1
|
Trent S, Abdullah MH, Parwana K, Valdivieso MA, Hassan Z, Müller CP. Fear conditioning: Insights into learning, memory and extinction and its relevance to clinical disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111310. [PMID: 40056965 DOI: 10.1016/j.pnpbp.2025.111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fear, whether innate or learned, is an essential emotion required for survival. The learning, and subsequent memory, of fearful events enhances our ability to recognise and respond to threats, aiding adaptation to new, ever-changing environments. Considerable research has leveraged associative learning protocols such as contextual or auditory forms of fear conditioning in rodents, to understand fear learning, memory consolidation and extinction phases of memory. Such assays have led to detailed characterisation of the underlying neurocircuitry and neurobiology supporting fear learning processes. Given fear processing is conserved across rodents and humans, fear conditioning experiments provide translational insights into fundamental memory processes and fear-related pathologies. This review examines associative learning protocols used to measure fear learning, memory and extinction, before providing an overview on the underlying complex neurocircuitry including the amygdala, hippocampus and medial prefrontal cortex. This is followed by an in-depth commentary on the neurobiology, particularly synaptic plasticity mechanisms, which regulate fear learning, memory and extinction. Next, we consider how fear conditioning assays in rodents can inform our understanding of disrupted fear memory in human disorders such as post-traumatic stress disorder (PTSD), anxiety and psychiatric disorders including schizophrenia. Lastly, we critically evaluate fear conditioning protocols, highlighting some of the experimental and theoretical limitations and the considerations required when conducting such assays, alongside recent methodological advancements in the field. Overall, rodent-based fear conditioning assays remain central to making progress in uncovering fundamental memory phenomena and understanding the aetiological mechanisms that underpin fear associated disorders, alongside the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Simon Trent
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK.
| | | | - Krishma Parwana
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Maria Alcocer Valdivieso
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Zurina Hassan
- Centre for Drug Research, Universiti Malaysia (USM), 11800 Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Ziółkowska M, Sotoudeh N, Cały A, Puchalska M, Pagano R, Śliwińska MA, Salamian A, Radwanska K. Projections from thalamic nucleus reuniens to hippocampal CA1 area participate in context fear extinction by affecting extinction-induced molecular remodeling of excitatory synapses. eLife 2025; 13:RP101736. [PMID: 39846718 PMCID: PMC11756855 DOI: 10.7554/elife.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Narges Sotoudeh
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Monika Puchalska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Malgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
3
|
Maddox SA, Ponomareva OY, Zaleski CE, Chen MX, Vella KR, Hollenberg AN, Klengel C, Ressler KJ. Evidence for thyroid hormone regulation of amygdala-dependent fear-relevant memory and plasticity. Mol Psychiatry 2025; 30:201-212. [PMID: 39039155 PMCID: PMC11931561 DOI: 10.1038/s41380-024-02679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The amygdala is an established site for fear memory formation, and clinical studies suggest involvement of hormone signaling cascades in development of trauma-related disorders. While an association of thyroid hormone (TH) status and mood disorders is established, the related brain-based mechanisms and the role of TH in anxiety disorders are unknown. Here we examine the role that TH receptor (TR, a nuclear transcriptional repressor when unbound and a transcriptional activator when bound to TH) may have in mediating the initial formation of fear memories in the amygdala. We identified mRNA levels of TR and other TH pathway regulatory genes, including thyrotropin-releasing hormone (Trh), transthyretin (Ttr), thyrotropin-releasing hormone receptor (Trhr), type 2 iodothyronine deiodinase (Dio2), mediator complex subunit 12 (Med12/Trap230) and retinoid X receptor gamma (Rxrg) to be altered in the amygdala following Pavlovian fear conditioning. Using TH agonist and antagonist infusion into the amygdala, we demonstrated that this pathway is both necessary and sufficient for fear memory consolidation. Inhibition of TH signaling with the TR antagonist 1-850 decreased fear memory consolidation; while activation of TR with T3 (triiodothyronine) resulted in increased memory formation. Using a systemic hypothyroid mouse model, we found that intra-amygdala infusions of T3 were sufficient to rescue deficits in fear memory. Finally, we demonstrated that T3 was sufficient to activate TR-specific gene pathways in the amygdala. These findings on the role of activity-dependent TR modulation support a model in which local TH is a critical regulator of fear memory-related plasticity in the amygdala.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olga Y Ponomareva
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cole E Zaleski
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Northeastern University, Boston, MA, USA
| | - Michelle X Chen
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- University of Iowa, Iowa City, IA, USA
| | - Kristen R Vella
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Anthony N Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Klengel
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Varma MM, Zeng S, Singh L, Holmes EA, Huang J, Chiu MH, Hu X. A systematic review and meta-analysis of experimental methods for modulating intrusive memories following lab-analogue trauma exposure in non-clinical populations. Nat Hum Behav 2024; 8:1968-1987. [PMID: 39169230 PMCID: PMC11493681 DOI: 10.1038/s41562-024-01956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Experiencing trauma leads to intrusive memories (IMs), a hallmark symptom of post-traumatic stress disorder (PTSD), which also occurs transdiagnostically. Understanding why IMs increase or decrease is pivotal in developing interventions to support mental health. In this preregistered meta-analysis (PROSPERO: CRD42021224835), we included 134 articles (131 techniques, 606 effect sizes and 12,074 non-clinical participants) to investigate how experimental techniques alter IM frequency, intrusion-related distress and symptoms arising from lab-analogue trauma exposure. Eligible articles were identified by searching eight databases until 12 December 2023. To test potential publication biases, we employed methods including Egger's test and three-parameter selection models. We employed three-level multilevel modelling and meta-regressions to examine whether and how experimental techniques would modulate IM frequency and associated outcomes. Results showed that techniques (behavioural, pharmacological, neuromodulation) significantly reduced intrusion frequency (g = 0.16, 95% confidence interval [0.09, 0.23]). Notably, techniques aimed to reduce IMs also ameliorated intrusion-related distress and symptoms, while techniques that increased IMs exacerbated these related outcomes, thus highlighting IM's centrality in PTSD-like symptoms. Techniques tapping into mental imagery processing (for example, trauma reminder followed by playing Tetris) reduced intrusions when administered immediately after, or at a delayed time after trauma. Although our meta-analysis is limited to symptoms induced by lab-analogue trauma exposure, some lab-based results have now generalized to real-world trauma and IMs, highlighting the promising utility of lab-analogue trauma paradigms for intervention development.
Collapse
Affiliation(s)
- Mohith M Varma
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Shengzi Zeng
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Laura Singh
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Emily A Holmes
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jingyun Huang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China.
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
5
|
Agarwal K, Farhat A, Lamprecht R. EphrinB2 in excitatory neurons and astrocytes in the basolateral amygdala controls long-term fear memory formation. Commun Biol 2024; 7:1165. [PMID: 39289586 PMCID: PMC11408618 DOI: 10.1038/s42003-024-06844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
EphrinB2 regulates synaptic transmission and morphology however its role in memory formation is unknown. Here we show that deleting ephrinB2 from excitatory neurons in the basolateral amygdala (BLA) of male mice impairs long-term (LTM), but not short-term (STM), fear memory formation. Deleting ephrinB2 from astrocytes in the BLA impairs fear LTM but not STM. Removing ephrinB2 from astrocytes in the BLA reduces the level of the excitatory amino acid transporter 1 (EAAT1) in these cells. Inhibiting EAAT1 activity in the BLA during fear conditioning, by its specific inhibitor UCPH-101, impairs fear LTM showing that EAAT1 in the BLA is needed for fear LTM formation. The administration of ephrinB2 into the BLA during fear conditioning training enhances fear LTM. Moreover, ephrinB2 increases the ability of fear conditioning to activate cells in the BLA as detected by c-Fos labeling. EphrinB2 therefore determines the threshold for fear memory formation. In contrast to mature neurons, we show that ephrinB2 in neural stem cells (NSCs) is not needed for fear LTM. Our study shows that ephrinB2 in the BLA determines the strength of long-term memory consolidation.
Collapse
Affiliation(s)
- Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Amira Farhat
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Lin H, Bruchmann M, Schindler S, Straube T. Acquisition and generalization of emotional and neural responses to faces associated with negative and positive feedback behaviours. Front Neurosci 2024; 18:1399948. [PMID: 39165343 PMCID: PMC11334220 DOI: 10.3389/fnins.2024.1399948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Faces can acquire emotional meaning by learning to associate individuals with specific behaviors. Here, we investigated emotional evaluation and brain activations toward faces of persons who had given negative or positive evaluations to others. Furthermore, we investigated how emotional evaluations and brain activation generalize to perceptually similar faces. Valence ratings indicated learning and generalization effects for both positive and negative faces. Brain activation, measured with functional magnetic resonance imaging (fMRI), showed significantly increased activation in the fusiform gyrus (FG) to negatively associated faces but not positively associated ones. Remarkably, brain activation in FG to faces to which emotional meaning (negative and positive) was successfully generalized was decreased compared to neutral faces. This suggests that the emotional relevance of faces is not simply associated with increased brain activation in visual areas. While, at least for negative conditions, faces paired with negative feedback behavior are related to potentiated brain responses, the opposite is seen for perceptually very similar faces despite generalized emotional responses.
Collapse
Affiliation(s)
- Huiyan Lin
- Laboratory for Behavioural and Regional Finance, School of National Finance, Guangdong University of Finance, Guangzhou, China
- Institute of Applied Psychology, Guangdong University of Finance, Guangzhou, China
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Agarwal K, Lamprecht R. EphB2 activation in neural stem cells in the basolateral amygdala facilitates neurogenesis and enhances long-term memory. Cell Mol Life Sci 2024; 81:277. [PMID: 38913115 PMCID: PMC11335201 DOI: 10.1007/s00018-024-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Many brain diseases lead to a reduction in the number of functional neurons and it would be of value to be able to increase the number of neurons in the affected brain areas. In this study, we examined whether we can promote neural stem cells to produce mature neurons and whether an increase in the mature neurons can affect cognitive performance. We detected that the EphB2 receptor is localized in immature basolateral amygdala (BLA) neurons. We therefore aimed to increase the level of EphB2 activity in neural stem cells (NSCs) in the BLA and examine the effects on the production of mature neurons and cognition. Toward that end, we utilized a photoactivatable EphB2 construct (optoEphB2) to increase EphB2 forward signaling in NSCs in the BLA. We revealed that the activation of optoEphB2 in NSCs in the BLA increased the level of immature and mature neurons in the BLA. We further found that activation of optoEphB2 in BLA NSCs enhanced auditory, but not contextual, long-term fear memory formation. Impairing EphB2 forward signaling did not affect the level of immature and mature neurons in the BLA. This study provides evidence that NSCs can be promoted to produce mature neurons by activating EphB2 to enhance specific brain functions.
Collapse
Affiliation(s)
- Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Zamorina TA, Ivashkina OI, Toropova KA, Anokhin KV. Inhibition of Protein Synthesis Attenuates Formation of Traumatic Memory and Normalizes Fear-Induced c-Fos Expression in a Mouse Model of Posttraumatic Stress Disorder. Int J Mol Sci 2024; 25:6544. [PMID: 38928250 PMCID: PMC11204086 DOI: 10.3390/ijms25126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.
Collapse
Affiliation(s)
- Tatyana A. Zamorina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Faculty of Biology, Department of Higher Nervous Activity, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga I. Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia A. Toropova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin V. Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Navarro-Sánchez M, Gil-Miravet I, Montero-Caballero D, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Some key parameters in contextual fear conditioning and extinction in adult rats. Behav Brain Res 2024; 462:114874. [PMID: 38266780 DOI: 10.1016/j.bbr.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Contextual fear conditioning is a behavioral paradigm used to assess hippocampal-dependent memory in experimental animals. Perception of the context depends on activation of a distinct population of neurons in the hippocampus and in hippocampal-related areas that process discrete aspects of context perception. In the absence of any putatively associated cue, the context becomes the salient element that may warn of an upcoming aversive event; and in particular conditions, animals generalize this warning to any new or similar context. In this study we evaluated the effects of the number of sessions, the number of unconditioned stimuli per acquisition session and the distribution of extinction sessions to assess fear acquisition and extinction and determine under which conditions generalization occurred in adult, male rats. We observed that the organization and spacing of sessions were relevant factors in the acquisition and extinction of contextual fear memories. Extinction occurred with significantly greater robustness when sessions were spread over two days. Furthermore, results indicated that exposure to a single 0.3 mA, 0.5 s footshock in two different sessions could produce context-specific fear, while more acquisition sessions or more footshocks within a single session produced a generalization of the fear response to a new context. Notably, when generalization occurred, successive re-exposure to the generalized context produced extinction in a similar way to the paired exposure. Together, the present findings identify clear procedural and behavioral parameters amenable to neural systems analysis of three clinically relevant outcomes of contextual fear conditioning, i.e., memory acquisition, storage and extinction.
Collapse
Affiliation(s)
- Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Daniel Montero-Caballero
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Yeh LF, Zuo S, Liu PW. Molecular diversity and functional dynamics in the central amygdala. Front Mol Neurosci 2024; 17:1364268. [PMID: 38419794 PMCID: PMC10899328 DOI: 10.3389/fnmol.2024.1364268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The central amygdala (CeA) is crucial in integrating sensory and associative information to mediate adaptive responses to emotional stimuli. Recent advances in genetic techniques like optogenetics and chemogenetics have deepened our understanding of distinct neuronal populations within the CeA, particularly those involved in fear learning and memory consolidation. However, challenges remain due to overlapping genetic markers complicating neuron identification. Furthermore, a comprehensive understanding of molecularly defined cell types and their projection patterns, which are essential for elucidating functional roles, is still developing. Recent advancements in transcriptomics are starting to bridge these gaps, offering new insights into the functional dynamics of CeA neurons. In this review, we provide an overview of the expanding genetic markers for amygdala research, encompassing recent developments and current trends. We also discuss how novel transcriptomic approaches are redefining cell types in the CeA and setting the stage for comprehensive functional studies.
Collapse
Affiliation(s)
- Li-Feng Yeh
- RIKEN Center for Brain Science, Saitama, Japan
| | - Shuzhen Zuo
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Pin-Wu Liu
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
12
|
Costa JF, Dines M, Agarwal K, Lamprecht R. Rac1 GTPase activation impairs fear conditioning-induced structural changes in basolateral amygdala neurons and long-term fear memory formation. Neuropsychopharmacology 2023; 48:1338-1346. [PMID: 36522403 PMCID: PMC10354034 DOI: 10.1038/s41386-022-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Long-term memory formation leads to enduring alterations in synaptic efficacy and neuronal responses that may be created by changes in neuronal morphology. We show that fear conditioning leads to a long-lasting increase in the volume of the primary and secondary dendritic branches, but not of distal branches, of neurons located at the basolateral amygdala (BLA). The length of the dendritic branches is not affected by fear conditioning. Fear conditioning leads to an enduring increase in the length and volume of dendritic spines, especially in the length of the spine neck and the volume of the spine head. Fear conditioning does not affect dendritic spine density. We further reveal that activation of Rac1 in BLA during fear conditioning impairs long-term auditory, but not contextual, fear conditioning memory. Activation of Rac1 during fear conditioning prevents the enduring increase in the dendritic primary branch volume and dendritic spines length and volume. Rac1 activation per se has no effect on neuronal morphology. These results show that fear conditioning induces changes known to reduce the inhibition of signal propagation along the dendrite and the increase in synaptic efficacy whereas preventing these changes, by Rac1 activation, impairs fear memory formation.
Collapse
Affiliation(s)
- Joana Freitas Costa
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
13
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
15
|
Celorrio M, Friess SH. Chemogenetic inhibition of amygdala excitatory neurons impairs rhEPO-enhanced contextual fear memory after TBI. Neurosci Lett 2023; 804:137216. [PMID: 36997018 PMCID: PMC10518055 DOI: 10.1016/j.neulet.2023.137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Erythropoietin (EPO) is a hypoxia-responsive cytokine that induces neuroprotective effect in hypoxic-ischaemic, traumatic, excitotoxic and inflammatory injuries. Recently, utilizing a clinically relevant murine model of TBI and delayed hypoxemia, we have found that ongoing recombinant human EPO (rhEPO) administration influenced neurogenesis, neuroprotection, synaptic density and, behavioral outcomes early after TBI, and the impact on long-lasting outcomes 6 months after injury. We also demonstrated that the 1-month behavioral improvement was associated with mitogen-activated protein kinase (MAPK)/cAMP response element-binding protein (CREB) signaling activation and increased of excitatory synaptic density in the amygdala. However, we did not uncover which type of cells were involved in fear memory response enhancement after rhEPO treatment in the setting of TBI with delayed hypoxemia. In this report, using chemogenetic tools in our controlled cortical impact (CCI) model, we were able to inactivate excitatory neurons and eliminate rhEPO-induced fear memory recall enhancement. In summary, these data demonstrate that rhEPO treatment initiated after TBI enhances contextual fear memory in the injured brain via activation of excitatory neurons in the amygdala.
Collapse
Affiliation(s)
- Marta Celorrio
- One Children's Place, Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, St. Louis, MO 63110, USA.
| | - Stuart H Friess
- One Children's Place, Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Hwang KD, Baek J, Ryu HH, Lee J, Shim HG, Kim SY, Kim SJ, Lee YS. Cerebellar nuclei neurons projecting to the lateral parabrachial nucleus modulate classical fear conditioning. Cell Rep 2023; 42:112291. [PMID: 36952344 DOI: 10.1016/j.celrep.2023.112291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Multiple brain regions are engaged in classical fear conditioning. Despite evidence for cerebellar involvement in fear conditioning, the mechanisms by which cerebellar outputs modulate fear learning and memory remain unclear. We identify a population of deep cerebellar nucleus (DCN) neurons with monosynaptic glutamatergic projections to the lateral parabrachial nucleus (lPBN) (DCN→lPBN neurons) in mice. While optogenetic suppression of DCN→lPBN neurons impairs auditory fear memory, activation of DCN→lPBN neurons elicits freezing behavior only after auditory fear conditioning. Moreover, auditory fear conditioning potentiates DCN-lPBN synapses, and subsequently, auditory cue activates lPBN neurons after fear conditioning. Furthermore, DCN→lPBN neuron activation can replace the auditory cue but not footshock in fear conditioning. These findings demonstrate that cerebellar nuclei modulate auditory fear conditioning via transmitting conditioned stimuli signals to the lPBN. Collectively, our findings suggest that the DCN-lPBN circuit is a part of neuronal substrates within interconnected brain regions underscoring auditory fear memory.
Collapse
Affiliation(s)
- Kyoung-Doo Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Yong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.
| |
Collapse
|
17
|
Wiercioch-Kuzianik K, Brączyk J, Bieniek H, Bąbel P. Red induces hyperalgesia and white induces hypoalgesia regardless of pain modality. Sci Rep 2023; 13:6360. [PMID: 37076528 PMCID: PMC10115883 DOI: 10.1038/s41598-023-33313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Colors are an important factor that influences different aspects of people's lives. However, little is known about the effects of colors on pain. This preregistered study aimed to investigate whether the type of pain affects the impact of colors on pain intensity. 74 participants were randomly divided into 2 groups according to the type of pain: electrical or thermal. In both groups, pain stimuli of the same intensity were preceded by different colors. Participants rated the pain intensity induced by each pain stimulus. Additionally, pain expectations related to each color were rated at the beginning and the end of the procedure. A significant effect of color on pain intensity ratings was found. Pain was most intense in both groups after red, whereas the lowest ratings were given after white. A similar pattern of results was observed for pain expectations. Expectations also correlated with and were found to be a predictor of experienced pain for white, blue, and green. The study shows that white can reduce, while red can alter the experienced pain. Moreover, it shows that the effect of colors is affected to a greater extent by the pain expectations rather than the pain modality. We conclude that the way colors influence pain broadens the current knowledge on effects of colors on human behavior and could help in the future both patients and practitioners.
Collapse
Affiliation(s)
- Karolina Wiercioch-Kuzianik
- Pain Research Group, Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland.
| | - Justyna Brączyk
- Pain Research Group, Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Helena Bieniek
- Pain Research Group, Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Przemysław Bąbel
- Pain Research Group, Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
18
|
Zhu Q, Huang Y, Zhu X, Peng L, Wang H, Gao S, Yang Z, Zhang J, Liu X. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio 2023; 19:100568. [PMID: 36846307 PMCID: PMC9945786 DOI: 10.1016/j.mtbio.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is associated with increased postoperative morbidity and mortality in patients. Excessive production of reactive oxygen species (ROS) and the consequent inflammatory response in the postoperative brain play crucial roles in the development of POCD. However, effective ways to prevent POCD have yet to be developed. Moreover, effective penetration of the blood-brain barrier (BBB) and maintaining viability in vivo are major challenges for preventing POCD using traditional ROS scavengers. Herein, mannose-coated superparamagnetic iron oxide nanoparticles (mSPIONs) were synthesized by co-precipitation method. The BBB penetration of mSPIONs was verified through fluorescent imaging and ICP-MS quantification. The ROS scavenging and anti-inflammatory of mSPIONs were evaluated in H2O2-treated J774A.1 cells and in tibial fracture mice model. The novel object recognition (NOR) and trace-fear conditioning (TFC) were used to test the cognitive function of postoperative mice. The average diameter of mSPIONs was approximately 11 nm. mSPIONs significantly reduced ROS levels in H2O2-treated cells and in hippocampus of surgical mice. mSPIONs administration reduced the levels of IL-1β and TNF-α in the hippocampus and inhibited surgery-upregulated HIF1-α/NF-κB signaling pathway. Moreover, mSPIONs significantly improved the cognitive function of postoperative mice. This study provides a new approach for preventing POCD using a nanozyme.
Collapse
Affiliation(s)
- Qianyun Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Yuting Huang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xiaoling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Lijun Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, PR China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| |
Collapse
|
19
|
Silva F, Masella G, Madeira MF, Duarte CB, Santos M. TrkC Intracellular Signalling in the Brain Fear Network During the Formation of a Contextual Fear Memory. Mol Neurobiol 2023; 60:3507-3521. [PMID: 36882590 PMCID: PMC10122637 DOI: 10.1007/s12035-023-03292-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Learned fear is orchestrated by a brain fear network that comprises the amygdala, hippocampus and the medial prefrontal cortex. Synaptic plasticity within this network is critical for the formation of proper fear memories. Known for their role in the promotion of synaptic plasticity, neurotrophins position as obvious candidates in the regulation of fear processes. Indeed, recent evidence from our laboratory and others associates dysregulated signalling through neurotrophin-3 and its receptor TrkC with the pathophysiology of anxiety and fear-related disorders. Here, we put wild-type C57Bl/6J mice through a contextual fear conditioning paradigm in order to characterize TrkC activation and expression in the main brain regions involved in (learned) fear - amygdala, hippocampus, and prefrontal cortex - during the formation of a fear memory. We report an overall decreased activation of TrkC in the fear network during fear consolidation and reconsolidation. During reconsolidation, hippocampal TrkC downregulation was accompanied by a decrease in the expression and activation of Erk, a critical signalling pathway in fear conditioning. Moreover, we did not find evidence that the observed decrease of TrkC activation was caused by altered expression of dominant negative form of TrkC, neurotrophin-3, or the PTP1B phosphatase. Our results indicate hippocampal TrkC inactivation through Erk signalling as a potential mechanism in the regulation of contextual fear memory formation.
Collapse
Affiliation(s)
- Francisca Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Gianluca Masella
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mónica Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal.
| |
Collapse
|
20
|
Langgartner D, Amoroso M, Kempter E, Kustermann M, Scheurer J, Lowry CA, Strauß G, Reber SO. Mycobacterium vaccae protects against glucocorticoid resistance resulting from combined physical and psychosocial trauma in mice. Brain Behav Immun 2023; 109:221-234. [PMID: 36736929 DOI: 10.1016/j.bbi.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Stress-related somatic and psychiatric disorders are often associated with a decline in regulatory T cell (Treg) counts and chronic low-grade inflammation. Recent preclinical evidence suggests that the latter is at least partly mediated by stress-induced upregulation of toll-like receptor (TLR)2 in newly generated neutrophils and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as glucocorticoid (GC) resistance in predominantly PMN-MDSCs following stress-induced upregulation of TLR4 expression. Here we show in mice exposed to the chronic subordinate colony housing (CSC) paradigm that repeated intragastric (i.g.) administrations of a heat-killed preparation of Mycobacterium vaccae NCTC 11659, a saprophytic microorganism with immunoregulatory properties, protected against the stress-induced reduction in systemic Tregs, increase in basal and LPS-induced in vitro splenocyte viability, as well as splenic in vitro GC resistance. Our findings further support the hypothesis that i.g. M. vaccae protects against CSC-associated splenic GC resistance via directly affecting the myeloid compartment, thereby preventing the CSC-induced upregulation of TLR4 in newly generated PMN-MDSCs. In contrast, the protective effects of i.g. M. vaccae on the CSC-induced upregulation of TLR2 in neutrophils and the subsequent increase in basal and LPS-induced in vitro splenocyte viability seems to be indirectly mediated via the Treg compartment. These data highlight the potential for use of oral administration of M. vaccae NCTC 11659 to prevent stress-induced exaggeration of inflammation, a risk factor for development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Monika Kustermann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jasmin Scheurer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; VIVO Planetary Health, of the Worldwide Universities Network (WUN), West NY, NJ 07093, USA
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
21
|
Extracellular zinc regulates contextual fear memory formation in male rats through MMP-BDNF-TrkB pathway in dorsal hippocampus and basolateral amygdala. Behav Brain Res 2023; 439:114230. [PMID: 36442645 DOI: 10.1016/j.bbr.2022.114230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/26/2022]
Abstract
Large amount of zinc (100 µM even up to 300 µM) is released from the nerve terminals in response to high frequency neuronal stimulation in certain brain regions including hippocampus and amygdala. However, its precise pharmacological effect is poorly understood. Here, we investigated the role of extracellular zinc (endogenous zinc) and exogenous zinc in memory formation using contextual fear conditioning (CFC) model. Male Sprague Dawley rats were trained for fear conditioning followed by in vivo microdialysis for collection of microdialysate samples from CA1 and CA3 regions of hippocampus and basolateral amygdala (BLA). Extracellular zinc chelator CaEDTA, BDNF scavenger TrkB-Fc, exogenous 7,8-DHF and matrix metalloproteinases (MMP) inhibitor were infused into the CA1 and CA3 regions of hippocampus and BLA after CFC. Different doses of exogenous zinc hydroaspartate were administered intraperitoneally immediately after CFC. We found that CFC increased the level of extracellular zinc in the hippocampus and BLA. Infusing the CaEDTA, TrkB-Fc and MMP inhibitor into the CA1 and CA3 regions of hippocampus and BLA disrupted the fear memory formation. Furthermore, administration of TrKB agonist 7,8-DHF reversed the inhibitory effect of CaEDTA on fear memory formation, suggesting that extracellular zinc may regulate fear memory formation via the BDNF-TrKB pathway. We also found that high dose of exogenous zinc hydroaspartate supplementation increased extracellular zinc levels in brain and enhanced fear memory formation. Altogether, these findings indicate that extracellular zinc may participate in formation of contextual fear memory through MMP-BDNF-TrkB pathway in the hippocampus and BLA.
Collapse
|
22
|
Immunization with a heat-killed preparation of Mycobacterium vaccae NCTC 11659 enhances auditory-cued fear extinction in a stress-dependent manner. Brain Behav Immun 2023; 107:1-15. [PMID: 36108946 DOI: 10.1016/j.bbi.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.
Collapse
|
23
|
Celorrio M, Rhodes J, Shumilov K, Moritz J, Xiao S, Anabayan I, Sauerbeck A, Kummer T, Friess S. Recombinant human erythropoietin induces neuroprotection, activates MAPK/CREB pathway, and rescues fear memory after traumatic brain injury with delayed hypoxemia in mice. Brain Res 2022; 1795:148074. [PMID: 36075467 PMCID: PMC10515732 DOI: 10.1016/j.brainres.2022.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Therapeutic interventions targeting secondary insults, such as delayed hypoxemia, provide a unique opportunity for treatment in severe traumatic brain injury (TBI). Erythropoietin (EPO) is a hypoxia-responsive cytokine with important roles in neurodevelopment, neuroprotection and neuromodulation. We hypothesized that recombinant human erythropoietin (rhEPO) administration would mitigate injury in a combined injury model of TBI and delayed hypoxemia. Utilizing a clinically relevant murine model of TBI and delayed hypoxemia, we characterized how ongoing rhEPO administration influenced neurogenesis, neuroprotection, synaptic density and, behavioral outcomes early after TBI, and the impact on long-lasting outcomes 6 months after injury. We employed novel object recognition (NOR) and fear conditioning to assess long-term memory. At 1-month post-injury, we observed a significant increase in cued-fear memory response in the rhEPO-injured mice compared with vehicle-injured mice. This was associated with neuroprotection and neurogenesis in the hippocampus and mitogen-activated protein kinase (MAPK)/cAMP response element-binding protein (CREB) signaling activation and increased of excitatory synaptic density in the amygdala. Early rhEPO treatment after injury reduced neurodegeneration and increased excitatory synaptic density in the hippocampus and amygdala at 6 months post-injury. However at 6 months post-injury (4 months after discontinuation of rhEPO), we did not observe changes in behavioral assessments nor MAPK/CREB pathway activation. In summary, these data demonstrate that ongoing rhEPO treatment initiated at a clinically feasible time point improves neurological, cognitive, and histological outcomes after TBI in the setting of secondary hypoxemic insults.
Collapse
Affiliation(s)
- Marta Celorrio
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - James Rhodes
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kirill Shumilov
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jennie Moritz
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sophia Xiao
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Ilakkia Anabayan
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Andrew Sauerbeck
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Terrance Kummer
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stuart Friess
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Ilovich O, Dines M, Paul BK, Barkai E, Lamprecht R. Nck1 activity in lateral amygdala regulates long-term fear memory formation. Transl Psychiatry 2022; 12:475. [PMID: 36371406 PMCID: PMC9653413 DOI: 10.1038/s41398-022-02244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathological conditions such as phobias and post-traumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). Nck1 is a key neuronal adaptor protein involved in the regulation of the actin cytoskeleton and the neuronal processes believed to be involved in memory formation. However, the role of Nck1 in memory formation is not known. Here we explored the role of Nck1 in fear memory formation in lateral amygdala (LA). Reduction of Nck1 in excitatory neurons in LA enhanced long-term, but not short-term, auditory fear conditioning memory. Activation of Nck1, by using a photoactivatable Nck1 (PA-Nck1), during auditory fear conditioning in excitatory neurons in LA impaired long-term, but not short-term, fear memory. Activation of Nck1 immediately or a day after fear conditioning did not affect fear memory. The hippocampal-mediated contextual fear memory was not affected by the reduction or activation of Nck1 in LA. We show that Nck1 is localized to the presynapses in LA. Nck1 activation in LA excitatory neurons decreased the frequency of AMPA receptors-mediated miniature excitatory synaptic currents (mEPSCs). Nck1 activation did not affect GABA receptor-mediated inhibitory synaptic currents (mIPSCs). These results show that Nck1 activity in excitatory neurons in LA regulates glutamate release and sets the threshold for fear memory formation. Moreover, our research shows that Nck1 may serve as a target for pharmacological treatment of fear and anxiety disorders.
Collapse
Affiliation(s)
- Or Ilovich
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Blesson K. Paul
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
25
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia 2022; 37:682-690. [PMID: 31780319 DOI: 10.1016/j.nrl.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address two factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, México
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| |
Collapse
|
26
|
Sung Y, Kaang BK. The Three Musketeers in the Medial Prefrontal Cortex: Subregion-specific Structural and Functional Plasticity Underlying Fear Memory Stages. Exp Neurobiol 2022; 31:221-231. [PMID: 36050222 PMCID: PMC9471411 DOI: 10.5607/en22012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Fear memory recruits various brain regions with long-lasting brain-wide subcellular events. The medial prefrontal cortex processes the emotional and cognitive functions required for adequately handling fear memory. Several studies have indicated that subdivisions within the medial prefrontal cortex, namely the prelimbic, infralimbic, and anterior cingulate cortices, may play different roles across fear memory states. Through a dedicated cytoarchitecture and connectivity, the three different regions of the medial prefrontal cortex play a specific role in maintaining and extinguishing fear memory. Furthermore, synaptic plasticity and maturation of neural circuits within the medial prefrontal cortex suggest that remote memories undergo structural and functional reorganization. Finally, recent technical advances have enabled genetic access to transiently activated neuronal ensembles within these regions, suggesting that memory trace cells in these regions may preferentially contribute to processing specific fear memory. We reviewed recently published reports and summarize the molecular, synaptic and cellular events occurring within the medial prefrontal cortex during various memory stages.
Collapse
Affiliation(s)
- Yongmin Sung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Cuccovia V Reis FM, Novaes LS, Dos Santos NB, Ferreira-Rosa KC, Perfetto JG, Baldo MVC, Munhoz CD, Canteras NS. Predator fear memory depends on glucocorticoid receptors and protein synthesis in the basolateral amygdala and ventral hippocampus. Psychoneuroendocrinology 2022; 141:105757. [PMID: 35427951 DOI: 10.1016/j.psyneuen.2022.105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.
Collapse
Affiliation(s)
| | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Juliano Genaro Perfetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
28
|
Tapp ZM, Cornelius S, Oberster A, Kumar JE, Atluri R, Witcher KG, Oliver B, Bray C, Velasquez J, Zhao F, Peng J, Sheridan J, Askwith C, Godbout JP, Kokiko-Cochran ON. Sleep fragmentation engages stress-responsive circuitry, enhances inflammation and compromises hippocampal function following traumatic brain injury. Exp Neurol 2022; 353:114058. [PMID: 35358498 PMCID: PMC9068267 DOI: 10.1016/j.expneurol.2022.114058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) impairs the ability to restore homeostasis in response to stress, indicating hypothalamic-pituitary-adrenal (HPA)-axis dysfunction. Many stressors result in sleep disturbances, thus mechanical sleep fragmentation (SF) provides a physiologically relevant approach to study the effects of stress after injury. We hypothesize SF stress engages the dysregulated HPA-axis after TBI to exacerbate post-injury neuroinflammation and compromise recovery. To test this, male and female mice were given moderate lateral fluid percussion TBI or sham-injury and left undisturbed or exposed to daily, transient SF for 7- or 30-days post-injury (DPI). Post-TBI SF increases cortical expression of interferon- and stress-associated genes characterized by inhibition of the upstream regulator NR3C1 that encodes glucocorticoid receptor (GR). Moreover, post-TBI SF increases neuronal activity in the hippocampus, a key intersection of the stress-immune axes. By 30 DPI, TBI SF enhances cortical microgliosis and increases expression of pro-inflammatory glial signaling genes characterized by persistent inhibition of the NR3C1 upstream regulator. Within the hippocampus, post-TBI SF exaggerates microgliosis and decreases CA1 neuronal activity. Downstream of the hippocampus, post-injury SF suppresses neuronal activity in the hypothalamic paraventricular nucleus indicating decreased HPA-axis reactivity. Direct application of GR agonist, dexamethasone, to the CA1 at 30 DPI increases GR activity in TBI animals, but not sham animals, indicating differential GR-mediated hippocampal action. Electrophysiological assessment revealed TBI and SF induces deficits in Schaffer collateral long-term potentiation associated with impaired acquisition of trace fear conditioning, reflecting dorsal hippocampal-dependent cognitive deficits. Together these data demonstrate that post-injury SF engages the dysfunctional post-injury HPA-axis, enhances inflammation, and compromises hippocampal function. Therefore, external stressors that disrupt sleep have an integral role in mediating outcome after brain injury.
Collapse
Affiliation(s)
- Zoe M Tapp
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Sydney Cornelius
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Alexa Oberster
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA
| | - Julia E Kumar
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Ravitej Atluri
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Kristina G Witcher
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Chelsea Bray
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - John Velasquez
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Fangli Zhao
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Juan Peng
- Center for Biostatistics, The Ohio State University, 320-55 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA.
| | - John Sheridan
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12(th) Ave, Columbus, OH 43210, USA.
| | - Candice Askwith
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA.
| | - Jonathan P Godbout
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Olga N Kokiko-Cochran
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Dhume SH, Connor SA, Mills F, Tari PK, Au-Yeung SHM, Karimi B, Oku S, Roppongi RT, Kawabe H, Bamji SX, Wang YT, Brose N, Jackson MF, Craig AM, Siddiqui TJ. Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. eLife 2022; 11:64742. [PMID: 35662394 PMCID: PMC9170246 DOI: 10.7554/elife.64742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2022] [Indexed: 01/21/2023] Open
Abstract
LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.
Collapse
Affiliation(s)
- Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Steven A Connor
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parisa Karimi Tari
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Sarah H M Au-Yeung
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Benjamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Shinichiro Oku
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Pharmacology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yu Tian Wang
- Division of Neurology, Department of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ann Marie Craig
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Program in Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
30
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Abstract
Histone deacetylases (HDACs) have been implicated in learning and memory, and their dysregulation has been linked to cognitive impairment in brain aging and neurodegenerative diseases. In this review, we focus on HDAC1 and HDAC2, highlighting recent progress on their roles in regulating brain function through distinct mechanisms, including gene repression and DNA repair pathways. Moreover, we discuss evidence demonstrating how HDAC1 and HDAC2 could be modulated and their potential as targets to combat memory deficits.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Classically conditioned modulation of pain depends on stimulus intensity. Exp Brain Res 2022; 240:1151-1158. [PMID: 35147723 PMCID: PMC9015979 DOI: 10.1007/s00221-021-06285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
Innocuous cues that become associated with pain can enhance pain. This is termed classically conditioned hyperalgesia. The size of this effect varies under different conditions. We aimed to test whether the sensitising effect of pain-associated cues depends on the intensity of the paired test stimulus. To do this, two virtual reality environments were paired with either painful or non-painful vibrotactile stimuli in a counterbalanced fashion. The differential effect of the two environments was evaluated using pain intensity ratings of paired electrocutaneous test stimuli at three different intensity levels. Forty healthy participants were included in the study; 30 participants experienced sufficient pain during the learning phase and were included in the main analysis. An effect of environment (p = 0.014) and interaction between environment and test stimulus intensity was found (p = 0.046). Only the most intense test stimulus was modulated by environment. While the effect was small, the results are consistent with the proposition that pain-associated cues may induce hyperalgesia to some degree, under certain conditions. In particular, results highlight the potential relevance of stimulus intensity during and after the initial painful experience. Further attention is needed to comprehensively understand the variables that impact classically conditioned hyperalgesia.
Collapse
|
33
|
Nazarov EI, Khlusov IA, Noda M. Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen. Med Gas Res 2021; 11:174-186. [PMID: 34213500 PMCID: PMC8374457 DOI: 10.4103/2045-9912.318863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022] Open
Abstract
Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O3), xenon (Xe) and molecular hydrogen (H2), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O3. The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy.
Collapse
Affiliation(s)
- Eugene Iv. Nazarov
- Scientific Department of the International Association of Therapists Using Medical Gases, Odessa, Ukraine
| | - Igor Alb. Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:682-690. [PMID: 34509401 DOI: 10.1016/j.nrleng.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address 2 factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, Mexico
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
35
|
Modulation of PARP-1 Activity in a Broad Time Window Attenuates Memorizing Fear. Int J Mol Sci 2021; 22:ijms22126170. [PMID: 34201014 PMCID: PMC8226584 DOI: 10.3390/ijms22126170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
The amygdala plays a critical role in the acquisition and consolidation of fear-related memories. Recent studies have demonstrated that ADP-ribosylation of histones, accelerated by PARPs, affects the chromatin structure and the binding of chromatin remodeling complexes with transcription factors. Inhibition of PARP-1 activity during the labile phase of re-consolidation may erase memory. Accordingly, we investigated the possibility of interfering with fear conditioning by PARP-1 inhibition. Herein, we demonstrate that injection of PARP-1 inhibitors, specifically into the CeA or i.p., in different time windows post-retrieval, attenuates freezing behavior. Moreover, the association of memory with pharmacokinetic timing of PARP inhibitor arrival to the brain enabled/achieved attenuation of a specific cue-associated memory of fear but did not hinder other memories (even traumatic events) associated with other cues. Our results suggest using PARP-1 inhibitors as a new avenue for future treatment of PTSD by disrupting specific traumatic memories in a broad time window, even long after the traumatic event. The safety of using these PARP inhibitors, that is, not interfering with other natural memories, is an added value.
Collapse
|
36
|
Paul BK, Barkai E, Lamprecht R. The role of p21-activated kinase in maintaining the fear learning-induced modulation of excitation/inhibition ratio in lateral amygdala. Neurobiol Learn Mem 2021; 179:107385. [PMID: 33460789 DOI: 10.1016/j.nlm.2021.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
We study the relations between different learning paradigms and enduring changes in excitatory synaptic transmission. Here we show that auditory fear conditioning (AFC), but not olfactory fear conditioning (OFC) training, led to enduring enhancement in AMPA-mediated miniature EPSCs (mEPSCs). Moreover, olfactory unpaired training led to a stable significant reduction in excitatory synaptic transmission. However, olfactory discrimination learning (OD) did not modulate postsynaptic AMPA-mediated mEPSCs in LA. The p21-activated kinase (PAK) activity, previously shown to have a key role in maintaining persistent long-lasting enhancement in synaptic inhibition after OFC, has an opposing effect on excitatory synaptic transmission. PAK maintained the level of excitatory synaptic transmission in the amygdala in all experimental groups, except in neurons in the OFC trained rats. PAK also maintained excitatory synaptic transmission in all neurons of auditory fear conditioning and naïve training groups except in neurons of the auditory safety learning. Safety learning was previously shown in our study to enhance synaptic inhibition. We thus suggest that PAK maintains inhibitory synaptic transmission in a learning-dependent manner and on the other hand affects excitatory synaptic transmission only in groups where learning has not affected inhibitory transmission. Thus, PAK controls learning-induced changes in the excitation/inhibition balance.
Collapse
Affiliation(s)
- Blesson K Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
37
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
38
|
Ashourpour F, Jafari A, Babaei P. Co-treatment of AMPA endocytosis inhibitor and GluN2B antagonist facilitate consolidation and retrieval of memory impaired by β amyloid peptide. Int J Neurosci 2020; 132:714-723. [PMID: 33115292 DOI: 10.1080/00207454.2020.1837800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glutamate neurotransmission stands as an important issue to minimize memory impairment. We investigated the effects of an inhibitor of α-amino-3-hydroxy-5-methyl-4-isozazole propionic acid receptors (AMPA) endocytosis and GluN2B subunit of N-methyl-d-aspartate receptors (NMDA), either isolated or combined, on memory impairments induced by Amyloid beta1-42 (Aβ). METHODS Eighty male Wistar rats were used for two experiments of consolidation and retrieval of memory. Memory impairment was induced by intracerebroventricular (ICV) injection of Aβ1-42 (2 μg/μl), and evaluated using Morris Water Maze (MWM). Each experiment consisted of 5 groups: Saline + Saline, Aβ + Saline, Aβ + Ifenprodil (Ifen, 3 nmol/ICV), Aβ +Tat-GluR23Y (3 µmol/kg/IP), and Aβ1 +Ifen + Tat-GluR23Y. Then, hippocampal cAMP-response element-binding protein (CREB) was measured by western blotting. Data were analyzed by Analysis of variance (ANOVA) repeated measure, and one-way Anova followed by Tukey's post hoc test. RESULTS During retrieval, Aβ+ Tat-GluR23Y showed significant improvement in total time spent (TTS) in the target quadrant (p = 0.009), escape latency to a platform (p = 0.008) and hippocampal level of CREB (p = 0.006) compared with Aβ + saline. Also, coadministration of Tat-GluR23Yand Ifen similar to Tat-GluR23Y alone caused significant improvement in TTS (p = 0.014) and latency to platform (p = 0.013). During consolidation, shorter escape latency (p = 0.001), longer TTS (p = 0.002) and higher level of hippocampal CREB were observed in the Aβ + Tat-GluR23Y (p = 0.001) and Aβ+ Tat-GluR23Y + Ifen (p = 0.017), respectively. CONCLUSION The present study provides pieces of evidence that inhibition of AMPARs endocytosis using Tat-GluR23Y facilitates memory consolidation and retrieval in Aβ induced memory impairment via the CREB signaling pathway.[Formula: see text].
Collapse
Affiliation(s)
- Fatemeh Ashourpour
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
39
|
McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. PAIN MEDICINE 2020; 20:2421-2437. [PMID: 30865778 DOI: 10.1093/pm/pnz017] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective This article reviews the structural and functional changes in pain chronification and explores the association between memory and the development of chronic pain. Methods PubMed was searched using the terms "chronic pain," "central sensitization," "learning," "memory," "long-term potentiation," "long-term depression," and "pain memory." Relevant findings were synthesized into a narrative of the processes affecting pain chronification. Results Pain pathways represent a complex sensory system with cognitive, emotional, and behavioral influences. Anatomically, the hippocampus, amygdala, and anterior cortex-central to the encoding and consolidation of memory-are also implicated in experiential aspects of pain. Common neurotransmitters and similar mechanisms of neural plasticity (eg, central sensitization, long-term potentiation) suggest a mechanistic overlap between chronic pain and memory. These anatomic and mechanistic correlates indicate that chronic pain and memory intimately interact on several levels. Longitudinal imaging studies suggest that spatiotemporal reorganization of brain activity accompanies the transition to chronic pain, during which the representation of pain gradually shifts from sensory to emotional and limbic structures. Conclusions The chronification of pain can be conceptualized as activity-induced plasticity of the limbic-cortical circuitry resulting in reorganization of the neocortex. The state of the limbic-cortical network determines whether nociceptive signals are transient or chronic by extinguishing pathways or amplifying signals that intensify the emotional component of nociceptive inputs. Thus, chronic pain can be seen as the persistence of the memory of pain and/or the inability to extinguish painful memories. Ideally, pharmacologic, physical, and/or psychological approaches should reverse the reorganization accompanying chronic pain.
Collapse
Affiliation(s)
- Bill McCarberg
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| | - John Peppin
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| |
Collapse
|
40
|
Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382:161-172. [PMID: 32845430 PMCID: PMC7529623 DOI: 10.1007/s00441-020-03260-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current understanding of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
Collapse
|
41
|
Bradfield LA, Leung BK, Boldt S, Liang S, Balleine BW. Goal-directed actions transiently depend on dorsal hippocampus. Nat Neurosci 2020; 23:1194-1197. [DOI: 10.1038/s41593-020-0693-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
|
42
|
Ketenci S, Acet NG, Sarıdoğan GE, Aydın B, Cabadak H, Gören MZ. The Neurochemical Effects of Prazosin Treatment on Fear Circuitry in a Rat Traumatic Stress Model. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:219-230. [PMID: 32329303 PMCID: PMC7242110 DOI: 10.9758/cpn.2020.18.2.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/04/2023]
Abstract
Objective The timing of administration of pharmacologic agents is crucial in traumatic stress since they can either potentiate the original fear memory or may cause fear extinction depending on the phase of fear conditioning. Brain noradrenergic system has a role in fear conditioning. Data regarding the role of prazosin in traumatic stress are controversial. Methods In this study, we examined the effects of prazosin and the noradrenergic system in fear conditioning in a predator stress rat model. We evaluated the direct or indirect effects of stress and prazosin on noradrenaline (NA), gamma-aminobuytyric acid (GABA), glutamate, glycine levels and choline esterase activity in the amygdaloid complex, the dorsal hippocampus, the prefrontal cortex and the rostral pons. Results Our results demonstrated that prazosin might alleviate defensive behaviors and traumatic stress symptoms when given during the traumatic cue presentation in the stressed rats. However prazosin administration resulted in higher anxiety levels in non stressed rats when the neutral cue was presented. Conclusion Prazosin should be used in PTSD with caution because prazosin might exacerbate anxiety in non-traumatized subjects. However prazosin might as well alleviate stress responses very effectively. Stress induced changes included increased NA and GABA levels in the amygdaloid complex in our study, attributing noradrenaline a possible inhibitory role on fear acquisition. Acetylcholine also has a role in memory modulation in the brain. We also demonstrated increased choline esterase acitivity. Cholinergic modulation might be another target for indirect prazosin action which needs to be further studied.
Collapse
Affiliation(s)
- Sema Ketenci
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Nazife Gökçe Acet
- Department of Medical Pharmacology, Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Gökçe Elif Sarıdoğan
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey.,Department of Psychiatry, Erenköy Mental Health and Research Hospital, Istanbul, Turkey
| | - Banu Aydın
- Department of Biophysics, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Hülya Cabadak
- Department of Biophysics, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Zafer Gören
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
43
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
44
|
Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X. Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. BMC Genomics 2020; 21:204. [PMID: 32131728 PMCID: PMC7057487 DOI: 10.1186/s12864-020-6613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background In response to ecological niche of domestication, domesticated mammals and birds developed adaptively phenotypic homoplasy in behavior modifications like fearlessness, altered sociability, exploration and cognition, which partly or indirectly result in consequences for economic productivity. Such independent adaptations provide an excellent model to investigate molecular mechanisms and patterns of evolutionary convergence driven by artificial selection. Results First performing population genomic and brain transcriptional comparisons in 68 wild and domesticated chickens, we revealed evolutionary trajectories, genetic architectures and physiologic bases of adaptively behavioral alterations. To extensively decipher molecular convergence on behavioral changes thanks to domestication, we investigated selection signatures in hundreds of genomes and brain transcriptomes across chicken and 6 other domesticated mammals. Although no shared substitution was detected, a common enrichment of the adaptive mutations in regulatory sequences was observed, presenting significance to drive adaptations. Strong convergent pattern emerged at levels of gene, gene family, pathway and network. Genes implicated in neurotransmission, semaphorin, tectonic protein and modules regulating neuroplasticity were central focus of selection, supporting molecular repeatability of homoplastic behavior reshapes. Genes at nodal positions in trans-regulatory networks were preferably targeted. Consistent down-regulation of majority brain genes may be correlated with reduced brain size during domestication. Up-regulation of splicesome genes in chicken rather mammals highlights splicing as an efficient way to evolve since avian-specific genomic contraction of introns and intergenics. Genetic burden of domestication elicits a general hallmark. The commonly selected genes were relatively evolutionary conserved and associated with analogous neuropsychiatric disorders in human, revealing trade-off between adaption to life with human at the cost of neural changes affecting fitness in wild. Conclusions After a comprehensive investigation on genomic diversity and evolutionary trajectories in chickens, we revealed basis, pattern and evolutionary significance of molecular convergence in domesticated bird and mammals, highlighted the genetic basis of a compromise on utmost adaptation to the lives with human at the cost of high risk of neurophysiological changes affecting animals’ fitness in wild.
Collapse
Affiliation(s)
- Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,China National Center for Bioinformation, Beijing, People's Republic of China.
| | - Furong Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Tong Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xu Shen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China.
| |
Collapse
|
45
|
Rich MT, Huang YH, Torregrossa MM. Calcineurin Promotes Neuroplastic Changes in the Amygdala Associated with Weakened Cocaine-Cue Memories. J Neurosci 2020; 40:1344-1354. [PMID: 31862855 PMCID: PMC7002139 DOI: 10.1523/jneurosci.0453-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023] Open
Abstract
Interfering with memory reconsolidation or inducing memory extinction are two approaches for weakening maladaptive memories in disorders such as addiction and post-traumatic stress disorder. Both extinction and reconsolidation are regulated by intracellular protein kinases and phosphatases, and interfering with these signaling molecules can alter memory strength. The calcium-dependent protein phosphatase, calcineurin (CaN), has been implicated in both the consolidation and extinction of fear memories. However, the role of CaN in regulating drug-cue associative memories has not been investigated. Prior studies have demonstrated that plasticity at thalamo-lateral amygdala (T-LA) synapses is critically involved in the regulation of cocaine-cue memories. Therefore, in the present study, we tested the effects of LA administration of an activator of CaN, chlorogenic acid (CGA), on behavioral and electrophysiological indices of cocaine cue memory reconsolidation and extinction. Male, Sprague-Dawley rats were trained to self-administer cocaine paired with an audiovisual cue. The cue memory was then either briefly reactivated, extinguished, or not manipulated, followed immediately by LA infusion of CGA. Rats were tested 24 h later for cue-induced reinstatement, or LA slices were prepared for electrophysiological recordings. We found that intra-LA infusions of CGA following cue extinction or reconsolidation reduced cue-induced reinstatement, which was blocked by co-infusion of the CaN inhibitor, FK-506. Similarly, CGA infusions following cue re-exposure significantly attenuated EPSC amplitude at T-LA synapses, suggesting that CaN affects cocaine-cue memory reconsolidation and extinction by altering T-LA synaptic strength. Therefore, CaN signaling in the LA may represent a novel target for disrupting cocaine-associated memories to reduce relapse.SIGNIFICANCE STATEMENT Repetitive drug use induces synaptic plasticity that underlies the formation of long-lasting associative memories for environmental cues paired with the drug. We previously identified thalamo-amygdala synapses (T-LA) that project via the interal capsule, as an important locus for the regulation of cocaine-cue memories. These synapses are strengthened by repeated cocaine-cue pairings, but this is reversed by extinction training or by optogenetic induction of in vivo long-term depression (LTD). Here, we demonstrate that activating calcineurin, a calcium-dependent phosphatase, following the reactivation or extinction of a cocaine-cue memory, induces LTD-like changes at T-LA synapses, and a corresponding decrease in cue-induced reinstatement, suggesting that calcineurin may be a potential therapeutic target for relapse prevention.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry
- Center for Neuroscience, and
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
46
|
Zhou Y, Qiu L, Wang H, Chen X. Induction of activity synchronization among primed hippocampal neurons out of random dynamics is key for trace memory formation and retrieval. FASEB J 2020; 34:3658-3676. [PMID: 31944374 PMCID: PMC7079015 DOI: 10.1096/fj.201902274r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023]
Abstract
Memory is thought to be encoded by sparsely distributed neuronal ensembles in memory‐related regions. However, it is unclear how memory‐eligible neurons react during learning to encode trace fear memory and how they retrieve a memory. We implemented a fiber‐optic confocal fluorescence endomicroscope to directly visualize calcium dynamics of hippocampal CA1 neurons in freely behaving mice subjected to trace fear conditioning. Here we report that the overall activity levels of CA1 neurons showed a right‐skewed lognormal distribution, with a small portion of highly active neurons (termed Primed Neurons) filling the long‐tail. Repetitive training induced Primed Neurons to shift from random activity to well‐tuned synchronization. The emergence of activity synchronization coincided with the appearance of mouse freezing behaviors. In recall, a partial synchronization among the same subset of Primed Neurons was induced from random dynamics, which also coincided with mouse freezing behaviors. Additionally, training‐induced synchronization facilitated robust calcium entry into Primed Neurons. In contrast, most CA1 neurons did not respond to tone and foot shock throughout the training and recall cycles. In conclusion, Primed Neurons are preferably recruited to encode trace fear memory and induction of activity synchronization among Primed Neurons out of random dynamics is critical for trace memory formation and retrieval.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Liyan Qiu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haiying Wang
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
47
|
Paul BK, Reuveni I, Barkai E, Lamprecht R. Learning-induced enduring changes in inhibitory synaptic transmission in lateral amygdala are mediated by p21-activated kinase. J Neurophysiol 2020; 123:178-190. [DOI: 10.1152/jn.00559.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study we explored whether learning leads to enduring changes in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that olfactory discrimination (OD) learning in rats led to a long-lasting increase in postsynaptic GABAA channel-mediated miniature inhibitory postsynaptic currents (mIPSCs) in LA. Olfactory fear conditioning, but not auditory fear conditioning, also led to enduring enhancement in GABAA-mediated mIPSCs. Auditory fear conditioning, but not olfactory fear conditioning or OD learning, induced an enduring reduction in the frequency but not the current of mIPSC events. We found that p21-activated kinase (PAK) activity is needed to maintain OD and olfactory fear conditioning learning-induced enduring enhancement of mIPSCs. Further analysis revealed that OD led to an increase in GABAA channel conductance whereas olfactory fear conditioning increased the number of GABAA channels. These alterations in GABAA channels conductance and level are controlled by PAK activity. Our study shows that the learning-induced increase in postsynaptic inhibitory transmission in LA is specific to the sensory modality. However, the mechanism that mediates the increase in inhibitory transmission, namely the increase in the conductance or in the level of GABAA channel, is learning specific. NEW & NOTEWORTHY Here we studied whether learning leads to long-lasting alterations in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that learning led to enduring changes in inhibitory synaptic transmission in LA that are affected by the sensory modality (auditory or olfaction) used during learning. However, the mechanism that mediated the changes in inhibitory transmission (alterations in GABAA channel level or conductance) depended on the type of learning. These long-lasting alterations are maintained by p21-activated kinase.
Collapse
Affiliation(s)
- Blesson K. Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Iris Reuveni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
48
|
Alapin JM, Dines M, Vassiliev M, Tamir T, Ram A, Locke C, Yu J, Lamprecht R. Activation of EphB2 Forward Signaling Enhances Memory Consolidation. Cell Rep 2019; 23:2014-2025. [PMID: 29768201 DOI: 10.1016/j.celrep.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
EphB2 is involved in enhancing synaptic transmission and gene expression. To explore the roles of EphB2 in memory formation and enhancement, we used a photoactivatable EphB2 (optoEphB2) to activate EphB2 forward signaling in pyramidal neurons in lateral amygdala (LA). Photoactivation of optoEphB2 during fear conditioning, but not minutes afterward, enhanced long-term, but not short-term, auditory fear conditioning. Photoactivation of optoEphB2 during fear conditioning led to activation of the cAMP/Ca2+ responsive element binding (CREB) protein. Application of light to a kinase-dead optoEphB2 in LA did not lead to enhancement of long-term fear conditioning memory or to activation of CREB. Long-term, but not short-term, auditory fear conditioning memory was impaired in mice lacking EphB2 forward signaling (EphB2lacZ/lacZ). Activation of optoEphB2 in LA of EphB2lacZ/lacZ mice enhanced long-term fear conditioning memory. The present findings show that the level of EphB2 forward signaling activity during learning determines the strength of long-term memory consolidation.
Collapse
Affiliation(s)
- Jessica M Alapin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Monica Dines
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maria Vassiliev
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Tal Tamir
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Alon Ram
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Clifford Locke
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ji Yu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
49
|
Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur J Pharmacol 2019; 870:172824. [PMID: 31778672 DOI: 10.1016/j.ejphar.2019.172824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological response that develops after exposure to an extreme life-threatening traumatic event. Its prevalence ranges from 0.5% to 14.5% worldwide. Due to the complex pathophysiology of PTSD, currently available treatment approaches are associated with high chances of failure, thus further research to identify better pharmacotherapeutic approaches is needed. The traumatic event associated with fear memories plays an important role in the development of PTSD and could be considered as the main culprit. PTSD patient feels frightened in a safe environment as the memories of the traumatic event are revisited. Neurocircuit involving normal processing of fear memories get disturbed in PTSD hence making a fear memory to remain to dominate even after years of trauma. Persistence of fear memories could be explained by acquisition, re-(consolidation) and extinction triad as all of these processes have been widely explored in preclinical as well as clinical studies and set a therapeutic platform for fear memory associated disorders. This review focuses on neurocircuit and pathophysiology of PTSD in context to fear memories and pharmacological targeting of fear memory for the management of PTSD.
Collapse
Affiliation(s)
- Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi, 221005, Uttar Pradesh, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
50
|
Triki Z, Bshary R. Long‐term memory retention in a wild fish species
Labroides dimidiatus
eleven months after an aversive event. Ethology 2019. [DOI: 10.1111/eth.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zegni Triki
- Behavioural Ecology Laboratory Faculty of Science University of Neuchâtel Neuchâtel Switzerland
| | - Redouan Bshary
- Behavioural Ecology Laboratory Faculty of Science University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|