity varies across clades, blood, and brain from different geographical locations. Regression analysis shows that blood and brain gp120 and gp41 percent sequence polarity range correlate with mean Shannon entropy. These results point to the use of protein modifications to enhance HIV-1 ENV vaccines across multiple clades, blood, and brain. It should be noted that we do not address the issue of protein glycosylation here; however, this is an important issue for vaccine design and development. ABBREVIATIONS HIV-1 - human immunodeficiency virus type 1, AIDS - acquired immunodeficiency syndrome, ENV - envelope, gp160 - 160,000d glycoprotein, gp120 - 120,000d glycoprotein, gp41 - 41,000d glycoprotein, LANL - Los Alamos National Laboratories, PDB - Protein Data Bank, HVTN - STEP HIV vaccine trial, AA - amino acids, MSA - multiple sequence alignment, ASA - accessible surface area, SNPs- single nucleotide polymorphisms, HAART - Highly Active Antiretroviral Therapy, CCR5 - C-C chemokine receptor type 5, CNS - central nervous system, HIVE - HIV encephalitis, P - polarity, NP - non-polarity, CTL - cytotoxic T lymphocyte, NIAID - National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Gopichandran Sowmya
- Biomedical Informatics, Pondicherry 607402, India
- Aimst University, 08100 Semeling, Malaysia
| | - Gunasagaran Shamini
- Biomedical Informatics, Pondicherry 607402, India
- Aimst University, 08100 Semeling, Malaysia
| | | | - Meena Sakharkar
- Graduate School of Life and Environmental Sciences University of Tsukuba, Japan
| | - Venkat Mathura
- Archer Pharmaceuticals, Sarasota, Florida, USA
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, US
| | - Hector Rodriguez
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Andrew J Levine
- National Neurological AIDS Bank, UCLA School of Medicine, Westwood, CA 90095
- Department of Neurology, UCLA School of Medicine, Westwood, CA 90095
| | - Elyse Singer
- National Neurological AIDS Bank, UCLA School of Medicine, Westwood, CA 90095
- Department of Neurology, UCLA School of Medicine, Westwood, CA 90095
| | - Deborah Commins
- National Neurological AIDS Bank, UCLA School of Medicine, Westwood, CA 90095
- Department of Neuropathology, USC Keck School of Medicine, Los Angeles, CA90089
| | - Charurut Somboonwit
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida 33602
- Division of Infectious Disease and International Medicine, Tampa General Hospital, USF Health, Tampa, FL 33601
| | - John T Sinnott
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida 33602
- Division of Infectious Disease and International Medicine, Tampa General Hospital, USF Health, Tampa, FL 33601
| | | | | | | | | | - Paul Shapshak
- Division of Infectious Disease and International Medicine, Tampa General Hospital, USF Health, Tampa, FL 33601
- Department of Psychiatry & Behavioral Medicine, University of South Florida, College of Medicine, Tampa, FL 33613
| |
Collapse
|
6
|
Gift SK, Zentner IJ, Schön A, McFadden K, Umashankara M, Rajagopal S, Contarino M, Duffy C, Courter JR, Zhang MY, Gershoni JM, Cocklin S, Dimitrov DS, Smith AB, Freire E, Chaiken IM. Conformational and structural features of HIV-1 gp120 underlying the dual receptor antagonism by cross-reactive neutralizing antibody m18. Biochemistry 2011; 50:2756-68. [PMID: 21351734 DOI: 10.1021/bi101160r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the interaction between cross-reactive HIV-1 neutralizing human monoclonal antibody m18 and HIV-1YU-2 gp120 in an effort to understand how this antibody inhibits the entry of virus into cells. m18 binds to gp120 with high affinity (KD≈5 nM) as measured by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR analysis further showed that m18 inhibits interactions of gp120 with both soluble CD4 and CD4-induced antibodies that have epitopes overlapping the coreceptor binding site. This dual receptor site antagonism, which occurs with equal potency for both inhibition effects, argues that m18 is not functioning as a mimic of CD4, in spite of the presence of a putative CD4-like loop formed by HCDR3 in the antibody. Consistent with this view, m18 was found to interact with gp120 in the presence of saturating concentrations of a CD4-mimicking small molecule gp120 inhibitor, suggesting that m18 does not require unoccupied CD4 Phe43 binding cavity residues of gp120. Thermodynamic analysis of the m18-gp120 interaction suggests that m18 stabilizes a conformation of gp120 that is unique from and less structured than the CD4-stabilized conformation. Conformational mutants of gp120 were studied for their impact on m18 interaction. Mutations known to disrupt the coreceptor binding region and to lead to complete suppression of 17b binding had minimal effects on m18 binding. This argues that energetically important epitopes for m18 binding lie outside the disrupted bridging sheet region used for 17b and coreceptor binding. In contrast, mutations in the CD4 region strongly affected m18 binding. Overall, the results obtained in this work argue that m18, rather than mimicking CD4 directly, suppresses both receptor binding site functions of HIV-1 gp120 by stabilizing a nonproductive conformation of the envelope protein. These results can be related to prior findings about the importance of conformational entrapment as a common mode of action for neutralizing CD4bs antibodies, with differences mainly in epitope utilization and the extent of gp120 structuring.
Collapse
Affiliation(s)
- Syna Kuriakose Gift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bellows ML, Taylor MS, Cole PA, Shen L, Siliciano RF, Fung HK, Floudas CA. Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. Biophys J 2011; 99:3445-53. [PMID: 21081094 DOI: 10.1016/j.bpj.2010.09.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
A new (to our knowledge) de novo design framework with a ranking metric based on approximate binding affinity calculations is introduced and applied to the discovery of what we believe are novel HIV-1 entry inhibitors. The framework consists of two stages: a sequence selection stage and a validation stage. The sequence selection stage produces a rank-ordered list of amino-acid sequences by solving an integer programming sequence selection model. The validation stage consists of fold specificity and approximate binding affinity calculations. The designed peptidic inhibitors are 12-amino-acids-long and target the hydrophobic core of gp41. A number of the best-predicted sequences were synthesized and their inhibition of HIV-1 was tested in cell culture. All peptides examined showed inhibitory activity when compared with no drug present, and the novel peptide sequences outperformed the native template sequence used for the design. The best sequence showed micromolar inhibition, which is a 3-15-fold improvement over the native sequence, depending on the donor. In addition, the best sequence equally inhibited wild-type and Enfuvirtide-resistant virus strains.
Collapse
Affiliation(s)
- M L Bellows
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Santos-Costa Q, Parreira R, Moniz-Pereira J, Azevedo-Pereira JM. Molecular characterization of the env gene of two CCR5/CXCR4-independent human immunodeficiency 2 primary isolates. J Med Virol 2009; 81:1869-81. [PMID: 19774680 DOI: 10.1002/jmv.21619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human immunodeficiency virus 2 (HIV-2) infection is characterized by a slower disease progression and lower transmission rates. The molecular features that could be assigned as directly involved in this in vivo phenotype remain essentially unknown, and the importance of HIV-2 as a model to understand pathogenicity of HIV infection has been frequently underestimated. The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and cellular receptors: the CD4 molecule and a chemokine receptor, usually CCR5 or CXCR4. Despite the importance of these two chemokine receptors in human immunodeficiency virus 1 (HIV-1) entry into cells, we have previously shown that in some HIV-2 asymptomatic individuals, a viral population exists that is unable to use both CCR5 and CXCR4. The goal of the present study was to investigate whether possible regions in the env gene of these viruses might account for this phenotype. From the molecular characterization of these env genes we could not detect any correlation between V3 loop sequence and viral phenotype. In contrast, it reveals the existence of remarkable differences in the V1/V2 and C5 regions of the surface glycoprotein, including the loss of a putative glycosilation site. Moreover, in the transmembrane glycoprotein some unique sequence signatures could be detected in the central ectodomain and second heptad repeat (HR2). Some of the mutations affect well-conserved residues, and may affect the conformation and/or the dynamics of envelope glycoproteins complex, including the SU-TM association and the modulation of viral entry function.
Collapse
Affiliation(s)
- Quirina Santos-Costa
- Centro de Patogénese Molecular - Unidade dos Retrovirus e Infecções Associadas, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | | | | | | |
Collapse
|
9
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
10
|
Zahn RC, Hermann FG, Kim EY, Rett MD, Wolinsky SM, Johnson RP, Villinger F, von Laer D, Schmitz JE. Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther 2008; 15:1210-22. [PMID: 18449216 DOI: 10.1038/gt.2008.73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane-anchored C-peptides (for example, maC46) derived from human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 effectively inhibit HIV-1 entry in cell lines and primary human CD4+ cells in vitro. Here we evaluated this gene therapy approach in animal models of AIDS. We adapted the HIV gp41-derived maC46 vector construct for use in rhesus monkeys. Simian immunodeficiency virus (SIV and SHIV) sequence-adapted maC46 peptides, and the original HIV-1-derived maC46 expressed on the surface of established cell lines blocked entry of HIV-1, SIVmac251 and SHIV89.6P. Furthermore, primary rhesus monkey CD4+ T cells expressing HIV sequence-based maC46 peptides were also protected from SIV entry. Depletion of CD8+ T cells from PBMCs enhanced the yield of maC46-transduced CD4+ T cells. Supplementation with interleukin-2 (IL-2) increased transduction efficiency, whereas IL-7 and/or IL-15 provided no additional benefit. Phenotypic analysis showed that maC46-transduced and expanded cells were predominantly central memory CD4+ T cells that expressed low levels of CCR5 and slightly elevated levels of CD62L, beta7-integrin and CXCR4. These findings show that maC46-based cell surface-expressed peptides can efficiently inhibit primate immunodeficiency virus infection, and therefore serve as the basis for evaluation of this gene therapy approach in an animal model for AIDS.
Collapse
Affiliation(s)
- R C Zahn
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moreno MR, Pérez-Berná AJ, Guillén J, Villalaín J. Biophysical characterization and membrane interaction of the most membranotropic region of the HIV-1 gp41 endodomain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1298-307. [DOI: 10.1016/j.bbamem.2007.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 01/04/2023]
|
12
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry is an attractive target for therapeutic intervention. Two drugs that inhibit this process have been approved: the fusion inhibitor T20 (enfuvirtide [Fuzeon]) and, more recently, the CCR5 blocker maraviroc (Selzentry). T1249 is a second-generation fusion inhibitor with improved antiviral potency compared to the first-generation peptide T20. We selected T1249-resistant HIV-1 variants in vitro by serial virus passage in the presence of increasing T1249 doses after passage with wild-type and T20-resistant variants. Sequence analysis revealed the acquisition of substitutions within the HR1 region of the gp41 ectodomain. The virus acquired mutations of residue V38 to either E or R in 10 of 19 cultures. Both E and R at position 38 were confirmed to cause resistance to T1249, as well as cross-resistance to T20 and C34, but not to the third-generation fusion inhibitor T2635. We also observed substitutions at residues 79 and 90 (Q79E and K90E), which provide modest resistance to T1249 and, interestingly, T2635. Thus, the gp41 amino acid position implicated in T20 resistance (V38 replaced by A, G, or W) is also responsible for T1249 resistance (V38 replaced by E, R, or K). These results indicate that T20 and T1249 exhibit very similar inhibition modes that call for similar but not identical resistance mutations. All T1249-resistant viruses with changes at position 38 are cross resistant to T20, but not vice versa. Furthermore, substitutions at position 38 do not provide resistance to the third-generation inhibitor T2635, while substitution at positions 79 and 90 do, suggesting different resistance mechanisms.
Collapse
|
13
|
Sadler K, Zhang Y, Xu J, Yu Q, Tam JP. Quaternary protein mimetics of gp41 elicit neutralizing antibodies against HIV fusion-active intermediate state. Biopolymers 2008; 90:320-9. [DOI: 10.1002/bip.20979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
He Y, Liu S, Jing W, Lu H, Cai D, Chin DJ, Debnath AK, Kirchhoff F, Jiang S. Conserved residue Lys574 in the cavity of HIV-1 Gp41 coiled-coil domain is critical for six-helix bundle stability and virus entry. J Biol Chem 2007; 282:25631-9. [PMID: 17616522 DOI: 10.1074/jbc.m703781200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fusion-active HIV-1 gp41 core structure is a stable six-helix bundle (6-HB) formed by its N- and C-terminal heptad-repeat sequences (NHR and CHR). A highly conserved, deep hydrophobic cavity on the surface of the N-helical trimer is important for stability of the 6-HB and serves as an ideal target for developing anti-human immunodeficiency virus (HIV) fusion inhibitors. We have recently identified several small molecule HIV-1 fusion inhibitors that bind to the gp41 cavity through hydrophobic and ionic interactions and block the gp41 6-HB formation. Molecular docking analysis reveals that these small molecules fit inside the hydrophobic cavity and interact with positively charged residue Lys574 to form a conserved salt bridge. In this study, the functionality of Lys574 has been finely characterized by mutational analysis and biophysical approaches. We found that substitutions of Lys574 with non-conserved residues (K574D, K574E, and K574V) could completely abolish virus infectivity. With a set of wild-type and mutant N36 peptides derived from the NHR sequence as a model, we demonstrated that non-conservative Lys574 substitutions severely impaired the stability and conformation of 6-HBs as detected by circular dichroism spectroscopy, native polyacrylamide gel electrophoresis, and enzyme-linked immunosorbent assay. The binding affinity of N36 mutants bearing non-conservative Lys574 substitutions to the peptide C34 derived from the CHR sequence dramatically decreased as measured by isothermal titration calorimetry. These substitutions also significantly reduced the potency of N-peptides to inhibit HIV-1 infection. Collectively, these data suggest that conserved Lys574 plays a critical role in 6-HB formation and HIV-1 infectivity, and may serve as an important target for designing anti-HIV drugs.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dong XN, Chen Y, Chen YH. Surface simulation synthesis: a new strategy to spy alpha-helix structure. Vaccine 2006; 25:6569-71. [PMID: 17055133 DOI: 10.1016/j.vaccine.2006.09.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/23/2022]
Abstract
In key proteins, there are always some alpha-helix structures, which play important role in the structure and functions. Many epitopes lie on the surface of alpha-helix. These epitopes are not easy to be recruited into the vaccine development, because they are conformation dependent epitopes. Can such epitopes on alpha-helix be mimicked synthetically? Our findings undoubtedly validate the feasibility of surface simulation synthesis with short linear peptide to mimic the antigenic side of alpha-helix structure.
Collapse
|
16
|
Rey-Cuillé MA, Svab J, Benferhat R, Krust B, Briand JP, Muller S, Hovanessian AG. HIV-1 neutralizing antibodies elicited by the candidate CBD1 epitope vaccine react with the conserved caveolin-1 binding motif of viral glycoprotein gp41. J Pharm Pharmacol 2006; 58:759-67. [PMID: 16734977 DOI: 10.1211/jpp.58.6.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
To date, candidate HIV-1 vaccines that have been tested in clinical trials have failed to induce broadly neutralizing activities and/or antibodies that inhibit infection by primary isolates of HIV-1. We recently identified a conserved caveolin-1 binding motif, WNNMTWMQW, in the ectodomain of HIV-1 transmembrane envelope glycoprotein gp41. We designed the synthetic CBD1 peptide SLEQIWNNMTWMQWDK, corresponding to the consensus caveolin-1 binding domain (CBD) in gp41, and showed that it elicits in rabbits the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Although a conserved and highly homologous caveolin-1 binding motif is present in the transmembrane envelope glycoprotein of different HIV-2 isolates, anti-CBD1 immune sera do not inhibit HIV-2 infection. Here we show that anti-CBD1 antibodies are directed against the conserved caveolin-1 binding motif WNNMTWMQW in the CBD1 epitope. In spite of this, anti-CBD1 antibodies do not react with the CBD2 peptide SLTPDWNNMTWQEWER, corresponding to the potential consensus caveolin-1 binding domain in HIV-2. The presence of a conserved proline residue upstream of the caveolin-1 binding motif in CBD2 might affect the presentation of this motif, and thus account for the lack of reactivity of the immune sera. Anti-CBD1 antibodies therefore appear to be directed against a conformational epitope mimicked by the synthetic CBD1 peptide. In accordance with this, anti-CBD1 immune sera react with the native but not denatured gp41. The reactivity of anti-CBD1 immune sera with a highly conserved conformational epitope could explain the broad inhibitory activity of such antipeptide antibodies against HIV-1 isolates of various clades.
Collapse
Affiliation(s)
- Marie-Anne Rey-Cuillé
- UFR Biomédicale, Université René Descartes, UPR 2228 CNRS, 45 rue des Saints Pères, 75270 Paris Cedex 6, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Labrosse B, Morand-Joubert L, Goubard A, Rochas S, Labernardière JL, Pacanowski J, Meynard JL, Hance AJ, Clavel F, Mammano F. Role of the envelope genetic context in the development of enfuvirtide resistance in human immunodeficiency virus type 1-infected patients. J Virol 2006; 80:8807-19. [PMID: 16912327 PMCID: PMC1563884 DOI: 10.1128/jvi.02706-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired human immunodeficiency virus type 1(HIV-1) resistance to the fusion inhibitor enfuvirtide (ENF) is primarily associated with mutations within the highly conserved first heptad repeat (HR1) region of gp41. Viral env sequences, however, are remarkably variable, and the envelope genetic background could have an important impact on optimal expression of HR1 mutations. We have examined the genetic evolution of env sequences, ENF susceptibility, and Env replicative capacity in patients failing ENF treatment. Sequential plasma-derived virus populations, obtained from six patients initiating ENF treatment as part of a salvage therapy, were studied using a recombinant phenotypic assay evaluating the entire gp120 and the gp41 ectodomains. Regardless of major differences in the baseline ENF susceptibilities, viral populations with similar phenotypic ENF resistance (50% inhibitory concentration, >3,000 ng/ml) were selected under treatment in four of six patients. As expected, in all patients ENF-resistant viruses harbored one or more HR1 mutations (positions 36, 38, and 43). Interestingly, in five patients the emergence of resistance mutations was not associated with reduced Env replicative capacity. Phylogenetic analysis of env sequences in sequential samples from two patients showed that the HR1 mutations had emerged in the context of env quasi-species that were different from those prevalent at baseline. Thus, the envelope genetic context appears to play a critical role in the selection of HR1 mutations and the expression of ENF resistance, thereby conditioning the evolution of HIV-1 under fusion inhibitor selective pressure.
Collapse
Affiliation(s)
- Béatrice Labrosse
- Inserm U552, Unité de Recherche Antivirale, Hôpital Bichat-Claude Bernard, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dong XN, Ying J, Wu Y, Chen YH. Genetic variability of principal neutralizing determinants on HIV-1 gp41 and its correlation with subtypes. Immunol Lett 2005; 101:104-7. [PMID: 15961163 DOI: 10.1016/j.imlet.2005.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Several neutralizing determinants have been identified on HIV-1 envelope glycoprotein gp41: LGIWGCSGKLIC (HXB2: aa593-604), ELDKWA (aa662-667), NWFDIT (aa671-676), and ERDRDR (aa739-744). Restricted mutations were observed on these epitopes. In this study, the genetic variability of these neutralizing determinants in 3799 isolates from different M-group subtypes (A, B, C, D, F, G, H, CRF01_AE and CRF02_AG) and O group was analyzed. Many variants were found to be closely correlated with certain subtypes. These subtype-related variants could be recruited into the subtype identification and subtype-specific vaccine development.
Collapse
Affiliation(s)
- Xiao-Nan Dong
- Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of MOE, Beijing 100084, PR China.
| | | | | | | |
Collapse
|
19
|
Mastrolorenzo A, Scozzafava A, Supuran CT. Small molecule antagonists of chemokine receptors as emerging anti-HIV agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.8.1245] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Van Laethem K, Schrooten Y, Lemey P, Van Wijngaerden E, De Wit S, Van Ranst M, Vandamme AM. A genotypic resistance assay for the detection of drug resistance in the human immunodeficiency virus type 1 envelope gene. J Virol Methods 2005; 123:25-34. [PMID: 15582695 DOI: 10.1016/j.jviromet.2004.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/23/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
Since it is not clear yet whether enfuvirtide resistance is restricted to gp41, it was decided to develop a genotypic assay for the detection of drug resistance in the entire human immunodeficiency virus type 1 (HIV-1) env gene. Given the increasing prevalence of HIV-1 non-B subtypes in Europe, it is important to evaluate the performance of the assay on a panel of genetically divergent samples. A panel of 1 laboratory and 10 clinical isolates from 10 patients was tested, all enfuvirtide naive and chosen according to the subtype as determined in the pol region (A, B, C, H, CRF01-AE, CRF02-AG, CRF05-DF, CRF11-cpx and U), while their env sequences belonged to subtypes A, B, C, H, A/G recombinant, B/H recombinant, CRF01-AE, CRF02-AG, CRF05-DF and CRF11-cpx. The detection limits of the gp120 and the gp41 PCRs ranged between 500 and 5000 RNA copies/ml plasma. The highest sensitivity was obtained for the laboratory strain, whereas the detection limit for all patient samples, except for the subtype C sample, was 1000 RNA copies/ml. The numerous insertions and deletions in the gp120 gene, that were often present as quasi-species, necessitated the sequencing of cloned PCR products. The gp41 gene displayed less diversity and less insertions/deletions. Especially, the heptad repeat 1 was highly conserved and none of the enfuvirtide naive samples contained any of the already known enfuvirtide resistance mutations at amino acid positions 36-45. This study demonstrates that the assay is able to genotype genetically diverse HIV-1 strains with a good sensitivity.
Collapse
Affiliation(s)
- Kristel Van Laethem
- Rega Institute for Medical Research and University Hospitals Leuven, Microbiology and Immunology, Clinical and Epidemiological Virology, AIDS Reference Laboratory, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Devito C, Zuber B, Schröder U, Benthin R, Okuda K, Broliden K, Wahren B, Hinkula J. Intranasal HIV-1-gp160-DNA/gp41 peptide prime-boost immunization regimen in mice results in long-term HIV-1 neutralizing humoral mucosal and systemic immunity. THE JOURNAL OF IMMUNOLOGY 2005; 173:7078-89. [PMID: 15557206 DOI: 10.4049/jimmunol.173.11.7078] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1-9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse's life span.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Administration, Intranasal
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/virology
- Feces/virology
- Female
- HIV Antibodies/biosynthesis
- HIV Envelope Protein gp160/administration & dosage
- HIV Envelope Protein gp160/immunology
- HIV Envelope Protein gp41/administration & dosage
- HIV Envelope Protein gp41/immunology
- HIV-1/immunology
- Immunity, Active
- Immunity, Mucosal
- Immunization, Secondary/methods
- Immunoglobulin A/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunologic Memory
- Intestine, Small/immunology
- Intestine, Small/virology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nasal Mucosa/immunology
- Nasal Mucosa/virology
- Neutralization Tests
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vagina/immunology
- Vagina/metabolism
- Vagina/virology
Collapse
Affiliation(s)
- Claudia Devito
- Swedish Institute for Infectious Disease Control and Microbiology and Tumorbiology Center, Department of Virology, Karolinska Institute, Solna, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Baldwin CE, Sanders RW, Deng Y, Jurriaans S, Lange JM, Lu M, Berkhout B. Emergence of a drug-dependent human immunodeficiency virus type 1 variant during therapy with the T20 fusion inhibitor. J Virol 2004; 78:12428-37. [PMID: 15507629 PMCID: PMC525057 DOI: 10.1128/jvi.78.22.12428-12437.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion inhibitor T20 belongs to a new class of anti-human immunodeficiency virus type 1 (HIV-1) drugs designed to block entry of the virus into the host cell. However, the success of T20 has met with the inevitable emergence of drug-resistant HIV-1 variants. We describe an evolutionary pathway taken by HIV-1 to escape from the selective pressure of T20 in a treated patient. Besides the appearance of T20-resistant variants, we report for the first time the emergence of drug-dependent viruses with mutations in both the HR1 and HR2 domains of envelope glycoprotein 41. We propose a mechanistic model for the dependence of HIV-1 entry on the T20 peptide. The T20-dependent mutant is more prone to undergo the conformational switch that results in the formation of the fusogenic six-helix bundle structure in gp41. A premature switch will generate nonfunctional envelope glycoproteins (dead spikes) on the surface of the virion, and T20 prevents this abortive event by acting as a safety pin that preserves an earlier prefusion conformation.
Collapse
Affiliation(s)
- Chris E Baldwin
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Hovanessian AG, Briand JP, Said EA, Svab J, Ferris S, Dali H, Muller S, Desgranges C, Krust B. The Caveolin-1 Binding Domain of HIV-1 Glycoprotein gp41 Is an Efficient B Cell Epitope Vaccine Candidate against Virus Infection. Immunity 2004; 21:617-27. [PMID: 15539149 DOI: 10.1016/j.immuni.2004.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/25/2004] [Accepted: 08/25/2004] [Indexed: 11/25/2022]
Abstract
Caveolin-1 is a scaffolding protein that organizes and concentrates specific ligands within the caveolae membranes. We identified a conserved caveolin-1 binding motif in the HIV-1 transmembrane envelope glycoprotein gp41 and designed several synthetic peptides, referred to as CBD1, corresponding to the consensus caveolin-1 binding domain in gp41. In rabbits, these peptides elicit the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Interestingly, gp41 exists as a stable complex with caveolin-1 in HIV-infected cells. Anti-CBD1 peptide antibodies, therefore, might be functional by inhibiting the potential interaction of gp41 with caveolin-1. Because of their capacity to elicit antibodies that inhibit the different clades of HIV-1, CBD1-based peptides may represent a novel synthetic universal B cell epitope vaccine candidate for HIV/AIDS. Moreover, such peptides could also have an application as a therapeutic vaccine since CBD1-specific antibodies are rare in HIV-infected individuals from several geographic origins.
Collapse
Affiliation(s)
- Ara G Hovanessian
- Unité de Virologie et Immunologie Cellulaire, URA 1930 CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sackett K, Shai Y. How Structure Correlates to Function for Membrane Associated HIV-1 gp41 Constructs Corresponding to the N-terminal Half of the Ectodomain. J Mol Biol 2003; 333:47-58. [PMID: 14516742 DOI: 10.1016/j.jmb.2003.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
25
|
Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, Danzeisen RC, Miller MD, Shiver JW, Keller PM. Enhancement of alpha -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem 2002; 277:45811-20. [PMID: 12237296 DOI: 10.1074/jbc.m205862200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthetic peptide DP178, derived from the carboxyl-terminal heptad repeat region of human immunodeficiency virus type 1 GP41 protein is a potent inhibitor of viral-mediated fusion and contains the sequence ELDKWA, which constitutes the recognition epitope for the broadly neutralizing human monoclonal antibody 2F5. Efforts at eliciting a 2F5-like immune response by immunization with peptides or fusion proteins containing this sequence have not met with success, possibly because of incorrect structural presentation of the epitope. Although the structure of the carboxyl-terminal heptad repeat on the virion is not known, several recent reports have suggested a propensity for alpha-helical conformation. We have examined DP178 in the context of a model for optimized alpha-helices and show that the native sequence conforms poorly to the model. Solution conformation of DP178 was studied by circular dichroism and NMR spectroscopy and found to be predominantly random, consistent with previous reports. NMR mapping was used to show that the low percentage of alpha-helix present was localized to residues Glu(662) through Asn(671), a region encompassing the 2F5 epitope. Using NH(2)-terminal extensions derived from either GP41 or the yeast GCN4 leucine zipper dimerization domain, we designed peptide analogs in which the average helicity is significantly increased compared with DP178 and show that these peptides exhibit both a modest increase in affinity for 2F5 using a novel competitive solution-based binding assay and an increased ability to inhibit viral entry in a single-cycle infectivity model. Selected peptides were conjugated to carrier protein and used for guinea pig immunizations. High peptide-specific titers were achieved using these immunogens, but the resulting sera were incapable of viral neutralization. We discuss these findings in terms of structural and immunological considerations as to the utility of a 2F5-like response.
Collapse
Affiliation(s)
- Joseph G Joyce
- Department of Virus and Cell Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boutonnet N, Janssens W, Boutton C, Verschelde JL, Heyndrickx L, Beirnaert E, van der Groen G, Lasters I. Comparison of predicted scaffold-compatible sequence variation in the triple-hairpin structure of human imunodeficiency virus type 1 gp41 with patient data. J Virol 2002; 76:7595-606. [PMID: 12097573 PMCID: PMC136393 DOI: 10.1128/jvi.76.15.7595-7606.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that the ectodomain of human immunodeficiency virus type 1 (HIV-1) gp41 (e-gp41), involved in HIV entry into the target cell, exists in at least two conformations, a pre-hairpin intermediate and a fusion-active hairpin structure. To obtain more information on the structure-sequence relationship in e-gp41, we performed in silico a full single-amino-acid substitution analysis, resulting in a Fold Compatible Database (FCD) for each conformation. The FCD contains for each residue position in a given protein a list of values assessing the energetic compatibility (ECO) of each of the 20 natural amino acids at that position. Our results suggest that FCD predictions are in good agreement with the sequence variation observed for well-validated e-gp41 sequences. The data show that at a minECO threshold value of 5 kcal/mol, about 90% of the observed patient sequence variation is encompassed by the FCD predictions. Some inconsistent FCD predictions at N-helix positions packing against residues of the C helix suggest that packing of both peptides may involve some flexibility and may be attributed to an altered orientation of the C-helical domain versus the N-helical region. The permissiveness of sequence variation in the C helices is in agreement with FCD predictions. Comparison of N-core and triple-hairpin FCDs suggests that the N helices may impose more constraints on sequence variation than the C helices. Although the observed sequences of e-gp41 contain many multiple mutations, our method, which is based on single-point mutations, can predict the natural sequence variability of e-gp41 very well.
Collapse
|