1
|
Nguyen Ky M, Duran A, Hasantari I, Bru A, Deloire M, Brochet B, Ruet A, Schmitt N. Natalizumab Treatment Induces Proinflammatory CD4 T Cells Preferentially in the Integrin β7+ Compartment. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200166. [PMID: 37739811 PMCID: PMC10519437 DOI: 10.1212/nxi.0000000000200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/19/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Natalizumab, a monoclonal humanized antibody targeting integrin α4, inhibits the transmigration of lymphocytes into the CNS by preventing the interaction of integrin α4β1 with V-CAM expressed on brain vascular endothelial cells. Although natalizumab treatment reduces the clinical relapse rate in patients with relapsing-remitting MS, its discontinuation after reactivation of the JC virus is associated with a rebound of the disease in 20% of patients. The mechanisms of this rebound are not elucidated, but natalizumab increases the frequencies of circulating CD4 T cells expressing proinflammatory cytokines as well as the proportion of circulating Th17/Th1 cells (Th1-like Th17 cells). Gut-derived memory CD4 T cells are a population of growing interest in the pathogenesis of MS, but whether and how their properties are affected by natalizumab is not known. Here, we studied the phenotype and cytokine expression profile of circulating gut-derived memory CD4 T cells in patients with relapsing-remitting MS under natalizumab. METHODS We identified gut-derived memory CD4 T cells by their expression of integrin β7 and compared their properties and those of integrin β7- memory CD4 T cells across healthy donors and patients with relapsing-remitting MS treated or not with natalizumab. We also compared the capacity of integrin β7- and integrin β7+ CD4 T-cell subsets to transmigrate in vitro across a model of blood-brain barrier. RESULTS The proportions of proinflammatory Th17/Th1 cells as well as of IL-17A+IFNγ+ and IL-17A+GM-CSF+ cells were higher in memory CD4 T cells expressing integrin β7 in patients receiving natalizumab compared with healthy donors and patients with relapsing-remitting MS not receiving natalizumab. By contrast, integrin β7 negative memory CD4 T cells only presented a modest increased in their proportion of Th17/Th1 cells under natalizumab. We further observed that integrin β7+ Th17/Th1 cells migrated as efficiently as integrin β7- Th17/Th1 across a monolayer of brain microvascular endothelial cells. DISCUSSION Our study shows that circulating integrin β7+ memory CD4 T cells of patients with relapsing-remitting MS under natalizumab are enriched in proinflammatory cells supporting the hypothesis that integrin β7+ memory CD4 T cells could play a pathogenic role in the disease rebound observed at natalizumab discontinuation.
Collapse
Affiliation(s)
- Mélanie Nguyen Ky
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Adrien Duran
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Iris Hasantari
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Agnès Bru
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Mathilde Deloire
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Bruno Brochet
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Aurélie Ruet
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Nathalie Schmitt
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France.
| |
Collapse
|
2
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
3
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
4
|
Rossi B, Dusi S, Angelini G, Bani A, Lopez N, Della Bianca V, Pietronigro EC, Zenaro E, Zocco C, Constantin G. Alpha4 beta7 integrin controls Th17 cell trafficking in the spinal cord leptomeninges during experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1071553. [PMID: 37143680 PMCID: PMC10151683 DOI: 10.3389/fimmu.2023.1071553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of αLβ2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of α4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective α4β7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that α4β7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of α4 integrin chain or α4β7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to α4β7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of α4β7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for α4β7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| | - Silvia Dusi
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Nicola Lopez
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Carlotta Zocco
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| |
Collapse
|
5
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
6
|
Olson KE, Namminga KL, Lu Y, Schwab AD, Thurston MJ, Abdelmoaty MM, Kumar V, Wojtkiewicz M, Obaro H, Santamaria P, Mosley RL, Gendelman HE. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson's disease. EBioMedicine 2021; 67:103380. [PMID: 34000620 PMCID: PMC8138485 DOI: 10.1016/j.ebiom.2021.103380] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a pathogenic role in Parkinson's disease (PD). Immunotherapies that restore brain homeostasis can mitigate neurodegeneration by transforming T cell phenotypes. Sargramostim has gained considerable attention as an immune transformer through laboratory bench to bedside clinical studies. However, its therapeutic use has been offset by dose-dependent adverse events. Therefore, we performed a reduced drug dose regimen to evaluate safety and to uncover novel disease-linked biomarkers during 5 days/week sargramostim treatments for one year. Methods Five PD subjects were enrolled in a Phase 1b, unblinded, open-label study to assess safety and tolerability of 3 μg/kg/day sargramostim. Complete blood counts and chemistry profiles, physical examinations, adverse events (AEs), immune profiling, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores, T cell phenotypes/function, DNA methylation, and gene and protein patterns were evaluated. Findings Sargramostim administered at 3 μg/kg/day significantly reduced numbers and severity of AEs/subject/month compared to 6 μg/kg/day treatment. While MDS-UPDRS Part III score reductions were recorded, peripheral blood immunoregulatory phenotypes and function were elevated. Hypomethylation of upstream FOXP3 DNA elements was also increased. Interpretation Long-term sargramostim treatment at 3 μg/kg/day is well-tolerated and effective in restoring immune homeostasis. There were decreased numbers and severity of AEs and restored peripheral immune function coordinate with increased numbers and function of Treg. MDS-UPDRS Part III scores did not worsen. Larger patient numbers need be evaluated to assess conclusive drug efficacy (ClinicalTrials.gov NCT03790670). Funding The research was supported by community funds to the University of Nebraska Foundation and federal research support from 5 R01NS034239-25.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, NE 68198, USA
| | - Melinda Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Helen Obaro
- Great Plains Center for Clinical and Translational Research, University of Nebraska, USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA.
| |
Collapse
|
7
|
Duc D, Vigne S, Bernier-Latmani J, Yersin Y, Ruiz F, Gaïa N, Leo S, Lazarevic V, Schrenzel J, Petrova TV, Pot C. Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis. Cell Rep 2020; 29:378-390.e4. [PMID: 31597098 DOI: 10.1016/j.celrep.2019.09.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune disease of the CNS. Although an association between MS and inflammatory bowel diseases is observed, the link connecting intestinal immune responses and neuroinflammation remains unclear. Here we show that encephalitogenic Th17 cells infiltrate the colonic lamina propria before neurological symptom development in two murine MS models, active and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Specifically targeting Th17 cell intestinal homing by blocking the α4β7-integrin and its ligand MAdCAM-1 pathway impairs T cell migration to the large intestine and dampens EAE severity in the Th17 cell adoptive transfer model. Mechanistically, myelin-specific Th17 cells proliferate in the colon and affect gut microbiota composition. The beneficial effect of blocking the α4β7-integrin and its ligand MAdCAM-1 pathway on EAE is interdependent with gut microbiota. Those results show that disrupting myelin-specific Th17 cell trafficking to the large intestine harnesses neuroinflammation and suggests that the gut environment and microbiota catalyze the encephalitogenic properties of Th17 cells.
Collapse
Affiliation(s)
- Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
8
|
Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel Ligands Targeting α 4β 1 Integrin: Therapeutic Applications and Perspectives. Front Chem 2019; 7:489. [PMID: 31338363 PMCID: PMC6629825 DOI: 10.3389/fchem.2019.00489] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among the other members of the adhesion molecules' family, α4β1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4β1 functions in human pathologies, we report an overview of synthetic α4β1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4β1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,” University of Bologna, Bologna, Italy
| | | |
Collapse
|
9
|
Kuhbandner K, Hammer A, Haase S, Terbrack E, Hoffmann A, Schippers A, Wagner N, Hussain RZ, Miller-Little WA, Koh AY, Stoolman JS, Segal BM, Linker RA, Stüve O. MAdCAM-1-Mediated Intestinal Lymphocyte Homing Is Critical for the Development of Active Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:903. [PMID: 31114574 PMCID: PMC6503766 DOI: 10.3389/fimmu.2019.00903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/08/2019] [Indexed: 01/28/2023] Open
Abstract
Lymphocyte homing into the intestine is mediated by binding of leukocytes to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), expressed on endothelial cells. Currently, the immune system of the gut is considered a major modulator not only of inflammatory bowel disease, but also of extra-intestinal autoimmune disorders, including multiple sclerosis (MS). Despite intense research in this field, the exact role of the intestine in the pathogenesis of (neuro-)inflammatory disease conditions remains to be clarified. This prompted us to investigate the role of MAdCAM-1 in immunological processes in the intestine during T cell-mediated autoimmunity of the central nervous system (CNS). Using the experimental autoimmune encephalomyelitis model of MS, we show that MAdCAM-1-deficient (MAdCAM-1-KO) mice are less susceptible to actively MOG35−55-induced disease. Protection from disease was accompanied by decreased numbers of immune cells in the lamina propria and Peyer's patches as well as reduced immune cell infiltration into the spinal cord. MOG35−55-recall responses were intact in other secondary lymphoid organs of MAdCAM-1-KO mice. The composition of specific bacterial groups within the microbiome did not differ between MAdCAM-1-KO mice and controls, while MAdCAM-1-deficiency severely impaired migration of MOG35−55-activated lymphocytes to the gut. Our data indicate a critical role of MAdCAM-1 in the development of CNS inflammation by regulating lymphocyte homing to the intestine, and may suggest a role for the intestinal tract in educating lymphocytes to become encephalitogenic.
Collapse
Affiliation(s)
- Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Hammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Elisa Terbrack
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew Y Koh
- Department of Pediatrics, Microbiology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joshua S Stoolman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Benjamin M Segal
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
| |
Collapse
|
10
|
Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S653-S668. [PMID: 29767705 DOI: 10.1093/ecco-jcc/jjy060] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4β7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEβ7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the β7 integrin subunit [etrolizumab] and the α4β7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sharon O'Byrne
- Global Medical Affairs, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Mary E Keir
- Genentech Research & Early Development, South San Francisco, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
11
|
Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Sci Rep 2017; 7:14589. [PMID: 29109506 PMCID: PMC5674007 DOI: 10.1038/s41598-017-14788-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
Cigarette smoking is an established environmental risk factor for Multiple Sclerosis (MS), a chronic inflammatory and neurodegenerative disease, although a mechanistic basis remains largely unknown. We aimed at investigating how smoking affects blood DNA methylation in MS patients, by assaying genome-wide DNA methylation and comparing smokers, former smokers and never smokers in two Swedish cohorts, differing for known MS risk factors. Smoking affects DNA methylation genome-wide significantly, an exposure-response relationship exists and the time since smoking cessation affects methylation levels. The results also show that the changes were larger in the cohort bearing the major genetic risk factors for MS (female sex and HLA risk haplotypes). Furthermore, CpG sites mapping to genes with known genetic or functional role in the disease are differentially methylated by smoking. Modeling of the methylation levels for a CpG site in the AHRR gene indicates that MS modifies the effect of smoking on methylation changes, by significantly interacting with the effect of smoking load. Alongside, we report that the gene expression of AHRR increased in MS patients after smoking. Our results suggest that epigenetic modifications may reveal the link between a modifiable risk factor and the pathogenetic mechanisms.
Collapse
|
12
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
13
|
Drescher HK, Schippers A, Clahsen T, Sahin H, Noels H, Hornef M, Wagner N, Trautwein C, Streetz KL, Kroy DC. β 7-Integrin and MAdCAM-1 play opposing roles during the development of non-alcoholic steatohepatitis. J Hepatol 2017; 66:1251-1264. [PMID: 28192190 DOI: 10.1016/j.jhep.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease in Western countries. It is unclear how infiltrating leukocytes affect NASH-development. Our study aims to investigate the role of the homing/receptor, pair mucosal addressin cell adhesion molecule-1 (MAdCAM-1)/β7-Integrin, on immune cell recruitment and disease progression in a steatohepatitis model. METHODS Constitutive β7-Integrin deficient (β7-/-) and MAdCAM-1 deficient (MAdCAM-1-/-) mice were fed a high fat diet (HFD) for 26weeks or methionine-choline-deficient-diet (MCD) for 4weeks. RESULTS β7-/- mice displayed earlier and more progressive steatohepatitis during HFD- and MCD-treatment, while MAdCAM-1-/- mice showed less histomorphological changes. The anti-oxidative stress response was significantly weaker in β7-/- mice as reflected by a significant downregulation of the transcription factors nuclear-factor(erythroid-derived 2)-like 2 (Nrf2) and heme-oxigenase-1 (HO-1). Additionally, stronger dihydroethidium-staining revealed an increased oxidative stress response in β7-/- animals. In contrast, MAdCAM-1-/- mice showed an upregulation of the anti-oxidative stress response. β7-/- animals exhibited stronger hepatic infiltration of inflammatory cells, especially neutrophils, reflecting earlier steatohepatitis initiation. Expression of regulatory T cell (TReg) markers as well as numbers of anti-inflammatory macrophages was significantly enhanced in MAdCAM-1-/- mice. Those changes finally resulted in earlier and stronger collagen accumulation in β7-/- mice, whereas MAdCAM-1-/- mice were protected from fibrosis initiation. CONCLUSIONS Adhesion molecule mediated effector cell migration contributes to the outcome of steatohepatitis in the HFD- and the MCD model. While MAdCAM-1 promotes steatohepatitis, β7-Integrin unexpectedly exerts protective effects. β7-/- mice show earlier steatohepatitis initiation and significantly stronger fibrosis progression. Accordingly, the interaction of β7-Integrins and their receptor MAdCAM-1 provide novel targets for therapeutic interventions in steatohepatitis. LAY SUMMARY The mucosal addressin cell adhesion molecule 1 (MAdCAM-1) is expressed in livers upon diet-induced non-alcoholic steatohepatitis (NASH). Loss of MAdCAM-1 has beneficial effects regarding the development of NASH - manifested by reduced hepatic oxidative stress and decreased inflammation. In contrast, β7-Integrin-deficiency results in increased steatohepatitis.
Collapse
Affiliation(s)
- Hannah K Drescher
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, University Hospital, RWTH Aachen, Germany
| | - Thomas Clahsen
- Department of Pediatrics, University Hospital, RWTH Aachen, Germany
| | - Hacer Sahin
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, University Hospital, RWTH Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital, RWTH Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Konrad L Streetz
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Daniela C Kroy
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany.
| |
Collapse
|
14
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
15
|
Leukocyte integrin α4β7 associates with heat shock protein 70. Mol Cell Biochem 2015; 409:263-9. [PMID: 26260051 DOI: 10.1007/s11010-015-2530-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022]
Abstract
The leukocyte integrin cell adhesion molecules α4β7 and αEβ7 mediate the homing and retention of lymphocytes to the gut, and sites of inflammation. Here we have identified heat shock protein 70 (HSP70) as a major protein that associates with the cytoplasmic domain of the integrin β7 subunit. HSPs are molecular chaperones that protect cells from stress but more recently have been reported to also regulate cell adhesion and invasion via modulation of β1, β2, and β3 integrins and integrin-associated signalling molecules. Several HSP70 isoforms including HSP70-3, HSP70-1L, HSP70-8, and HSP70-9 were specifically precipitated from T cells by a bead-conjugated β7 subunit cytoplasmic domain peptide and subsequently identified by high-resolution liquid chromatography-tandem mass spectrometry. In confirmation, the β7 subunit was co-immunoprecipitated from a T cell lysate by an anti-HSP70 antibody. Further, recombinant human HSP70-1a was precipitated by β7 cytoplasmic domain-coupled beads. The HSP70 inhibitor KNK437 decreased the expression of HSP70 without affecting the expression of the β7 integrin. It significantly inhibited α4β7-mediated adhesion of T cells to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), suggesting HSP70 is critical for maintaining β7 integrin signalling function. The functional implications of the association of β7 integrins with the different isoforms of HSP70 warrants further investigation.
Collapse
|
16
|
Wagner N. Neue Entwicklungen in der Therapie chronisch-entzündlicher Darmkrankheiten. Monatsschr Kinderheilkd 2015. [DOI: 10.1007/s00112-014-3280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Häusler D, Nessler S, Kruse N, Brück W, Metz I. Natalizumab analogon therapy is effective in a B cell-dependent multiple sclerosis model. Neuropathol Appl Neurobiol 2015; 41:814-31. [PMID: 25641089 DOI: 10.1111/nan.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
AIMS Natalizumab is a humanized monoclonal antibody specific for CD49d receptors of integrins. It inhibits the entry of inflammatory cells into the central nervous system and is approved for the treatment of relapsing-remitting multiple sclerosis (MS). Several lines of evidence indicate an involvement of B cells and plasma cells in MS pathogenesis. However, treatment with the natalizumab analogon PS/2 immunoglobulin G (IgG) has so far only been investigated in T cell-mediated animal models of MS. Due to the importance of B lineage cells in the pathogenesis of MS, the objective of the present study has thus been to analyse the effects of PS/2 IgG in a mouse model of MS with T and B cell cooperation (OSE mice). METHODS OSE mice were treated with the natalizumab analogon PS/2 IgG either at disease onset or after peak of disease. Treatment was also performed with PS/2 F(ab')2 fragments. RESULTS PS/2 IgG treatment improved the clinical outcome and decreased spinal cord demyelination and immune cell infiltration if given early in the disease course. Treatment increased blood leukocytes and resulted in a partial internalization of CD49d in T and B cells. The therapeutic effects of PS/2 IgG injections were independent of the Fc fragment as F(ab')2 injections were equally beneficial. In contrast, PS/2 IgG was not effective when given late in the disease course. CONCLUSIONS Results indicate that natalizumab may also be beneficial in MS with B cell-driven immunopathogenesis.
Collapse
Affiliation(s)
- Darius Häusler
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Stefan Nessler
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Niels Kruse
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany
| |
Collapse
|
18
|
Sriramoju B, Kanwar RK, Kanwar JR. Neurobehavioral burden of multiple sclerosis with nanotheranostics. Neuropsychiatr Dis Treat 2015; 11:2675-89. [PMID: 26508863 PMCID: PMC4610886 DOI: 10.2147/ndt.s82768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating neurological disorder affecting people worldwide; women are affected more than men. MS results in serious neurological deficits along with behavioral compromise, the mechanisms of which still remain unclear. Behavioral disturbances such as depression, anxiety, cognitive impairment, psychosis, euphoria, sleep disturbances, and fatigue affect the quality of life in MS patients. Among these, depression and psychosis are more common than any other neurological disorders. In addition, depression is associated with other comorbidities. Although anxiety is often misdiagnosed in MS patients, it can induce suicidal ideation if it coexists with depression. An interrelation between sleep abnormalities and fatigue is also reported among MS patients. In addition, therapeutics for MS is always a challenge because of the presence of the blood-brain barrier, adding to the lack of detailed understanding of the disease pathology. In this review, we tried to summarize various behavioral pathologies and their association with MS, followed by its conventional treatment and nanotheranostics.
Collapse
Affiliation(s)
- Bhasker Sriramoju
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| |
Collapse
|
19
|
Angiari S, Constantin G. Selectins and their ligands as potential immunotherapeutic targets in neurological diseases. Immunotherapy 2013; 5:1207-20. [DOI: 10.2217/imt.13.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selectins are a family of adhesion receptors that bind to highly glycosylated molecules expressed on the surface of leukocytes and endothelial cells. The interactions between selectins and their ligands control tethering and rolling of leukocytes on the vascular wall during the process of leukocyte migration into the tissues under physiological and pathological conditions. In recent years, it has been shown that leukocyte recruitment in the CNS plays a pivotal role in diseases such as multiple sclerosis, ischemic stroke, epilepsy and traumatic brain injury. In this review, we discuss the role of selectins in leukocyte–endothelial interactions in the pathogenesis of neurological diseases, highlighting new findings suggesting that selectins and their ligands may represent novel potential therapeutic targets for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Stefano Angiari
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| | - Gabriela Constantin
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| |
Collapse
|
20
|
Haanstra KG, Hofman SO, Lopes Estêvão DM, Blezer ELA, Bauer J, Yang LL, Wyant T, Csizmadia V, 't Hart BA, Fedyk ER. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:1961-73. [PMID: 23365083 DOI: 10.4049/jimmunol.1202490] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the α(4) integrins expressed by T lymphocytes. The α(4)β(1) integrin mediates migration of memory T lymphocytes into the CNS, whereas the α(4)β(7) integrin mediates migration preferentially into gastrointestinal tissue. This paradigm was established primarily from investigations in rodents; thus, the objective of this investigation was to determine if blocking the α(4)β(7) integrin exclusively would affect migration of T lymphocytes into the CNS of primates. The effects of the dual α(4)β(1) and α(4)β(7) antagonist natalizumab were compared with those of the α(4)β(7) antagonist vedolizumab on experimental autoimmune encephalomyelitis in the rhesus monkey. Animals received an initial i.v. bolus of placebo, natalizumab (30 mg/kg), or vedolizumab (30 mg/kg) before intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein and then Ab once weekly thereafter. Natalizumab prevented CNS inflammation and demyelination significantly (p < 0.05), compared with time-matched placebo control animals, whereas vedolizumab did not inhibit these effects, despite saturating the α(4)β(7) integrin in each animal for the duration of the investigation. These results demonstrate that blocking α(4)β(7) exclusively does not inhibit immune surveillance of the CNS in primates.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Papst S, Noisier AF, Brimble MA, Yang Y, Krissansen GW. Synthesis and biological evaluation of tyrosine modified analogues of the α4β7 integrin inhibitor biotin-R8ERY. Bioorg Med Chem 2012; 20:5139-49. [DOI: 10.1016/j.bmc.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 12/24/2022]
|
22
|
Schippers A, Kochut A, Pabst O, Frischmann U, Clahsen T, Tenbrock K, Müller W, Wagner N. β7 integrin controls immunogenic and tolerogenic mucosal B cell responses. Clin Immunol 2012; 144:87-97. [DOI: 10.1016/j.clim.2012.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022]
|
23
|
Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 2012; 7:3259-78. [PMID: 22848160 PMCID: PMC3405884 DOI: 10.2147/ijn.s30919] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We are now in an aging population, so neurological disorders, particularly the neurodegenerative diseases, are becoming more prevalent in society. As per the epidemiological studies, Europe alone suffers 35% of the burden, indicating an alarming rate of disease progression. Further, treatment for these disorders is a challenging area due to the presence of the tightly regulated blood-brain barrier and its unique ability to protect the brain from xenobiotics. Conventional therapeutics, although effective, remain critically below levels of optimum therapeutic efficacy. Hence, methods to overcome the blood-brain barrier are currently a focus of research. Nanotechnological applications are gaining paramount importance in addressing this question, and yielding some promising results. This review addresses the pathophysiology of the more common neurological disorders and novel drug candidates, along with targeted nanoparticle applications for brain delivery.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Frontier Materials-IFM, Deakin University, Waurn Ponds, Victoria, Australia.
| | | | | |
Collapse
|
24
|
Tyrosine modified analogues of the α4β7 integrin inhibitor biotin-R8ERY prepared via Click Chemistry: Synthesis and biological evaluation. Bioorg Med Chem 2012; 20:2638-44. [DOI: 10.1016/j.bmc.2012.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 11/24/2022]
|
25
|
Yu CR, Lee YS, Mahdi RM, Surendran N, Egwuagu CE. Therapeutic targeting of STAT3 (signal transducers and activators of transcription 3) pathway inhibits experimental autoimmune uveitis. PLoS One 2012; 7:e29742. [PMID: 22238646 PMCID: PMC3252323 DOI: 10.1371/journal.pone.0029742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022] Open
Abstract
Mice with targeted deletion of STAT3 in CD4+ T-cells do not develop experimental autoimmune uveitis (EAU) or experimental autoimmune encephalomyelitis (EAE), in part, because they cannot generate pathogenic Th17 cells. In this study, we have used ORLL-NIH001, a small synthetic compound that inhibits transcriptional activity of STAT3, to ameliorate EAU, an animal model of human posterior uveitis. We show that by attenuating inflammatory properties of uveitogenic lymphocytes, ORLL-NIH001 inhibited the recruitment of inflammatory cells into the retina during EAU and prevented the massive destruction of the neuroretina caused by pro-inflammatory cytokines produced by the autoreactive lymphocytes. Decrease in disease severity observed in ORLL-NIH001-treated mice, correlated with the down-regulation of α4β1 and α4β7 integrin activation and marked reduction of CCR6 and CXCR3 expression, providing a mechanism by which ORLL-NIH001 mitigated EAU. Furthermore, we show that ORLL-NIH001 inhibited the expansion of human Th17 cells, underscoring its potential as a drug for the treatment of human uveitis. Two synthetic molecules that target the Th17 lineage transcription factors, RORγt and RORα, have recently been suggested as potential drugs for inhibiting Th17 development and treating CNS inflammatory diseases. However, inhibiting STAT3 pathways completely blocks Th17 development, as well as, prevents trafficking of inflammatory cells into CNS tissues, making STAT3 a more attractive therapeutic target. Thus, use of ORLL-NIH001 to target the STAT3 transcription factor, thereby antagonizing Th17 expansion and expression of proteins that mediate T cell chemotaxis, provides an attractive new therapeutic approach for treatment of posterior uveitis and other CNS autoimmune diseases mediated by Th17 cells.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yun Sang Lee
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rashid M. Mahdi
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Charles E. Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Papst S, Noisier AFM, Brimble MA, Yang Y, Chan YC, Krissansen GW. Synthesis and SAR of a Library of Cell-Permeable Biotin-R8ERY* Peptidomimetics Inhibiting α4β7 Integrin Mediated Adhesion of TK-1 Cells to MAdCAM-1-Fc. Aust J Chem 2012. [DOI: 10.1071/ch12227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The α4β7 integrin is a well‐known target for the development of drugs against various inflammatory disease states including inflammatory bowel disease, type 1 diabetes, and multiple sclerosis. The β7 subunit contains the cell adhesion regulatory domain (CARD) motif YDRREY within its cytoplasmic domain, which is an effective peptide agent for inhibiting T-cell adhesion. The synthesis of a library of cell-permeable β7 integrin inhibitors based on the shortened biotin-R8ERY (R8 = (l-arginine)8) motif is reported, wherein the tyrosine residue has been modified. The synthesised peptidomimetics were evaluated in a cell adhesion assay and shown to inhibit Mn2+-activated adhesion of mouse TK-1 T-cells to mouse MAdCAM-1. Several analogues exhibited improved activity to that of the tyrosine-containing lead compound 1 (biotin-R8ERY). Specifically, analogues 4, 10, and 22 bearing a 4-chloro, a 4-nitro, and a 3,3-diphenyl substituent showed an increase in activity of approximately two-fold compared with that of the initial lead compound. The six most active compounds of the tested series had IC50’s between 25 and 50 μM.
Collapse
|
27
|
Wu X, Reddy DS. Integrins as receptor targets for neurological disorders. Pharmacol Ther 2011; 134:68-81. [PMID: 22233753 DOI: 10.1016/j.pharmthera.2011.12.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
This review focuses on the neurobiology of integrins, pathophysiological roles of integrins in neuroplasticity and nervous system disorders, and therapeutic implications of integrins as potential drug targets and possible delivery pathways. Neuroplasticity is a central phenomenon in many neurological conditions such as seizures, trauma, and traumatic brain injury. During the course of many brain diseases, in addition to intracellular compartment changes, alterations in non-cell compartments such as extracellular matrix (ECM) are recognized as an essential process in forming and reorganizing neural connections. Integrins are heterodimeric transmembrane receptors that mediate cell-ECM and cell-cell adhesion events. Although the mechanisms of neuroplasticity remain unclear, it has been suggested that integrins undergo plasticity including clustering through interactions with ECM proteins, modulating ion channels, intracellular Ca(2+) and protein kinase signaling, and reorganization of cytoskeletal filaments. As cell surface receptors, integrins are central to the pathophysiology of many brain diseases, such as epilepsy, and are potential targets for the development of new drugs for neurological disorders.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA
| | | |
Collapse
|
28
|
Stefanich EG, Danilenko DM, Wang H, O'Byrne S, Erickson R, Gelzleichter T, Hiraragi H, Chiu H, Ivelja S, Jeet S, Gadkari S, Hwang O, Fuh F, Looney C, Howell K, Albert V, Balazs M, Refino C, Fong S, Iyer S, Williams M. A humanized monoclonal antibody targeting the β7 integrin selectively blocks intestinal homing of T lymphocytes. Br J Pharmacol 2011; 162:1855-70. [PMID: 21232034 DOI: 10.1111/j.1476-5381.2011.01205.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE rhuMAb Beta7 is a humanized anti-human β7 monoclonal antibody currently in phase I in inflammatory bowel disease. rhuMAb Beta7 binds the β7 subunit of the integrins α4β7 and αEβ7, blocking interaction with their ligands. These integrins play key roles in immune cell homing to and retention in mucosal sites, and are associated with chronic inflammatory diseases of the gastrointestinal tract. The goal of this study was to evaluate the mucosal specificity of rhuMAb Beta7. EXPERIMENTAL APPROACH We assessed the effect of murine anti-Beta7 on lymphocyte homing in mouse models of autoimmune disease. We also compared the effect of rhuMAb Beta7 on circulating mucosal-homing versus peripheral-homing T cells in naïve non-human primates. KEY RESULTS In cynomolgus monkeys, occupancy of β7 integrin receptors by rhuMAb Beta7 correlated with an increase in circulating β7(+) mucosal-homing lymphocytes, with no apparent effect on levels of circulating β7(-) peripheral-homing lymphocytes. rhuMAb Beta7 also inhibited lymphocyte homing to the inflamed colons of severe combined immunodeficient mice in CD45RB(high) CD4(+) T-cell transfer models. Consistent with a lack of effect on peripheral homing, in a mouse model of experimental autoimmune encephalomyelitis, anti-β7 treatment resulted in no amelioration of CNS inflammation. CONCLUSIONS AND IMPLICATIONS The results presented here suggest that rhuMAb Beta7 selectively blocks lymphocyte homing to the gastrointestinal tract without affecting lymphocyte trafficking to non-mucosal tissues. rhuMAb Beta7 provides a targeted therapeutic approach with the potential for a more attractive benefit:risk ratio than currently available inflammatory bowel disease therapies.
Collapse
Affiliation(s)
- E G Stefanich
- Department of Pharmacodynamic Biomarkers, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wynne A, Kanwar RK, Khanna R, Kanwar JR. Recent Advances on the Possible Neuroprotective Activities of Epstein-Barr Virus Oncogene BARF1 Protein in Chronic Inflammatory Disorders of Central Nervous System. Curr Neuropharmacol 2011; 8:268-75. [PMID: 21358976 PMCID: PMC3001219 DOI: 10.2174/157015910792246191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis and neurodegenerative diseases in which cells of the central nervous system (CNS) are lost or damaged are rapidly increasing in frequency, and there is neither effective treatment nor cure to impede or arrest their destructive course. The Epstein-Barr virus is a human gamma-herpesvirus that infects more than 90% of the human population worldwide and persisting for the lifetime of the host. It is associated with numerous epithelial cancers, principally undifferentiated nasopharyngeal carcinoma and gastric carcinoma. Individuals with a history of symptomatic primary EBV infection, called infectious mononucleosis, carry a moderately higher risk of developing multiple sclerosis (MS). It is not known how EBV infection potentially promotes autoimmunity and central nervous system (CNS) tissue damage in MS. Recently it has been found that EBV isolates from different geographic regions have highly conserved BARF1 epitopes. BARF1 protein has the neuroprotective and mitogenic activity, thus may be useful to combat and overcome neurodegenerative disease. BARF1 protein therapy can potentially be used to enhance the neuroprotective activities by combinational treatment with anti-inflammatory antagonists and neuroprotectors in neural disorders.
Collapse
Affiliation(s)
- Alicia Wynne
- Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology & Research Innovation (ITRI), Deakin University, Geelong, Technology Precinct (GTP), Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | | | | | | |
Collapse
|
30
|
Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 2011; 89:539-56. [PMID: 21169520 DOI: 10.1189/jlb.0710432] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Leukocyte trafficking from the blood into the tissues represents a key process during inflammation and requires multiple steps mediated by adhesion molecules and chemoattractants. Inflammation has a detrimental role in several diseases, and in such cases, the molecular mechanisms controlling leukocyte migration are potential therapeutic targets. Over the past 20 years, leukocyte migration in the CNS has been investigated almost exclusively in the context of stroke and MS. Experimental models of ischemic stroke have led to the characterization of adhesion molecules controlling leukocyte migration during acute inflammation, whereas EAE, the animal model of MS, has provided similar data for chronic inflammation. Such experiments have led to clinical trials of antileukocyte adhesion therapy, with consistently positive outcomes in human subjects with MS, showing that interference with leukocyte adhesion can ameliorate chronic inflammatory CNS diseases. This review summarizes our current understanding of the roles of adhesion molecules controlling leukocyte-endothelial interactions in stroke and MS, focusing on recently discovered, novel migration mechanisms. We also discuss the growing evidence suggesting a role for vascular inflammation and leukocyte trafficking in neurodegenerative diseases such as AD. Moreover, we highlight recent findings suggesting a role for leukocyte-endothelial interactions in the pathogenesis of seizures and epilepsy, thus linking endothelial activation and leukocyte trafficking to neuronal electrical hyperactivity. These emerging roles for leukocytes and leukocyte adhesion mechanisms in CNS diseases provide insight into the mechanisms of brain damage and may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Rossi
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
31
|
Döring A, Pfeiffer F, Meier M, Dehouck B, Tauber S, Deutsch U, Engelhardt B. TET inducible expression of the α4β7-integrin ligand MAdCAM-1 on the blood-brain barrier does not influence the immunopathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol 2011; 41:813-21. [PMID: 21341265 DOI: 10.1002/eji.201040912] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/24/2010] [Accepted: 12/16/2010] [Indexed: 12/21/2022]
Abstract
Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the mab natalizumab is an effective treatment of multiple sclerosis (MS). Which of the two α4 heterodimers is involved in disease pathogenesis has, however, remained controversial. Whereas the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, is ameliorated in β7-integrin-deficient C57BL/6 mice, neutralizing antibodies against the β7-integrin subunit or the α4β7-integrin heterodimer fail to interfere with EAE pathogenesis in the SJL mouse. To facilitate α4β7-integrin-mediated immune-cell trafficking across the blood-brain barrier (BBB), we established transgenic C57BL/6 mice with endothelial cell-specific, inducible expression of the α4β7-integrin ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 using the tetracycline (TET)-OFF system. Although TET-regulated MAdCAM-1 induced α4β7-integrin mediated interaction of α4β7(+) /α4β1(-) T cells with the BBB in vitro and in vivo, it failed to influence EAE pathogenesis in C57BL/6 mice. TET-regulated MAdCAM-1 on the BBB neither changed the localization of central nervous system (CNS) perivascular inflammatory cuffs nor did it enhance the percentage of α4β7-integrin(+) inflammatory cells within the CNS during EAE. In conclusion, our study demonstrates that ectopic expression of MAdCAM-1 at the BBB does not increase α4β7-integrin-mediated immune cell trafficking into the CNS during MOG(aa35-55)-induced EAE.
Collapse
Affiliation(s)
- Axinia Döring
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Baratchi S, Kanwar RK, Kanwar JR. Novel survivin mutant protects differentiated SK-N-SH human neuroblastoma cells from activated T-cell neurotoxicity. J Neuroimmunol 2010; 233:18-28. [PMID: 21129784 DOI: 10.1016/j.jneuroim.2010.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 01/08/2023]
Abstract
Currently, there are no known treatments for protection of axonal loss associated with neuroinflammatory diseases such as multiple sclerosis (MS). Survivin is a member of the inhibitors of the apoptosis (IAP) family of proteins that its neuroprotective effects have not been studied. We demonstrate here that SurR9-C84A, a survivin mutant, exhibits a neuroprotective role against the cytotoxic effects of activated T-cell infiltrates, such as granzyme B (GrB). The activated T-cell supernatants induce toxicity on differentiated SK-N-SH cells, which is associated with the loss of Ca(2+) homeostasis, the increased population of dead cells, mitochondrial membrane depolarisation, and the accelerated expression of cyclinD1, caspase3 and Fas, as observed for most apoptotic cells. Alternatively, the pre-treatment with SurR9-C84A reduces the population of dead cells by balancing the cytosolic Ca(2+) homeostasis, decreasing the level of mitochondrial depolarisation, and also reducing the expression of cyclinD1 and caspase3. Our findings suggest that SurR9-C84A has a neuroprotective effect against the cytotoxins existing in activated T-cell supernatants including GrB.
Collapse
Affiliation(s)
- Sara Baratchi
- Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology Research and Innovation (ITRI), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | | | |
Collapse
|
33
|
Proliferative and protective effects of SurR9-C84A on differentiated neural cells. J Neuroimmunol 2010; 227:120-32. [DOI: 10.1016/j.jneuroim.2010.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/31/2010] [Accepted: 06/29/2010] [Indexed: 11/22/2022]
|
34
|
Warnke C, Menge T, Hartung HP, Racke MK, Cravens PD, Bennett JL, Frohman EM, Greenberg BM, Zamvil SS, Gold R, Hemmer B, Kieseier BC, Stüve O. Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? ACTA ACUST UNITED AC 2010; 67:923-30. [PMID: 20697042 DOI: 10.1001/archneurol.2010.161] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Natalizumab (Tysabri) was the first monoclonal antibody approved for the treatment of relapsing forms of multiple sclerosis (MS). After its initial approval, 3 patients undergoing natalizumab therapy in combination with other immunoregulatory and immunosuppressive agents were diagnosed with progressive multifocal leukoencephalopathy (PML). The agent was later reapproved and its use restricted to monotherapy in patients with relapsing forms of MS. Since reapproval in 2006, additional cases of PML were reported in patients with MS receiving natalizumab monotherapy. Thus, there is currently no convincing evidence that natalizumab-associated PML is restricted to combination therapy with other disease-modifying or immunosuppressive agents. In addition, recent data indicate that risk of PML might increase beyond 24 months of treatment.
Collapse
Affiliation(s)
- Clemens Warnke
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 S Lancaster Rd, Dallas, TX 75216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stüve O, Kieseier BC, Hemmer B, Hartung HP, Awad A, Frohman EM, Greenberg BM, Racke MK, Zamvil SS, Phillips JT, Gold R, Chan A, Zettl U, Milo R, Marder E, Khan O, Eagar TN. Translational research in neurology and neuroscience 2010: multiple sclerosis. ACTA ACUST UNITED AC 2010; 67:1307-15. [PMID: 20625066 DOI: 10.1001/archneurol.2010.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past 2 decades, enormous progress has been made with regard to pharmacotherapies for patients with multiple sclerosis. There is perhaps no other subspecialty in neurology in which more agents have been approved that substantially alter the clinical course of a disabling disorder. Many of the pharmaceuticals that are currently approved, in clinical trials, or in preclinical development were initially evaluated in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. Two Food and Drug Administration-approved agents (glatiramer acetate and natalizumab) were developed using the experimental autoimmune encephalomyelitis model. This model has served clinician-scientists for many decades to enable understanding the inflammatory cascade that underlies clinical disease activity and disease surrogate markers detected in patients.
Collapse
Affiliation(s)
- Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 S Lancaster Rd, Dallas, TX 75216, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Allavena R, Noy S, Andrews M, Pullen N. CNS elevation of vascular and not mucosal addressin cell adhesion molecules in patients with multiple sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:556-62. [PMID: 20035048 DOI: 10.2353/ajpath.2010.090437] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mucosal addressin cell adhesion molecule (MAdCAM) and vascular cell adhesion molecule (VCAM) appear to play roles in the recruitment of leukocytes to specialized endothelium lining the gastrointestinal tract. The purpose of this study was to clarify the role of MAdCAM and VCAM in the central nervous system by comparing protein expression in patients with multiple sclerosis (MS) and control subjects by immunohistochemistry. Specific antibodies to human VCAM and MAdCAM were used to confirm expression in control and MS nervous system specimens by immunohistochemistry. VCAM immunoreactivity was detected in endothelial cells, perivascular tissue, and in some cases, leukocytes within the meninges, gray, and white matter, of both controls and MS patients. VCAM immunoreactivity was maximal in a patient with acute active plaques, but of lower intensity and reduced distribution in controls and those with chronic active or inactive MS plaques. In contrast, MAdCAM immunoreactivity could not be detected in brain tissue from unaffected or MS patients. Taken together, these data support a role of VCAM, but not MAdCAM in the development of MS.
Collapse
|
37
|
Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK, Kim SU, Park CG. Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 2009; 87:2264-72. [DOI: 10.1002/jnr.22050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Abstract
Based on the results of two phase III clinical trials, the humanized recombinant monoclonal antibody natalizumab was approved for the treatment of relapsing forms of multiple sclerosis (MS). Since its initial approval in November 2004, it has been announced that six patients who received natalizumab in the context of clinical studies acquired an infection with the human polyoma virus JC and were diagnosed with progressive multifocal leukoencephalopathy (PML). Two of these individuals had a fatal outcome. Our groups recently showed that natalizumab therapy results in a reduction of CD4(+) T cells within the cerebrospinal fluid (CSF) that is ten-fold more pronounced than the reduction in the number of CD8(+) T lymphocytes. Interestingly, it appears that the effect of natalizumab on cell numbers in the CSF persists for at least 6 months after cessation of treatment. More recently, we studied the expression of major histocompatibility complex (MHC) I and II, and the number and phenotypes of leukocytes in cerebral perivascular spaces (CPVS). We observed that natalizumab therapy was associated with a significant decrease in the cell surface expression of MHC class II molecules, and the numbers of dendritic cells in CPVS. In addition, no CD4(+) T cells were detectable in this compartment. Our observations may explain the differential and prolonged effects of natalizumab therapy on different leukocyte subsets in the central nervous system. They also suggest that natalizumab treatment may result in prolonged immunosuppression in peripheral organs, and the delayed onset of adverse events.
Collapse
|
39
|
Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G, Ivanov D, Nathanson L, Barnum SR, Bethea JR. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2628-40. [PMID: 19234157 PMCID: PMC4291126 DOI: 10.4049/jimmunol.0802954] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the CNS, the transcription factor NF-kappaB is a key regulator of inflammation and secondary injury processes. Following trauma or disease, the expression of NF-kappaB-dependent genes is activated, leading to both protective and detrimental effects. In this study, we show that transgenic inactivation of astroglial NF-kappaB (glial fibrillary acidic protein-IkappaB alpha-dominant-negative mice) resulted in reduced disease severity and improved functional recovery following experimental autoimmune encephalomyelitis. At the chronic stage of the disease, transgenic mice exhibited an overall higher presence of leukocytes in spinal cord and brain, and a markedly higher percentage of CD8(+)CD122(+) T regulatory cells compared with wild type, which correlated with the timing of clinical recovery. We also observed that expression of proinflammatory genes in both spinal cord and cerebellum was delayed and reduced, whereas the loss of neuronal-specific molecules essential for synaptic transmission was limited compared with wild-type mice. Furthermore, death of retinal ganglion cells in affected retinas was almost abolished, suggesting the activation of neuroprotective mechanisms. Our data indicate that inhibiting NF-kappaB in astrocytes results in neuroprotective effects following experimental autoimmune encephalomyelitis, directly implicating astrocytes in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Roberta Brambilla
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Trikaldarshi Persaud
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xianchen Hu
- Departments of Microbiology and Neurology, University of Alabama, Birmingham, AL 35294
| | - Shaffiat Karmally
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
- Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russian Federation
| | - Lubov Nathanson
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Scott R. Barnum
- Departments of Microbiology and Neurology, University of Alabama, Birmingham, AL 35294
| | - John R. Bethea
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
40
|
Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci U S A 2009; 106:1920-5. [PMID: 19179279 DOI: 10.1073/pnas.0808909106] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T cells are the main target of anti-alpha(4)-antibody blockade. We demonstrate that beta(1)-integrin expression on encephalitogenic T cells is critical for EAE development, and we therefore exclude alpha(4)beta(7) as a target integrin of the antibody treatment. T cells lacking beta(1) integrin are unable to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of alpha(4)beta(1) integrins.
Collapse
|
41
|
Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in multiple sclerosis. NEURODEGENER DIS 2007; 5:16-22. [PMID: 18075270 DOI: 10.1159/000109933] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/15/2007] [Indexed: 11/19/2022] Open
Abstract
In 1992, it was shown that monoclonal antibodies blocking alpha(4)-integrins prevent the development of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS). As alpha(4)beta(1)-integrin was demonstrated to mediate the attachment of immune-competent cells to inflamed brain endothelium in experimental autoimmune encephalomyelitis, the therapeutic effect was attributed to the inhibition of immune cell extravasation and inflammation in the central nervous system. This novel therapeutic approach was rapidly and successfully translated into the clinic. The humanized anti-alpha(4)-integrin antibody natalizumab demonstrated an unequivocal therapeutic effect in preventing relapses and slowing down the pace of neurological deterioration in patients with relapsing-remitting MS in phase II and phase III clinical trials. The occurrence of 3 cases of progressive multifocal leukoencephalopathy in patients treated with natalizumab led to the voluntary withdrawal of the drug from the market. After a thorough safety evaluation of all patients receiving this drug in past and ongoing studies for MS and Crohn's disease, natalizumab again obtained approval in the US and the European Community. A treatment targeting leukocyte trafficking in MS has now re-entered the clinic. Further thorough evaluation is necessary for a better understanding of the risk-benefit balance of this new treatment option for relapsing MS. In this review, we discuss the basic mechanism of action, key clinical results of clinical trials and the emerging indication of natalizumab in MS.
Collapse
|
42
|
Stüve O, Bennett JL. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS DRUG REVIEWS 2007; 13:79-95. [PMID: 17461891 PMCID: PMC6494150 DOI: 10.1111/j.1527-3458.2007.00003.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Natalizumab (Tysabri) was the first adhesion molecule antagonist to make it into clinical trial for patients with multiple sclerosis (MS) and other inflammatory disorders. Natalizumab is a humanized recombinant monoclonal antibody (MAb) that binds to the alpha (alpha)(4) chain of the alpha(4) beta (beta)(1) (very late activating antigen 4; VLA-4) and alpha(4)beta(7) integrins. The scientific rationale for natalizumab therapy is the reduction of leukocyte extravasation into peripheral tissues. Natalizumab, like other VLA-4 antagonists, may also interfere with the activation of T lymphocytes in secondary lymphoid organs and their reactivation in the central nervous system (CNS). Shortly after its approval for the treatment of relapsing-remitting MS (RR-MS), three patients who were treated with natalizumab in the setting of clinical trials developed progressive multifocal leukoencephalopathy (PML), an opportunistic infection of the brain with the polyoma virus JC. It remains to be elucidated why the use of this VLA-4 antagonist is associated with an increased incidence of PML. Natalizumab was recently reapproved for the treatment of relapsing forms of MS. In this review, we outline the scientific rationale for using natalizumab in MS and other inflammatory disorders. In addition, an overview of pharmacological properties, clinical efficacy, safety, and toxicology of natalizumab is provided.
Collapse
Affiliation(s)
- Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, Texas, USA
| | | |
Collapse
|
43
|
Abstract
Integrins are of interest to neuroscientists because they and many of their ligands are widely expressed in the nervous system and have been shown to have diverse roles in neural development and function (Clegg et al., 2003; Li and Pleasure, 2005; Pinkstaff et al., 1998, 1999; Reichardt and Tomaselli, 1991; Schmid et al., 2005). Integrins have also been implicated in control of pathogenesis in several neurodegenerative diseases, brain tumor pathogenesis, and the aftermath of brain and peripheral nervous system injury (Condic, 2001; Ekstrom et al., 2003; Kloss et al., 1999; Verdier and Penke, 2004; Wallquist et al., 2004). Using integrin antagonists as therapeutic agents in a variety of neurological diseases is of great interest at present (Blackmore and Letourneau, 2006; Mattern et al., 2005; Polman et al., 2006; Wang et al., 2006). In this chapter, we describe methods used in our laboratory to characterize neuronal responses to extracellular matrix proteins, and procedures for assessing integrin roles in neuronal cell attachment and differentiation.
Collapse
Affiliation(s)
- Sumiko Denda
- Shiseido Research Center 2, Kanazawa-ku, Yokohama, Japan
| | | |
Collapse
|
44
|
Montanez E, Piwko-Czuchra A, Bauer M, Li S, Yurchenco P, Fässler R. Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol 2007; 426:239-89. [PMID: 17697888 DOI: 10.1016/s0076-6879(07)26012-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion, permit traction forces important for cell migration, and cross-talk with growth factor receptors to regulate cell proliferation, cell survival, and cell differentiation. The plethora of functions explains their central role for development and disease. The progress in mouse genetics and the ease with which the mouse genome can be manipulated enormously contributed to our understanding of how integrins exert their functions at the molecular level. In the present chapter, we describe tests that are routinely used in our laboratory to investigate embryos, organs, and cells (peri-implantation embryos, hematopoietic system, epidermis, and hair follicles) that lack the expression of integrins or integrin-associated proteins.
Collapse
Affiliation(s)
- Eloi Montanez
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods C, Fujinami RS. Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol 2007; 17:45-55. [PMID: 17493037 PMCID: PMC8095550 DOI: 10.1111/j.1750-3639.2006.00042.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Adhesion molecules play important roles in cell-cell and cell-extracellular matrix (ECM) interactions in inflammation. Blocking the interaction between inflammatory cells and vascular endothelia can prevent cell entry into tissues and harmful inflammatory responses, that is, autoimmunity, but could also limit immunosurveillance by anti-viral T cells in sites of infection or latency. Development of progressive multifocal leukoencephalopathy in patients treated with antibody against very late antigen (VLA)-4 prompted us to explore an alternative therapeutic approach. We used an antibody against the integrin alpha2, VLA-2, that interacts with ECM, not vascular endothelium. SJL/J mice were sensitized with myelin proteolipid protein (PLP)(139-151) peptide to induce experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Treatment of mice with VLA-2 antibody suppressed clinical signs and CNS inflammation of EAE, when antibody was given immediately after disease onset. In contrast, VLA-4 or VLA-2 antibody treatment of mice during the priming or remission phase of EAE had minor effects on the disease's clinical course. No differences were found in lymphoproliferative responses to PLP(139-151) among treatment groups. Data suggest that blocking cell-ECM interactions can be an alternative therapy for MS.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emily Jane Terry
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Benjamin J. Marble
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Elias Lazarides
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Catherine Woods
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Robert S. Fujinami
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
46
|
Krissansen GW, Singh J, Kanwar RK, Chan YC, Leung E, Lehnert KB, Kanwar JR, Yang Y. A pseudosymmetric cell adhesion regulatory domain in the beta7 tail of the integrin alpha4beta7 that interacts with focal adhesion kinase and src. Eur J Immunol 2006; 36:2203-14. [PMID: 16874740 DOI: 10.1002/eji.200535324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The beta7 integrins alpha4beta7 and alphaEbeta7 play key roles in forming the gut-associated lymphoid tissue, and contribute to chronic inflammation. The alpha4beta7 integrin-mediated adhesion of activated lymphocytes is largely due to a transient increase in avidity from ligand-induced clustering of alpha4beta7 at the cell-surface. Here, we report that L and D enantiomers of a cell-permeable peptide YDRREY encompassing residues 735-740 of the cytoplasmic tail of the beta7 subunit inhibit the adhesion of T cells to beta7 integrin ligands. The YDRREY peptide abrogated mucosal addressin cell adhesion molecule-1-induced clustering of alpha4beta7 on the surface of activated T cells. A mutated form of the YDRREY peptide carrying either single or double conservative mutations at Tyr(735)Phe and Tyr(740)Phe was unable to inhibit T cell adhesion, suggesting that both tandem tyrosines are critical for activity. The YDRREY peptide was bound and phosphorylated by focal adhesion kinase and src, which may serve to sequester cytoskeletal proteins to the cytoplasmic domain of alpha4beta7. The quasi-palindromic sequence YDRREY within the beta7 cytoplasmic tail constitutes a cell adhesion regulatory domain that modulates the interaction of beta7-expressing leukocytes with their endothelial and epithelial ligands. Cell-permeable peptidomimetics based on this motif have utility as anti-inflammatory reagents for the treatment of chronic inflammatory disease.
Collapse
Affiliation(s)
- Geoffrey W Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lisak RP, Benjamins JA, Bealmear B, Yao B, Land S, Nedelkoska L, Skundric D. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for immune-related molecules by central nervous system mixed glial cell cultures. Mult Scler 2006; 12:149-68. [PMID: 16629418 DOI: 10.1191/135248506ms1251oa] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines secreted within the central nervous system (CNS) are important in the development of multiple sclerosis (MS) lesions. The balance between Th1, monocyte/macrophage (M/M) and Th2 cytokines in the CNS may be pivotal in determining the outcome of lesion development. We examined the effects of mixtures of cytokines on gene expression by CNS glial cells, as mixtures of cytokines are present in MS lesions, which in turn contain mixtures of glial cells. In this initial analysis by gene array, we examined changes at 6 hours to identify early changes in gene expression that represent primary responses to the cytokines. Rat glial cells were incubated with mixtures of Th1, M/M and Th2 cytokines for 6 hours and examined for changes in early gene expression employing microarray gene chip technology. A minimum of 814 genes were differentially regulated by one or more of the cytokine mixtures in comparison to controls, including changes in expression in a large number of genes for immune system-related proteins. Expression of the proteins for these genes likely influences development and inhibition of MS lesions as well as protective and regenerative processes. Analysing gene expression for the effects of various combinations of exogenous cytokines on glial cells in the absence of the confounding effects of inflammatory cells themselves should increase our understanding of cytokine-induced pathways in the CNS.
Collapse
Affiliation(s)
- R P Lisak
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. THE JOURNAL OF IMMUNOLOGY 2006; 176:7666-75. [PMID: 16751414 DOI: 10.4049/jimmunol.176.12.7666] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection.
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
49
|
Kerfoot SM, Norman MU, Lapointe BM, Bonder CS, Zbytnuik L, Kubes P. Reevaluation of P-selectin and alpha 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 176:6225-34. [PMID: 16670333 DOI: 10.4049/jimmunol.176.10.6225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There has been a great deal of interest in adhesion molecules as targets for the treatment of multiple sclerosis and other inflammatory diseases. In this study, we systematically evaluate alpha(4) integrin and P-selectin as targets for therapy in murine models of multiple sclerosis-for the first time directly measuring the ability of their blockade to inhibit recruitment and relate this to clinical efficacy. Experimental autoimmune encephalomyelitis was induced in C57BL/6 or SJL/J mice and intravital microscopy was used to quantify leukocyte interactions within the CNS microvasculature. In both strains, pretreatment with blocking Abs to either alpha(4) integrin or P-selectin reduced firm adhesion to a similar extent, but did not block it completely. The combination of the Abs was more effective than either Ab alone, although the degree of improvement was more evident in SJL/J mice. Similarly, dual blockade was much more effective at preventing the subsequent accumulation of fluorescently labeled leukocytes in the tissue in both strains. Despite evidence of blockade of leukocyte recruitment mechanisms, no clinical benefit was observed with anti-adhesion molecule treatments or genetic deletion of P-selectin in the C57BL/6 model, or in a pertussis toxin-modified model in SJL/J mice. In contrast, Abs to alpha(4) integrin resulted in a significant delay in the onset of clinical signs of disease in the standard SJL/J model. Despite evidence of a similar ability to block firm adhesion, Abs to P-selectin had no effect. Importantly, combined blockade of both adhesion molecules resulted in significantly better clinical outcome than anti-alpha(4) integrin alone.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Cell Adhesion Molecules/antagonists & inhibitors
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Integrin alpha4/immunology
- Integrin alpha4/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/therapy
- P-Selectin/metabolism
Collapse
Affiliation(s)
- Steven M Kerfoot
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 2006; 7:118. [PMID: 16709250 PMCID: PMC1525191 DOI: 10.1186/1471-2164-7-118] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/18/2006] [Indexed: 11/30/2022] Open
Abstract
Background The autism spectrum encompasses a set of complex multigenic developmental disorders that severely impact the development of language, non-verbal communication, and social skills, and are associated with odd, stereotyped, repetitive behavior and restricted interests. To date, diagnosis of these neurologically based disorders relies predominantly upon behavioral observations often prompted by delayed speech or aberrant behavior, and there are no known genes that can serve as definitive biomarkers for the disorders. Results Here we demonstrate, for the first time, that lymphoblastoid cell lines from monozygotic twins discordant with respect to severity of autism and/or language impairment exhibit differential gene expression patterns on DNA microarrays. Furthermore, we show that genes important to the development, structure, and/or function of the nervous system are among the most differentially expressed genes, and that many of these genes map closely in silico to chromosomal regions containing previously reported autism candidate genes or quantitative trait loci. Conclusion Our results provide evidence that novel candidate genes for autism may be differentially expressed in lymphoid cell lines from individuals with autism spectrum disorders. This finding further suggests the possibility of developing a molecular screen for autism based on expressed biomarkers in peripheral blood lymphocytes, an easily accessible tissue. In addition, gene networks are identified that may play a role in the pathophysiology of autism.
Collapse
Affiliation(s)
- Valerie W Hu
- The George Washington University Medical Center, Dept. of Biochemistry and Molecular Biology, 2300 Eye St., N.W. Washington, DC 20037, USA
| | - Bryan C Frank
- The Institute for Genomic Research, 9715 Medical Center Drive, Rockville, MD 20850, USA
| | - Shannon Heine
- The George Washington University Medical Center, Dept. of Biochemistry and Molecular Biology, 2300 Eye St., N.W. Washington, DC 20037, USA
| | - Norman H Lee
- The Institute for Genomic Research, 9715 Medical Center Drive, Rockville, MD 20850, USA
| | - John Quackenbush
- The George Washington University Medical Center, Dept. of Biochemistry and Molecular Biology, 2300 Eye St., N.W. Washington, DC 20037, USA
- The Institute for Genomic Research, 9715 Medical Center Drive, Rockville, MD 20850, USA
- The Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney St. Boston, MA 02115, USA
| |
Collapse
|