1
|
Onubogu U, Gatenbee CD, Prabhakaran S, Wolfe KL, Oakes B, Salatino R, Vaubel R, Szentirmai O, Anderson AR, Janiszewska M. Spatial analysis of recurrent glioblastoma reveals perivascular niche organization. JCI Insight 2024; 9:e179853. [PMID: 38805346 PMCID: PMC11383164 DOI: 10.1172/jci.insight.179853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that provides the selective pressure contributing to evolution in cancer. Despite high histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, TERT promoter mutational status, and several oncogenic amplifications on the same slide and location. We found that the relationships between genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage populations and identified interactions between endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and spatial dependencies.
Collapse
Affiliation(s)
- Ugoma Onubogu
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Chandler D Gatenbee
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sandhya Prabhakaran
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kelsey L Wolfe
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Benjamin Oakes
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Roberto Salatino
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Rachael Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Oszkar Szentirmai
- Center for Neurological Surgery and Neuroscience, Cleveland Clinic Martin Health, Port St. Lucie, Florida, USA
| | - Alexander Ra Anderson
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michalina Janiszewska
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Collado J, Boland L, Ahrendsen JT, Miska J, Lee-Chang C. Understanding the glioblastoma tumor microenvironment: leveraging the extracellular matrix to increase immunotherapy efficacy. Front Immunol 2024; 15:1336476. [PMID: 38380331 PMCID: PMC10876826 DOI: 10.3389/fimmu.2024.1336476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma (GBM) accounts for approximately half of all malignant brain tumors, and it remains lethal with a five-year survival of less than 10%. Despite the immense advancements in the field, it has managed to evade even the most promising therapeutics: immunotherapies. The main reason is the highly spatiotemporally heterogeneous and immunosuppressive GBM tumor microenvironment (TME). Accounting for this complex interplay of TME-driven immunosuppression is key to developing effective therapeutics. This review will explore the immunomodulatory role of the extracellular matrix (ECM) by establishing its contribution to the TME as a key mediator of immune responses in GBM. This relationship will help us elucidate therapeutic targets that can be leveraged to develop and deliver more effective immunotherapies.
Collapse
Affiliation(s)
- Jimena Collado
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lurie Cancer Center, Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lurie Cancer Center, Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| |
Collapse
|
3
|
Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK, Inman GJ. Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cell Signal 2020; 72:109638. [PMID: 32320860 DOI: 10.1016/j.cellsig.2020.109638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is an aggressive and devastating primary brain cancer which responds very poorly to treatment. The average survival time of patients is only 14-15 months from diagnosis so there is a clear and unmet need for the development of novel targeted therapies to improve patient outcomes. The multifunctional cytokine TGFβ plays fundamental roles in development, adult tissue homeostasis, tissue wound repair and immune responses. Dysfunction of TGFβ signalling has been implicated in both the development and progression of many tumour types including GBM, thereby potentially providing an actionable target for its treatment. This review will examine TGFβ signalling mechanisms and their role in the development and progression of GBM. The targeting of TGFβ signalling using a variety of approaches including the TGFβ binding protein Decorin will be highlighted as attractive therapeutic strategies.
Collapse
Affiliation(s)
| | - Barry J Coull
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Lindsay C Spender
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Courtney Watt
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alice Willison
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | | | - M Kismet Hossain-Ibrahim
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Neurosurgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - Gareth J Inman
- CRUK Beatson Institute, Glasgow, UK; Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R, Prados J. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS One 2015; 10:e0134111. [PMID: 26230845 PMCID: PMC4521885 DOI: 10.1371/journal.pone.0134111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail: (CF); (RM)
| | | | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pablo Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Institute of Biostructures and Biosystem (INBB), Rome, Italy
- * E-mail: (CF); (RM)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ma HI, Hueng DY, Shui HA, Han JM, Wang CH, Lai YH, Cheng SY, Xiao X, Chen MT, Yang YP. Intratumoral decorin gene delivery by AAV vector inhibits brain glioblastomas and prolongs survival of animals by inducing cell differentiation. Int J Mol Sci 2014; 15:4393-414. [PMID: 24625664 PMCID: PMC3975403 DOI: 10.3390/ijms15034393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/08/2014] [Accepted: 02/19/2014] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant cancer in the central nervous system with poor clinical prognosis. In this study, we investigated the therapeutic effect of an anti-cancer protein, decorin, by delivering it into a xenograft U87MG glioma tumor in the brain of nude mice through an adeno-associated viral (AAV2) gene delivery system. Decorin expression from the AAV vector in vitro inhibited cultured U87MG cell growth by induction of cell differentiation. Intracranial injection of AAV-decorin vector to the glioma-bearing nude mice in vivo significantly suppressed brain tumor growth and prolonged survival when compared to control non-treated mice bearing the same U87MG tumors. Proteomics analysis on protein expression profiles in the U87MG glioma cells after AAV-mediated decorin gene transfer revealed up- and down-regulation of important proteins. Differentially expressed proteins between control and AAV-decorin-transduced cells were identified through MALDI-TOF MS and database mining. We found that a number of important proteins that are involved in apoptosis, transcription, chemotherapy resistance, mitosis, and fatty acid metabolism have been altered as a result of decorin overexpression. These findings offer valuable insight into the mechanisms of the anti-glioblastoma effects of decorin. In addition, AAV-mediated decorin gene delivery warrants further investigation as a potential therapeutic approach for brain tumors.
Collapse
Affiliation(s)
- Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Jun-Ming Han
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chi-Hsien Wang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ying-Hsiu Lai
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute. The Robert H. Lurie Comprehensive Cancer Center, Center of Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Ping Yang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
7
|
Rao SAM, Srinivasan S, Patric IRP, Hegde AS, Chandramouli BA, Arimappamagan A, Santosh V, Kondaiah P, Rao MRS, Somasundaram K. A 16-gene signature distinguishes anaplastic astrocytoma from glioblastoma. PLoS One 2014; 9:e85200. [PMID: 24475040 PMCID: PMC3901657 DOI: 10.1371/journal.pone.0085200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/24/2013] [Indexed: 01/14/2023] Open
Abstract
Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible, intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition (EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma.
Collapse
Affiliation(s)
- Soumya Alige Mahabala Rao
- Department of Microbiology and Cell Biology, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sujaya Srinivasan
- Department of Microbiology and Cell Biology, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Irene Rosita Pia Patric
- Department of Microbiology and Cell Biology, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | - Arivazhagan Arimappamagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Development and Genetics, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
8
|
The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013; 2013:285246. [PMID: 23983766 PMCID: PMC3741958 DOI: 10.1155/2013/285246] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023]
Abstract
Malignant gliomas contain stroma and a variety of immune cells including abundant activated microglia/macrophages. Mounting evidence indicates that the glioma microenvironment converts the glioma-associated microglia/macrophages (GAMs) into glioma-supportive, immunosuppressive cells; however, GAMs can retain intrinsic anti-tumor properties. Here, we review and discuss this duality and the potential therapeutic strategies that may inhibit their glioma-supportive and propagating functions.
Collapse
|
9
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
10
|
Saidi A, Hagedorn M, Allain N, Verpelli C, Sala C, Bello L, Bikfalvi A, Javerzat S. Combined targeting of interleukin-6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer 2009; 125:1054-64. [DOI: 10.1002/ijc.24380] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Honma K, Miyata T, Ochiya T. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells. Cancer Cell Int 2007; 7:12. [PMID: 17578585 PMCID: PMC1925056 DOI: 10.1186/1475-2867-7-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM). This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1) gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.
Collapse
Affiliation(s)
- Kimi Honma
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
- Koken Bioscience Institute, Koken Co., Ltd., Tokyo, Japan
| | - Teruo Miyata
- Koken Bioscience Institute, Koken Co., Ltd., Tokyo, Japan
| | - Takahiro Ochiya
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
12
|
Tran TT, Uhl M, Ma JY, Janssen L, Sriram V, Aulwurm S, Kerr I, Lam A, Webb HK, Kapoun AM, Kizer DE, McEnroe G, Hart B, Axon J, Murphy A, Chakravarty S, Dugar S, Protter AA, Higgins LS, Wick W, Weller M, Wong DH. Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 2007; 9:259-70. [PMID: 17522330 PMCID: PMC1907409 DOI: 10.1215/15228517-2007-010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a proinvasive and immunosuppressive cytokine that plays a major role in the malignant phenotype of gliomas. One novel strategy of disabling TGF-beta activity in gliomas is to disrupt the signaling cascade at the level of the TGF-beta receptor I (TGF-betaRI) kinase, thus abrogating TGF-beta-mediated invasiveness and immune suppression. SX-007, an orally active, small-molecule TGF-betaRI kinase inhibitor, was evaluated for its therapeutic potential in cell culture and in an in vivo glioma model. The syngeneic, orthotopic glioma model SMA-560 was used to evaluate the efficacy of SX-007. Cells were implanted into the striatum of VM/Dk mice. Dosing began three days after implantation and continued until the end of the study. Efficacy was established by assessing survival benefit. SX-007 dosed at 20 mg/kg p.o. once daily (q.d.) modulated TGF-beta signaling in the tumor and improved the median survival. Strikingly, approximately 25% of the treated animals were disease-free at the end of the study. Increasing the dose to 40 mg/kg q.d. or 20 mg/kg twice daily did not further improve efficacy. The data suggest that SX-007 can exert a therapeutic effect by reducing TGF-beta-mediated invasion and reversing immune suppression. SX-007 modulates the TGF-beta signaling pathway and is associated with improved survival in this glioma model. Survival benefit is due to reduced tumor invasion and reversal of TGF-beta-mediated immune suppression, allowing for rejection of the tumor. Together, these results suggest that treatment with a TGF-betaRI inhibitor may be useful in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Darren H. Wong
- Address correspondence to Darren H. Wong, Pfizer RTC, 620 Memorial Drive, Cambridge, MA 02139, USA (
)
| |
Collapse
|
13
|
Assheton DC, Guerin EP, Sheridan CM, Bishop PN, Hiscott PS. Neoplastic transformation of ciliary body epithelium is associated with loss of opticin expression. Br J Ophthalmol 2006; 91:230-2. [PMID: 17005546 PMCID: PMC1857628 DOI: 10.1136/bjo.2006.102582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Opticin is a recently discovered glycoprotein present predominantly in the vitreous humour. It is synthesised and secreted by the ciliary body epithelium (CBE) from the initiation of CBE development in the embryo, and production continues throughout life. AIM To determine whether a variety of ciliary body tumours synthesise opticin to characterise further its role in ciliary body health and disease. METHODS Immunohistochemistry was used to determine the distribution of opticin in normal human CBE, and in hyperplastic and neoplastic CBE lesions. RESULTS Opticin was immunolocalised to the basal cell surface and basement membrane material of the non-pigmented CBE in nine donor eyes as well as four hyperplastic lesions of the CBE (Fuchs's adenoma). By contrast, none of eight neoplastic lesions (two adenoma and six adenocarcinoma) of CBE stained for opticin. CONCLUSION The present series supports the theory that opticin is produced by the non-pigmented CBE throughout adult life. Loss of opticin expression by this tissue is associated with and could contribute towards neoplastic transformation.
Collapse
Affiliation(s)
- David C Assheton
- Unit of Ophthalmology, Department of Medicine, University Clinical Departments, Duncan Building, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | |
Collapse
|
14
|
Boche D, Cunningham C, Docagne F, Scott H, Perry VH. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006; 22:638-50. [PMID: 16510291 DOI: 10.1016/j.nbd.2006.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/16/2005] [Accepted: 01/02/2006] [Indexed: 11/17/2022] Open
Abstract
The ME7 model of murine prion disease shows an atypical inflammatory response characterized by morphologically activated microglia and an anti-inflammatory cytokine profile with a marked expression of TGFbeta1. The investigation of the role of TGFbeta1 during a time course disease shows that its expression is correlated with (i) the onset of behavioral abnormalities, (ii) increased activated microglia, (iii) thickening of the basement membrane, and (iv) is associated with increased PrP(sc) deposition. Increasing TGFbeta1 using an adenoviral vector has no significant impact on prion-associated behavioral impairments or on neuropathology. In contrast, inhibition of TGFbeta1 activity using an adenovirus expressing decorin induces severe cerebral inflammation, expression of inducible nitric oxide synthase and acute neuronal death in prion-diseased animals only. These data suggest that TGFbeta1 plays a critical role in the downregulation of microglial responses minimizing brain inflammation and thus avoiding exacerbation of brain damage.
Collapse
Affiliation(s)
- Delphine Boche
- CNS Inflammation Group, Southampton Neurosciences Group, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX Hampshire, UK.
| | | | | | | | | |
Collapse
|
15
|
Pan JZ, Jörnsten R, Hart RP. Screening anti-inflammatory compounds in injured spinal cord with microarrays: a comparison of bioinformatics analysis approaches. Physiol Genomics 2004; 17:201-14. [PMID: 14970362 DOI: 10.1152/physiolgenomics.00177.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory responses contribute to secondary tissue damage following spinal cord injury (SCI). A potent anti-inflammatory glucocorticoid, methylprednisolone (MP), is the only currently accepted therapy for acute SCI but its efficacy has been questioned. To search for additional anti-inflammatory compounds, we combined microarray analysis with an explanted spinal cord slice culture injury model. We compared gene expression profiles after treatment with MP, acetaminophen, indomethacin, NS398, and combined cytokine inhibitors (IL-1ra and soluble TNFR). Multiple gene filtering methods and statistical clustering analyses were applied to the multi-dimensional data set and results were compared. Our analysis showed a consistent and unique gene expression profile associated with NS398, the selective cyclooxygenase-2 (COX-2) inhibitor, in which the overall effect of these upregulated genes could be interpreted as neuroprotective. In vivo testing demonstrated that NS398 reduced lesion volumes, unlike MP or acetaminophen, consistent with a predicted physiological effect in spinal cord. Combining explanted spinal cultures, microarrays, and flexible clustering algorithms allows us to accelerate selection of compounds for in vivo testing.
Collapse
Affiliation(s)
- Jonathan Z Pan
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
16
|
Sanchez R, Williams C, Daza JL, Dan Q, Xu Q, Chen Y, Delgado C, Arpajirakul N, Jeffes EWB, Kim RC, Douglass T, Al Atar U, Terry Wepsic H, Jadus MR. T9 glioma cells expressing membrane-macrophage colony stimulating factor produce CD4+ T cell-associated protective immunity against T9 intracranial gliomas and systemic immunity against different syngeneic gliomas. Cell Immunol 2002; 215:1-11. [PMID: 12142031 DOI: 10.1016/s0008-8749(02)00011-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cloned T9 glioma cells (T9-C2) expressing the membrane form of macrophage colony stimulating factor (mM-CSF) inoculated subcutaneously into rats do not grow and glioma-specific immunity is stimulated. Immunotherapy experiments showed that intracranial T9 tumors present for one to four days could be successfully eradicated by peripheral vaccination with T9-C2 cells. CD4+ and CD8+ T splenocytes from immunized rats, when restimulated in vitro with T9 cells, produced interleukin-2 and -4. Protective immunity against intracranial T9 gliomas could only be adoptively transferred into naive rats by the CD4+ splenocytes obtained from T9-C2 immunized rats. Rats immunized by the T9-C2 tumor cells also resisted two different syngeneic gliomas (RT2 and F98) but allowed a syngeneic NUTU-19 ovarian cancer to grow. Such cross-protective immunity against unrelated gliomas suggests that mM-CSF transfected tumor cells have immunotherapeutic potential for use as an allogeneic tumor vaccine.
Collapse
Affiliation(s)
- Ramon Sanchez
- Diagnostic and Molecular Health Care Group, Box 113 Veterans Affairs Medical Center, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Regulated cell growth results from the biological balance between soluble growth-regulating factors, their receptors and the elicited signal cascade on the one hand side and from extracellular macromolecular components and their interplay with membrane receptors on the other side. Proteoglycans have recently been recognized not only to play a part in providing shape and biomechanical strength of organs and tissues, but also to exhibit direct and indirect cell signalling properties. In this review, we discuss the direct growth-regulating role of proteoglycans with special emphasis on the lectican family and on the family of small proteoglycans with leucine-rich repeats (SLRPs). Indirect actions of proteoglycans by modulation of growth factor activities and growth factor distribution are exemplified by discussing the TGF-beta-binding properties of SLRPs and the interactions of core proteins of matrix proteoglycans with other growth factors. It is emphasized that the modulatory role of proteoglycans on cell proliferation cannot be separated from their participation in tissue organization in general, thereby explaining the diverse and sometimes contradictory reports on the effects of proteoglycans on cell proliferation and differentiation.
Collapse
Affiliation(s)
- H Kresse
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| | | |
Collapse
|
18
|
Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 2001; 3:489-99. [PMID: 11774031 PMCID: PMC1506563 DOI: 10.1038/sj.neo.7900176] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 03/22/2001] [Indexed: 11/08/2022] Open
Abstract
Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS.
Collapse
Affiliation(s)
- G Fleige
- Department of Radiology, Charité Medical School, Humboldt University of Berlin, Schumannstrasse 20/21, D-10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Beanes SR, Dang C, Soo C, Wang Y, Urata M, Ting K, Fonkalsrud EW, Benhaim P, Hedrick MH, Atkinson JB, Lorenz HP. Down-regulation of decorin, a transforming growth factor-beta modulator, is associated with scarless fetal wound healing. J Pediatr Surg 2001; 36:1666-71. [PMID: 11685698 DOI: 10.1053/jpsu.2001.27946] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Transforming growth factor beta (TGF-beta) bioactivity has been implicated as a potential regulator of the transition from scarless healing to scar formation in fetal wounds. Decorin is an extracellular matrix proteoglycan that regulates TGF-beta bioactivity and assists in collagen fibrillogenesis. To determine its role in scarless repair, the authors examined decorin expression in fetal fibroblasts, skin, and wounds. METHODS A single, full-thickness, 2-mm open wound was created on the dorsal surface of fetal rats at 16.5 days (E16) and 18.5 days (E18) gestational age (term, 21.5 days [E21]). Wounds were harvested at 24 and 72 hours (n = 12 wounds per time-point). Nonwounded fetal skin at E17, E19, and E21 was harvested for analysis of decorin expression during skin development and as controls for wounds. In addition, fetal (E14, E18) and adult dermal fibroblasts were cultured for in vitro analysis. Reduced-cycle, specific primer, reverse transcriptase polymerase chain reaction was performed to quantitate decorin expression. RESULTS Decorin expression increased rapidly with increasing gestational age in both fetal fibroblasts and skin. Expression was increased 22-fold in E18 fibroblasts (P <.002) and 300-fold in adult fibroblasts (P <.001) compared with E14 fibroblasts. In skin, expression increased 74% (P <.01) during the fetal wound healing transition period between E17 and E19. However, in E16 wounds (scarless), decorin expression decreased 59% (P <.006) at 24 hours and 45% (P <.02) at 72 hours. Decorin expression did not change in E18 (scar) wounds at 24 and 72 hours (P >.05). CONCLUSIONS Early gestation fetal fibroblasts and fetal skin express decorin at lower levels than late gestation fetal and adult fibroblasts and skin. Decorin expression is down-regulated in scarless (E16) compared with scar (E18) wounds. Thus, increased decorin expression is associated with both skin development and scar formation. Conversely, decreased decorin expression is associated with scarless repair.
Collapse
Affiliation(s)
- S R Beanes
- Department of Surgery and Dental Research Institute, UCLA Center for the Health Sciences, 10833 Le Conte Ave, Box 951665, Los Angeles, CA 90095-1665, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Parsa AT, Chakrabarti I, Hurley PT, Chi JH, Hall JS, Kaiser MG, Bruce JN. Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery 2000; 47:993-9; discussion 999-1000. [PMID: 11014444 DOI: 10.1097/00006123-200010000-00050] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Intracranial rat glioma models are a useful method for evaluating the efficacy and toxicity of novel therapies for malignant glioma. The C6/Wistar model has been used extensively as a reproducible in vivo model for studying primary brain tumors including anti-glioma immune responses. The objective of the present study is to provide in vivo evidence that the C6 rat glioma model is allogeneic within Wistar rats and is therefore inappropriate for evaluating immune responses. METHODS Growth patterns and immune responses of C6 cells implanted into the brain and flank of Wistar rats were analyzed and compared to an immunogenic syngeneic model (9L/Fischer). RESULTS Wistar rats with C6 tumors developed a potent humoral and cellular immune response to the tumor. Wistar rats given simultaneous flank and intracerebral tumors had a survival rate of 100% compared to an 11% survival rate in control animals receiving only intracranial C6 cells. CONCLUSION The C6 rat glioma induces a vigorous immune reaction that may mimic a specific anti-tumor response in Wistar rats. Efficacy of immunotherapy within this model must be cautiously interpreted.
Collapse
Affiliation(s)
- A T Parsa
- Department of Neurological Surgery, The Neurological Institute of New York College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|