1
|
Zhao T, Li H, Zhang M, Xu Y, Zhang M, Chen L. Systematic evaluation of multifactorial causal associations for Alzheimer's disease and an interactive platform MRAD developed based on Mendelian randomization analysis. eLife 2024; 13:RP96224. [PMID: 39392298 PMCID: PMC11469671 DOI: 10.7554/elife.96224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Neurology and Intracranial Hypertension & Cerebral Venous Disease Center National Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | | | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
3
|
Burbulla LF, Mc Donald JM, Valdez C, Gao F, Bigio EH, Krainc D. Modeling Brain Pathology of Niemann-Pick Disease Type C Using Patient-Derived Neurons. Mov Disord 2021; 36:1022-1027. [PMID: 33438272 DOI: 10.1002/mds.28463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare autosomal-recessive lysosomal storage disease that is also associated with progressive neurodegeneration. NPC shares many pathological features with Alzheimer's disease, including neurofibrillary tangles, axonal spheroids, β-amyloid deposition, and dystrophic neurites. Here, we examined if these pathological features could be detected in induced pluripotent stem cell (iPSC)-derived neurons from NPC patients. METHODS Brain tissues from 8 NPC patients and 5 controls were analyzed for histopathological and biochemical markers of pathology. To model disease in culture, iPSCs from NPC patients and controls were differentiated into cortical neurons. RESULTS We found hyperphosphorylated tau, altered processing of amyloid precursor protein, and increased Aβ42 in NPC postmortem brains and in iPSC-derived cortical neurons from NPC patients. CONCLUSION Our findings demonstrated that the main pathogenic phenotypes typically found in NPC brains were also observed in patient-derived neurons, providing a useful model for further mechanistic and therapeutic studies of NPC. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M Mc Donald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Clarissa Valdez
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Wang ZT, Zhong XL, Tan MS, Wang HF, Tan CC, Zhang W, Zheng ZJ, Kong LL, Tan L, Sun L. Association of lectin-like oxidized low density lipoprotein receptor 1 ( OLR1) polymorphisms with late-onset Alzheimer disease in Han Chinese. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:172. [PMID: 29951494 DOI: 10.21037/atm.2018.04.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Lectin-like oxidized low density lipoprotein receptor 1 (OLR1) locates within the area of chromosome 12p, which has been identified as the AD-susceptible region, and plays a role in lipid metabolism. Therefore, it has been suggested to be a good candidate gene for Alzheimer's disease (AD). Several SNPs within OLR1 have been reported to have association with AD among Caucasians. Methods We selected and genotyped three SNPs (rs1050283, rs1050286, rs17808009) in OLR1 to investigate its possible relationship with the onset of late-onset Alzheimer disease(LOAD) in 984 LOAD cases and 1,354 healthy controls among northern Han Chinese. Results No significant association was found between the OLR1 (rs1050283, rs1050286, rs17808009) polymorphisms and LOAD, even after adjustment for gender and age and stratification for apolipoprotein E (APOE) status. Conclusions Our study showed that the SNPs (rs1050283, rs1050286, rs17808009) located in the 3'UTR of OLR1 may not involve in the mechanism of LOAD in Han Chinese population.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiao-Ling Zhong
- Department of Neurology, Qingdao Central Hospital, Qingdao University, Qingdao 266042, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao 266034, China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao 266034, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Li Sun
- Department of Neurology, Qingdao Central Hospital, Qingdao University, Qingdao 266042, China
| |
Collapse
|
5
|
Barrett MA, Alsop RJ, Hauß T, Rheinstädter MC. The Position of Aβ22-40 and Aβ1-42 in Anionic Lipid Membranes Containing Cholesterol. MEMBRANES 2015; 5:824-43. [PMID: 26633529 PMCID: PMC4704014 DOI: 10.3390/membranes5040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Amyloid-β peptides interact with cell membranes in the human brain and are associated with neurodegenerative diseases, such as Alzheimer's disease. An emerging explanation of the molecular mechanism, which results in neurodegeneration, places the cause of neurotoxicity of the amyloid- peptides on their potentially negative interaction with neuronal membranes. It is known that amyloid-β peptides interact with the membrane, modifying the membrane's structural and dynamic properties. We present a series of X-ray diffraction experiments on anionic model lipid membranes containing various amounts of cholesterol. These experiments provide experimental evidence for an interaction of both the full length amyloid-β1-42 peptide, and the peptide fragment amyloid-β22-40 with anionic bilayer containing cholesterol. The location of the amyloid-β peptides was determined from these experiments, with the full length peptide embedding into the membrane, and the peptide fragment occupying 2 positions-on the membrane surface and embedded into the membrane core.
Collapse
Affiliation(s)
- Matthew A Barrett
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany.
| | - Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| | - Thomas Hauß
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany.
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
6
|
Simpson JE, Ince PG, Minett T, Matthews FE, Heath PR, Shaw PJ, Goodall E, Garwood CJ, Ratcliffe LE, Brayne C, Rattray M, Wharton SB. Neuronal DNA damage response-associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer-type pathology. Neuropathol Appl Neurobiol 2015; 42:167-79. [PMID: 26095650 PMCID: PMC5102584 DOI: 10.1111/nan.12252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
Aims Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer‐type pathology. Methods Frontal cortex (Braak stage 0–II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. Results Two thousand three hundred seventy‐eight genes were significantly differentially expressed (1690 up‐regulated, 688 down‐regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up‐regulation of glycogen synthase kinase 3β. Candidate genes were validated by quantitative real‐time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)‐hydroxycholesterol associated with neuronal DDR across all Braak stages (rs = 0.30, P = 0.03). Conclusions A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3β, thereby contributing to neuronal dysfunction independent of Alzheimer‐type pathology in the ageing brain.
Collapse
Affiliation(s)
- Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thais Minett
- Institute of Public Health, University of Cambridge, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Fiona E Matthews
- MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.,Institute of Health and Society, University of Newcastle, Newcastle, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Goodall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Laura E Ratcliffe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Magnus Rattray
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
7
|
Lythgoe C, Perkes A, Peterson M, Schmutz C, Leary M, Ebbert MTW, Ridge PG, Norton MC, Tschanz JT, Munger RG, Corcoran CD, Kauwe JSK. Population-based analysis of cholesteryl ester transfer protein identifies association between I405V and cognitive decline: the Cache County Study. Neurobiol Aging 2014; 36:547.e1-3. [PMID: 25260850 DOI: 10.1016/j.neurobiolaging.2014.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/22/2014] [Indexed: 11/16/2022]
Abstract
Cholesterol has been implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD) and the cholesteryl ester transfer protein (CETP) is critical to cholesterol regulation within the cell, making CETP an Alzheimer's disease candidate gene. Several studies have suggested that CETP I405V (rs5882) is associated with cognitive function and LOAD risk, but findings vary and most studies have been conducted using relatively small numbers of samples. To test whether this variant is involved in cognitive function and LOAD progression, we genotyped 4486 subjects with up to 12 years of longitudinal cognitive assessment. Analyses revealed an average 0.6-point decrease per year in the rate of cognitive decline for each additional valine (p < 0.011). We failed to detect the association between CETP I405V and LOAD status (p < 0.28). We conclude that CETP I405V is associated with preserved cognition over time but is not associated with LOAD status.
Collapse
Affiliation(s)
- Caitlin Lythgoe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Ammon Perkes
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | - Cameron Schmutz
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Maegan Leary
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Maria C Norton
- Department of Family Consumer and Human Development, Utah State University, Logan, UT, USA; Center for Epidemiologic Studies, Utah State University, Logan, UT, USA
| | - JoAnn T Tschanz
- Center for Epidemiologic Studies, Utah State University, Logan, UT, USA; Department of Psychology, Utah State University, Logan, UT, USA
| | - Ronald G Munger
- Center for Epidemiologic Studies, Utah State University, Logan, UT, USA; Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT, USA
| | - Christopher D Corcoran
- Center for Epidemiologic Studies, Utah State University, Logan, UT, USA; Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
8
|
Davis PR, Head E. Prevention approaches in a preclinical canine model of Alzheimer's disease: benefits and challenges. Front Pharmacol 2014; 5:47. [PMID: 24711794 PMCID: PMC3968758 DOI: 10.3389/fphar.2014.00047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 12/30/2022] Open
Abstract
Aged dogs spontaneously develop many features of human aging and Alzheimer's disease (AD) including cognitive decline and neuropathology. In this review, we discuss age-dependent learning tasks, memory tasks, and functional measures that can be used in aged dogs for sensitive treatment outcome measures. Neuropathology that is linked to cognitive decline is described along with examples of treatment studies that show reduced neuropathology in aging dogs (dietary manipulations, behavioral enrichment, immunotherapy, and statins). Studies in canine show that multi-targeted approaches may be more beneficial than single pathway manipulations (e.g., antioxidants combined with behavioral enrichment). Aging canine studies show good predictive validity for human clinical trials outcomes (e.g., immunotherapy) and several interventions tested in dogs strongly support a prevention approach (e.g., immunotherapy and statins). Further, dogs are ideally suited for prevention studies as they the age because onset of cognitive decline and neuropathology strongly support longitudinal interventions that can be completed within a 3-5 year period. Disadvantages to using the canine model are that they lengthy, use labor-intensive comprehensive cognitive testing, and involve costly housing (almost as high as that of non-human primates). However, overall, using the dog as a preclinical model for testing preventive approaches for AD may complement work in rodents and non-human primates.
Collapse
Affiliation(s)
- Paulina R Davis
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Molecular and Biomedical Pharmacology, University of Kentucky Lexington, KY, USA
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Molecular and Biomedical Pharmacology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
9
|
Lim WLF, Lam SM, Shui G, Mondal A, Ong D, Duan X, Creegan R, Martins IJ, Sharman MJ, Taddei K, Verdile G, Wenk MR, Martins RN. Effects of a high-fat, high-cholesterol diet on brain lipid profiles in apolipoprotein E ɛ3 and ɛ4 knock-in mice. Neurobiol Aging 2013; 34:2217-24. [DOI: 10.1016/j.neurobiolaging.2013.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 10/26/2022]
|
10
|
Di Scala C, Troadec JD, Lelièvre C, Garmy N, Fantini J, Chahinian H. Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide. J Neurochem 2013; 128:186-95. [PMID: 23919567 DOI: 10.1111/jnc.12390] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022]
Abstract
Alzheimer β-amyloid (Aβ) peptides can self-organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22-35 peptide, which encompasses the cholesterol-binding domain of Aβ, induces a specific increase of Ca(2+) levels in neural cells. This effect is neither observed in calcium-free medium nor in cholesterol-depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aβ22-35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical topology of Aβ22-35. This facilitates the establishment of an inter-peptide hydrogen bond network involving Asn-27 and Lys-28, a key step in the octamerization of Aβ22-35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease. Aβ22-35 peptide, which encompasses the cholesterol binding domain of Aβ, induces a specific increase of Ca(2+) level in neural cells. Double mutations V24G/K28G and N27R/K28R modify cholesterol binding and abrogate channels formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical peptide topology facilitating the formation of annular octameric channels, as schematically shown in the graphic (with a hydrogen bond shown in green for two vicinal peptides). Overall, the data give insights into the role of cholesterol in amyloid channel formation and open up new therapeutic options for Alzheimer's disease.
Collapse
Affiliation(s)
- Coralie Di Scala
- Faculté des Sciences, Aix-Marseille Université, EA4674, Marseille, France
| | | | | | | | | | | |
Collapse
|
11
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein. PLoS One 2013; 8:e54605. [PMID: 23382922 PMCID: PMC3558508 DOI: 10.1371/journal.pone.0054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer’s disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP)-derived β-amyloid (Aβ) peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg) mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet), Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and APP overexpression influences cerebral pathology by enhancing changes triggered by Npc1 deficiency in the bigenic line.
Collapse
|
13
|
Association studies of several cholesterol-related genes (ABCA1, CETP and LIPC) with serum lipids and risk of Alzheimer's disease. Lipids Health Dis 2012. [PMID: 23181436 PMCID: PMC3532092 DOI: 10.1186/1476-511x-11-163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Accumulating evidence suggested that dysregulation of cholesterol homeostasis might be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), hepatic lipase (HL, coding genes named LIPC) and cholesteryl ester transfer protein (CETP) are important components of high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) implicated in atherosclerosis and neurodegenerative diseases. In the present study, we will investigate the possible association of several common polymorphisms (ABCA1R219K, CETPTaqIB and LIPC-250 G/A) with susceptibility to AD and plasma lipid levels. Methods Case–control study of 208 Han Chinese (104 AD patients and 104 non-demented controls) from Changsha area in Hunan Province was performed using the PCR-RFLP analysis. Cognitive decline was assessed using Mini Mental State Examination (MMSE) as a standardized method. Additionally, fasting lipid profile and the cognitive testing scores including Wechsler Memory Scale (WMS) and Wisconsin Card Sorting Test (WCST) were recorded. Results and conclusions We found significant differences among the genotype distributions of these three genes in AD patients when compared with controls. But after adjusting other factors, multivariate logistic regression analysis showed only ABCA1R219K (B = −0.903, P = 0.005, OR = 0.405, 95%CI:0.217-0.758) and LIPC-250 G/A variants(B = −0.905, P = 0.018, OR = 0.405, 95%CI:0.191-0.858) were associated with decreased AD risk. There were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) and apolipoproteinA-I in the carriers of KK genotype and K allele (P < 0.05), and B2B2 genotype of CETP Taq1B showed significant association with higher HDL-C levels than other genotypes (F = 5.598, P = 0.004), while -250 G/A polymorphisms had no significant effect on HDL-C. In total population, subjects carrying ABCA1219K allele or LIPC-250A allele obtained higher MMSE or WMS scores than non-carriers, however, no significant association was observed in AD group or controls. Therefore, this preliminary study showed that the gene variants of ABCA1R219K and LIPC-250 G/A might influence AD susceptibility in South Chinese Han population, but the polymorphism of CETPTaq1B didn't show any association in despite of being a significant determinant of HDL-C.
Collapse
|
14
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
15
|
Martin SB, Dowling ALS, Head E. Therapeutic interventions targeting Beta amyloid pathogenesis in an aging dog model. Curr Neuropharmacol 2012; 9:651-61. [PMID: 22654723 PMCID: PMC3263459 DOI: 10.2174/157015911798376217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 12/15/2010] [Accepted: 01/13/2011] [Indexed: 12/24/2022] Open
Abstract
Aged dogs and humans share complex cognitive and pathological responses to aging. Specifically, dogs develop Alzheimer's Disease (AD) like beta-amyloid (Aβ) that are associated with cognitive deficits. Currently, therapeutic approaches to prevent AD are targeted towards reduced production, aggregation and increased clearance of Aβ. The current review discusses cognition and neuropathology of the aging canine model and how it has and continues to be useful in further understanding the safety and efficacy of potential AD prevention therapies targeting Aβ.
Collapse
Affiliation(s)
- Sarah B Martin
- Sanders Brown Center on Aging, University of Kentucky, Lexington KY, USA
| | | | | |
Collapse
|
16
|
Wang XT, Li J, Liu L, Hu N, Jin S, Liu C, Mei D, Liu XD. Tissue cholesterol content alterations in streptozotocin-induced diabetic rats. Acta Pharmacol Sin 2012; 33:909-17. [PMID: 22705727 DOI: 10.1038/aps.2012.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIM Diabetes is associated with elevated serum total cholesterol level and disrupted lipoprotein subfractions. The aim of this study was to examine alterations in the tissue cholesterol contents closely related to diabetic complications. METHODS Intraperitoneal injection of streptozotocin was used to induce type 1 diabetes in adult male Sprague-Dawley rats. On d 35 after the injection, liver, heart, intestine, kidney, pancreas, cerebral cortex and hippocampus were isolated from the rats. The content of total and free cholesterol in the tissues was determined using HPLC. The ATP-binding cassette protein A1 (ABCA1) protein and ApoE mRNA were measured using Western blot and QT-PCR analyses, respectively. RESULTS In diabetic rats, the level of free cholesterol was significantly decreased in the peripheral tissues, but significantly elevated in hippocampus, as compared with those in the control rats. Diabetic rats showed a trend of decreasing the total cholesterol level in the peripheral tissues, but significant change was only found in kidney and liver. In diabetic rats, the level of the ABCA1 protein was significantly increased in the peripheral tissues and cerebral cortex; the expression of ApoE mRNA was slightly decreased in hippocampus and cerebral cortex, but the change had no statistical significance. CONCLUSION Type 1 diabetes decreases the free cholesterol content in the peripheral tissues and increases the free cholesterol content in hippocampus. The decreased free cholesterol level in the peripheral tissues may be partly due to the increased expression of the ABCA1 protein.
Collapse
|
17
|
Khalil A, Berrougui H, Pawelec G, Fulop T. Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer's disease. Mech Ageing Dev 2012; 133:20-9. [DOI: 10.1016/j.mad.2011.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/20/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
18
|
Glebov K, Walter J. Statins in unconventional secretion of insulin-degrading enzyme and degradation of the amyloid-β peptide. NEURODEGENER DIS 2011; 10:309-12. [PMID: 22205103 DOI: 10.1159/000332595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/18/2011] [Indexed: 12/14/2022] Open
Abstract
Population-based studies demonstrated that statins might decrease the risk of developing Alzheimer's disease (AD). Statins inhibit the 3-hydroxy-3-methyl-glutaryl-coenzyme-A reductase and thereby de novo synthesis of cholesterol. Cell culture and animal studies indicated that cholesterol affects the proteolytic processing of the amyloid precursor protein and the generation of amyloid-β (Aβ). Recently, we have demonstrated that statins can also stimulate the degradation of Aβ. The statin-induced clearance of Aβ could be attributed to increased release of the insulin-degrading enzyme (IDE) via an exosome-related unconventional secretory pathway. Interestingly, this statin-induced secretion of exosome-associated IDE was independent of cellular cholesterol concentrations, but rather caused by impairment of isoprenoid biosynthesis and protein prenylation. We further identified a new hexapeptide sequence in the C-terminal region of IDE, named the SlyX motif that is critically involved in IDE secretion. Taken these findings together, the increased clearance of Aβ by stimulated secretion of IDE might contribute to the protective effects of statins against AD.
Collapse
|
19
|
Mathew A, Yoshida Y, Maekawa T, Sakthi Kumar D. Alzheimer's disease: Cholesterol a menace? Brain Res Bull 2011; 86:1-12. [DOI: 10.1016/j.brainresbull.2011.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/20/2022]
|
20
|
Butterfield DA. Atorvastatin and Aβ(1-40): not as simple as cholesterol reduction in brain and relevance to Alzheimer disease. Exp Neurol 2010; 228:15-8. [PMID: 21192930 DOI: 10.1016/j.expneurol.2010.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
21
|
Dorfman VB, Pasquini L, Riudavets M, López-Costa JJ, Villegas A, Troncoso JC, Lopera F, Castaño EM, Morelli L. Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer's disease. Neurobiol Aging 2010; 31:1743-57. [PMID: 19019493 PMCID: PMC3266723 DOI: 10.1016/j.neurobiolaging.2008.09.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 07/23/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (A beta) accumulation in the brain and is classified as familial early-onset (FAD) or sporadic late-onset (SAD). Evidences suggest that deficits in the brain expression of insulin degrading enzyme (IDE) and neprilysin (NEP), both proteases involved in amyloid degradation, may promote A beta deposition in SAD. We studied by immunohistochemistry IDE and NEP cortical expression in SAD and FAD samples carrying the E280A presenilin-1 missense mutation. We showed that IDE, a soluble peptidase, is linked with aggregated A beta 40 isoform while NEP, a membrane-bound protease, negatively correlates with amyloid angiopathy and its expression in the senile plaques is independent of aggregated amyloid and restricted to SAD cases. NEP, but not IDE, is over-expressed in dystrophic neurites, both proteases are immunoreactive in activated astrocytes but not in microglia and IDE was the only one detected in astrocytes of white matter from FAD cases. Collectively, our results support the notion that gross conformational changes involved in the modification from "natively folded-active" to "aggregated-inactive" IDE and NEP may be a relevant pathogenic mechanism in SAD.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Pasquini
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 954, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - Miguel Riudavets
- Department of Neuropathology, Institute for Neurological Research, FLENI, C1428AQK, Montañeses 2325, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, P3, (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Villegas
- Neuroscience Group of Antioquia, Department of Internal Medicine, Clinical Neurology Service, School of Medicine, University of Antioquia, Calle 62 #52-72, 3301, Medellin, Colombia
| | - Juan Carlos Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Department of Internal Medicine, Clinical Neurology Service, School of Medicine, University of Antioquia, Calle 62 #52-72, 3301, Medellin, Colombia
| | - Eduardo Miguel Castaño
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Morelli
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
23
|
Chang TY, Chang CCY, Bryleva E, Rogers MA, Murphy SR. Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life 2010; 62:261-7. [PMID: 20101629 DOI: 10.1002/iub.305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol has been implicated in various neurodegenerative diseases. Here we review the connection between cholesterol and Alzheimer's disease (AD), focusing on a recent study that links neuronal cholesterol esterification with biosynthesis of 24(S)-hydroxycholesterol and the fate of human amyloid precursor protein in a mouse model of AD. We also briefly evaluate the potential of ACAT1 as a drug target for AD.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
24
|
Gulati S, Liu Y, Munkacsi AB, Wilcox L, Sturley SL. Sterols and sphingolipids: dynamic duo or partners in crime? Prog Lipid Res 2010; 49:353-65. [PMID: 20362613 DOI: 10.1016/j.plipres.2010.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One manner in which eukaryotic cells respond to their environments is by optimizing the composition and proportions of sterols and sphingolipids in membranes. The physical association of the planar ring of sterols with the acyl chains of phospholipids, particularly sphingolipids, produces membrane micro-heterogeneity that is exploited to coordinate several crucial pathways. We hypothesize that these lipid molecules play an integrated role in human disease; when one of the partners is mis-regulated, pathology frequently ensues. Sterols and sphingolipid levels are not coordinated by the action of a single master regulator, however the cross-talk between their metabolic pathways is considerable. We describe our perspectives on the key components of synthesis, catabolism and transport of these lipid partners with an emphasis on evolutionarily conserved reactions that produce disease states when defective.
Collapse
Affiliation(s)
- Sonia Gulati
- Institute of Human Nutrition, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
25
|
ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A 2010; 107:3081-6. [PMID: 20133765 DOI: 10.1073/pnas.0913828107] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.
Collapse
|
26
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Witter DP, Chen Y, Rogel JK, Boldt GE, Wentworth P. The natural products beauveriolide I and III: a new class of beta-amyloid-lowering compounds. Chembiochem 2009; 10:1344-7. [PMID: 19396893 PMCID: PMC2812801 DOI: 10.1002/cbic.200900139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Indexed: 11/09/2022]
Abstract
Attacking Alzheimer's by ACAT: The aggregation of beta-amyloid peptides, especially Abeta(42), into senile plaques is a hallmark of Alzheimer's disease (AD). We show that the fungal natural products beauveriolides I and III can potently decrease Abeta secretion from cells expressing human amyloid precursor protein; this offers a potential new scaffold for the development of compounds with proven bioavailability for the treatment of AD.
Collapse
Affiliation(s)
- Daniel P. Witter
- The Scripps-Oxford Laboratory, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
| | - Yanping Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Joseph K. Rogel
- The Scripps-Oxford Laboratory, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
| | - Grant E. Boldt
- The Scripps-Oxford Laboratory, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
| | - Paul Wentworth
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- The Scripps-Oxford Laboratory, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
| |
Collapse
|
28
|
Kato-Negishi M, Kawahara M. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons. Neuropsychiatr Dis Treat 2008; 4:209-18. [PMID: 18728806 PMCID: PMC2515900 DOI: 10.2147/ndt.s2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The neurotoxicity of beta-amyloid protein (AbetaP) is implicated in the etiology of Alzheimer's disease. We previously have demonstrated that AbetaP forms Ca(2+)-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AbetaP-induced changes in intracellular Ca(2+) level in primary cultured rat hippocampal neurons using a multisite Ca(2+)-imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro) exhibited changes in intracellular Ca(2+) level after AbetaP exposure. However, AbetaP caused an acute increase in intracellular Ca(2+) level in long-term cultured neurons (ca 1 month in vitro). The responses to AbetaP were highly heterogeneous, and immunohistochemical analysis using an antibody to AbetaP revealed that AbetaP is deposited on some but not all neurons. Considering that the disruption of Ca(2+) homeostasis is the primary event in AbetaP neurotoxicity, substances that protect neurons from an AbetaP-induced intracellular Ca(2+) level increase may be candidates as therapeutic drugs for Alzheimer's disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AbetaP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AbetaP neurotoxicity.
Collapse
Affiliation(s)
- Midori Kato-Negishi
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | | |
Collapse
|
29
|
Shaw LM, Korecka M, Clark CM, Lee VMY, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 2007; 6:295-303. [PMID: 17347655 DOI: 10.1038/nrd2176] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid progress towards understanding the molecular underpinnings of neurodegenerative disorders such as Alzheimer's disease is revolutionizing drug discovery for these conditions. Furthermore, the development of models for these disorders is accelerating efforts to translate insights related to neurodegenerative mechanisms into disease-modifying therapies. However, there is an urgent need for biomarkers to diagnose neurodegenerative disorders early in their course, when therapy is likely to be most effective, and to monitor responses of patients to new therapies. As research related to this need is currently most advanced for Alzheimer's disease, this Review focuses on progress in the development and validation of biomarkers to improve the diagnosis and treatment of Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- Leslie M Shaw
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
30
|
Schreurs BG, Smith-Bell CA, Darwish DS, Stankovic G, Sparks DL. High dietary cholesterol facilitates classical conditioning of the rabbit's nictitating membrane response. Nutr Neurosci 2007; 10:31-43. [PMID: 17539481 PMCID: PMC3115564 DOI: 10.1080/10284150701232034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Studies have shown that modifying dietary cholesterol may improve learning and that serum cholesterol levels can be positively correlated with cognitive performance. Rabbits fed a 0, 0.5, 1 or 2% cholesterol diet for eight weeks and 0.12 ppm copper added to their drinking water received trace and then delay classical conditioning pairing tone with corneal air puff during which movement of the nictitating membrane (NM) across the eye was monitored. We found that the level of classical conditioning and conditioning-specific reflex modification (CRM) as well as the number of beta amyloid-labeled neurons in the cortex and hippocampus were a function of the concentration of cholesterol in the diet. The data provide support for the idea that dietary cholesterol may facilitate learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Physiology and Pharmacology, West Virginia University, Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.
| | | | | | | | | |
Collapse
|
31
|
Walter J. Control of Amyloid-β-Peptide Generation by Subcellular Trafficking of the β-Amyloid Precursor Protein and β-Secretase. NEURODEGENER DIS 2006; 3:247-54. [PMID: 17047364 DOI: 10.1159/000095263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid-beta (Abeta) peptides are major components of Alzheimer's disease (AD)-associated senile plaques and generated by sequential cleavage of the beta-amyloid precursor protein (betaAPP) by beta-secretase and gamma-secretase. While beta-secretase activity is exerted by the aspartic protease BACE1, gamma-secretase consists of a protein complex of at least four essential proteins with the presenilins as the catalytically active components. The understanding of the subcellular trafficking of betaAPP and proteases involved in its proteolytic processing has increased rapidly in the last years. BetaAPP as well as the secretases are membrane proteins, and recent work demonstrated that alterations in the lipid composition of cellular membranes could affect the proteolytic processing of betaAPP and Abeta generation. We identified glycosphingolipids as membrane components that modulate the subcellular transport of betaAPP and the generation of Abeta. By cell biological and biochemical methods we also characterized the role of BACE1 and its homologue BACE2 in the proteolytic processing of betaAPP. Here, I summarize and discuss these findings in the context of other studies focused on the function of BACE1 and BACE2 and the role of subcellular trafficking in the proteolytic processing of betaAPP.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany.
| |
Collapse
|
32
|
Mack JT, Beljanski V, Tew KD, Townsend DM. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking. Biomed Pharmacother 2006; 60:587-92. [PMID: 17029687 PMCID: PMC6361163 DOI: 10.1016/j.biopha.2006.07.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/28/2006] [Indexed: 11/23/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a family of proteins that translocate molecules across cellular membranes. Substrates can include lipids, cholesterol and drugs. Mutations in ABC transporter genes can cause human pathologies and drug resistance phenotypes in cancer cells. ABCA2, the second member the A sub-family to be identified, was found at high levels in ovarian carcinoma cells resistant to the anti-cancer agent, estramustine (EM). In vitro models with elevated levels of ABCA2 are resistant to a variety of compounds, including estradiol, mitoxantrone and a free radical initiator, 2,2'-azobis-(2-amidinopropane) (AAPH). ABCA2 is most abundant in the central nervous system (CNS), ovary and macrophages. Enhanced expression of ABCA2 and related proteins, including ABCA1, ABCA4 and ABCA7, is found in human macrophages upon bolus cholesterol treatment. ABCA2 also plays a role in the trafficking of low-density lipoprotein (LDL)-derived free cholesterol and is coordinately expressed with genes involved in cholesterol homeostasis. Additionally, ABCA2 expression has been linked with gene cluster patterns consistent with pathologies including Alzheimer's disease (AD). A single-nucleotide polymorphism (SNP) in exon 14 of the ABCA2 gene was shown to be linked to early onset AD in humans, supporting the observation that ABCA2 expression influences levels of beta-amyloid peptide (Abeta), the primary component of senile plaques. ABCA2 may play a role in cholesterol transport and affect a cellular phenotype conducive to the pathogenesis of a variety of human diseases including AD, atherosclerosis and cancer.
Collapse
Affiliation(s)
- J T Mack
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, P.O. Box 250505, 173 Ashley avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
33
|
Mack JT, Beljanski V, Tew KD, Townsend DM. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking. Curr Pharm Des 2006; 17:2762-70. [PMID: 17029687 DOI: 10.2174/138161211797440221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/07/2011] [Indexed: 02/06/2023]
Abstract
ATP-binding cassette (ABC) transporters are a family of proteins that translocate molecules across cellular membranes. Substrates can include lipids, cholesterol and drugs. Mutations in ABC transporter genes can cause human pathologies and drug resistance phenotypes in cancer cells. ABCA2, the second member the A sub-family to be identified, was found at high levels in ovarian carcinoma cells resistant to the anti-cancer agent, estramustine (EM). In vitro models with elevated levels of ABCA2 are resistant to a variety of compounds, including estradiol, mitoxantrone and a free radical initiator, 2,2'-azobis-(2-amidinopropane) (AAPH). ABCA2 is most abundant in the central nervous system (CNS), ovary and macrophages. Enhanced expression of ABCA2 and related proteins, including ABCA1, ABCA4 and ABCA7, is found in human macrophages upon bolus cholesterol treatment. ABCA2 also plays a role in the trafficking of low-density lipoprotein (LDL)-derived free cholesterol and is coordinately expressed with genes involved in cholesterol homeostasis. Additionally, ABCA2 expression has been linked with gene cluster patterns consistent with pathologies including Alzheimer's disease (AD). A single-nucleotide polymorphism (SNP) in exon 14 of the ABCA2 gene was shown to be linked to early onset AD in humans, supporting the observation that ABCA2 expression influences levels of beta-amyloid peptide (Abeta), the primary component of senile plaques. ABCA2 may play a role in cholesterol transport and affect a cellular phenotype conducive to the pathogenesis of a variety of human diseases including AD, atherosclerosis and cancer.
Collapse
Affiliation(s)
- J T Mack
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, P.O. Box 250505, 173 Ashley avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
34
|
Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K. Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 2006; 103:11172-7. [PMID: 16837572 PMCID: PMC1544060 DOI: 10.1073/pnas.0603838103] [Citation(s) in RCA: 1046] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the exact etiology of Alzheimer's disease (AD) is a topic of debate, the consensus is that the accumulation of beta-amyloid (Abeta) peptides in the senile plaques is one of the hallmarks of the progression of the disease. The Abeta peptide is formed by the amyloidogenic cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. The endocytic system has been implicated in the cleavages leading to the formation of Abeta. However, the identity of the intracellular compartment where the amyloidogenic secretases cleave and the mechanism by which the intracellularly generated Abeta is released into the extracellular milieu are not clear. Here, we show that beta-cleavage occurs in early endosomes followed by routing of Abeta to multivesicular bodies (MVBs) in HeLa and N2a cells. Subsequently, a minute fraction of Abeta peptides can be secreted from the cells in association with exosomes, intraluminal vesicles of MVBs that are released into the extracellular space as a result of fusion of MVBs with the plasma membrane. Exosomal proteins were found to accumulate in the plaques of AD patient brains, suggesting a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lawrence Rajendran
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Masanori Honsho
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Tobias R. Zahn
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | - Kathrin D. Geiger
- Department of Neuropathology, Institute of Pathology, University Clinic, University of Technology, 01307 Dresden, Germany
| | - Paul Verkade
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Kai Simons
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Dufour F, Liu QY, Gusev P, Alkon D, Atzori M. Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses. Brain Res 2006; 1103:88-98. [PMID: 16814755 DOI: 10.1016/j.brainres.2006.05.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 05/10/2006] [Accepted: 05/19/2006] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the effect of a cholesterol-rich diet on learning performance and monitor possible related changes in synaptic function. To this purpose, we compared controls with rats fed with a cholesterol-enriched diet (CD). By using a Morris water-maze paradigm, we found that CD rats learned a water-maze task more quickly than rats fed with a regular diet (RD). A longer period of this diet tended to alter the retention of memory without affecting the improvement in the acquisition of the task. Because of the importance of the hippocampus in spatial learning, we hypothesized that these behavioral effects of cholesterol would involve synaptic changes at the hippocampal level. We used whole-cell patch-clamp recording in the CA1 area of a hippocampal rat slice preparation to test the influence of the CD on pre- and postsynaptic function. CD rats displayed an increase in paired-pulse ratio in both glutamatergic synapses (+48 +/- 9%) and GABAergic synapses (+41 +/- 8%), suggesting that the CD induces long-lasting changes in presynaptic function. Furthermore, by recording NMDA-receptor-mediated currents (I(NMDA)) and AMPA-receptor-mediated currents (I(AMPA)) in the same set of cells we found that CD rats display a lower I(NMDA)/I(AMPA) ratio (I(NMDA)/I(AMPA) = 0.75 +/- 0.32 in RD versus 0.10 +/- 0.03 in CD), demonstrating that cholesterol regulates also postsynaptic function. We conclude that a cholesterol-rich diet affects learning speed and performance, and that these behavioral changes occur together with robust, long-lasting, synaptic changes at both the pre- and postsynaptic level.
Collapse
Affiliation(s)
- Franck Dufour
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
36
|
Graziani A, Rosker C, Kohlwein S, Zhu M, Romanin C, Sattler W, Groschner K, Poteser M. Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochem J 2006; 396:147-55. [PMID: 16448384 PMCID: PMC1449990 DOI: 10.1042/bj20051246] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC3 (canonical transient receptor potential protein 3) has been suggested to be a component of cation channel complexes that are targeted to cholesterol-rich lipid membrane microdomains. In the present study, we investigated the potential role of membrane cholesterol as a regulator of cellular TRPC3 conductances. Functional experiments demonstrated that cholesterol loading activates a non-selective cation conductance and a Ca2+ entry pathway in TRPC3-overexpressing cells but not in wild-type HEK-293 (human embryonic kidney 293) cells. The cholesterol-induced membrane conductance exhibited a current-to-voltage relationship similar to that observed upon PLC (phospholipase C)-dependent activation of TRPC3 channels. Nonetheless, the cholesterol-activated conductance lacked negative modulation by extracellular Ca2+, a typical feature of agonist-activated TRPC3 currents. Involvement of TRPC3 in the cholesterol-dependent membrane conductance was further corroborated by a novel dominant-negative strategy for selective blockade of TRPC3 channel activity. Expression of a TRPC3 mutant, which contained a haemagglutinin epitope tag in the second extracellular loop, conferred antibody sensitivity to both the classical PLC-activated as well as the cholesterol-activated conductance in TRPC3-expressing cells. Moreover, cholesterol loading as well as PLC stimulation was found to increase surface expression of TRPC3. Promotion of TRPC3 membrane expression by cholesterol was persistent over 30 min, while PLC-mediated enhancement of plasma membrane expression of TRPC3 was transient in nature. We suggest the cholesterol content of the plasma membrane as a determinant of cellular TRPC3 activity and provide evidence for cholesterol dependence of TRPC3 surface expression.
Collapse
Affiliation(s)
- Annarita Graziani
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| | - Christian Rosker
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| | - Sepp D. Kohlwein
- †Institute of Molecular Biosciences, Karl-Franzens-University of Graz, A-8010 Graz, Austria
| | - Michael X. Zhu
- ‡Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Wolfgang Sattler
- ∥Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
- To whom correspondence should be addressed (email )
| | - Michael Poteser
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
37
|
Dante S, Hauss T, Dencher NA. Cholesterol inhibits the insertion of the Alzheimer’s peptide Aβ(25–35) in lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:523-31. [PMID: 16670880 DOI: 10.1007/s00249-006-0062-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.
Collapse
Affiliation(s)
- Silvia Dante
- Physical Biochemistry, Darmstadt University of Technology, Petersenstrasse 22, 64287, Darmstadt, Germany.
| | | | | |
Collapse
|
38
|
Katzov H, Bennet AM, Höglund K, Wiman B, Lütjohann D, Brookes AJ, Andreasen N, Blennow K, De Faire U, Prince JA. Quantitative trait loci in ABCA1 modify cerebrospinal fluid amyloid-β1-42 and plasma apolipoprotein levels. J Hum Genet 2005; 51:171-179. [PMID: 16372134 DOI: 10.1007/s10038-005-0341-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/01/2005] [Indexed: 11/30/2022]
Abstract
The ATP-binding cassette transporter A1 encoded by ABCA1 plays an integral role in the efflux of cellular cholesterol and phospholipids, but may also be a central mediator of beta-amyloid (Abeta) processing. Here, genetic association of the common R219K variant of ABCA1 is shown with cerebrospinal fluid (CSF) Abeta 1-42 levels, reinforcing emerging evidence of a connection between lipid and Abeta metabolism. In support of this finding we demonstrate for the first time that CSF cholesterol and Abeta 1-42 are correlated. To affirm the plausible impact of ABCA1 variation on cholesterol and related traits as well as to empower a survey of possible interactions (e.g. age, gender, and smoking), a large Swedish population consisting of over 2,700 individuals was enlisted and extensive measures of plasma lipid parameters carried out. These analyses revealed that R219K has a strong effect on apolipoprotein B (APOB) and LDL-cholesterol (LDL-C) among smokers (P = 0.000055 and P = 0.00059, respectively), but not among non-smokers. In contrast, no effect was evident with apolipoprotein A (APOA1) or HDL-cholesterol (HDL-C) levels. Plasma APOB and LDL-C, but not APOA1 and HDL-C, were shown to be markedly elevated in smokers versus non-smokers, affirming that smoking may selectively impact the former pathway. No other genetic markers in ABCA1 exhibit effects as large as R219K, although a modest independent effect of R1587K was observed. Our data illuminate a possible genetic link between Abeta and cholesterol metabolism, but also provide an intriguing example of an environmental exposure that may modify a genotype-phenotype relationship.
Collapse
Affiliation(s)
- Hagit Katzov
- Centre for Genomics and Bioinformatics, Karolinska Institute, Berzelius väg 35, 171 77, Stockholm, Sweden
| | - Anna M Bennet
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kina Höglund
- Department of Clinical Neuroscience and Transfusion Medicine, Sahlgren's University Hospital, University of Göteborg, Göteborg, Sweden
| | - Björn Wiman
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Coagulation Research, Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Lütjohann
- Department of Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | - Niels Andreasen
- Neurotec, Department of Geriatric Medicine, Huddinge University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Clinical Neuroscience and Transfusion Medicine, Sahlgren's University Hospital, University of Göteborg, Göteborg, Sweden
| | - Ulf De Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan A Prince
- Centre for Genomics and Bioinformatics, Karolinska Institute, Berzelius väg 35, 171 77, Stockholm, Sweden.
| |
Collapse
|
39
|
Abstract
Lipid related diseases, such as obesity, type 2 diabetes, and atherosclerosis are epidemics in developed civilizations. A common underlying factor among these syndromes is excessive subcellular accumulation of lipids such as cholesterol and triglyceride. The homeostatic events that govern these metabolites are understood to varying degrees of sophistication. We describe here the utilization of a genetically powerful model organism, budding yeast, to identify and characterize novel aspects of sterol and lipid homeostasis.
Collapse
Affiliation(s)
- Annette L Henneberry
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
40
|
Tamboli IY, Prager K, Barth E, Heneka M, Sandhoff K, Walter J. Inhibition of Glycosphingolipid Biosynthesis Reduces Secretion of the β-Amyloid Precursor Protein and Amyloid β-Peptide*[boxs]. J Biol Chem 2005; 280:28110-7. [PMID: 15923191 DOI: 10.1074/jbc.m414525200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease is associated with extracellular deposits of amyloid beta-peptides in the brain. Amyloid beta-peptides are generated by proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretases. The cleavage by secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in proteolytic processing of the beta-amyloid precursor protein. To analyze the role of glycosphingolipids in these processes we inhibited glycosyl ceramide synthase, which catalyzes the first step in glycosphingolipid biosynthesis. The depletion of glycosphingolipids markedly reduced the secretion of endogenous beta-amyloid precursor protein in different cell types, including human neuroblastoma SH-SY5Y cells. Importantly, secretion of amyloid beta-peptides was also strongly decreased by inhibition of glycosphingolipid biosynthesis. Conversely, the addition of exogenous brain gangliosides to cultured cells reversed these effects. Biochemical and cell biological experiments demonstrate that the pharmacological reduction of cellular glycosphingolipid levels inhibited maturation and cell surface transport of the beta-amyloid precursor protein. In the glycosphingolipid-deficient cell line GM95, cellular levels and maturation of beta-amyloid precursor protein were also significantly reduced as compared with normal B16 cells. Together, these data demonstrate that glycosphingolipids are implicated in the regulation of the subcellular transport of the beta-amyloid precursor protein in the secretory pathway and its proteolytic processing. Thus, enzymes involved in glycosphingolipid metabolism might represent targets to inhibit the production of amyloid beta-peptides.
Collapse
Affiliation(s)
- Irfan Y Tamboli
- Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Macé S, Cousin E, Ricard S, Génin E, Spanakis E, Lafargue-Soubigou C, Génin B, Fournel R, Roche S, Haussy G, Massey F, Soubigou S, Bréfort G, Benoit P, Brice A, Campion D, Hollis M, Pradier L, Benavides J, Deleuze JF. ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiol Dis 2005; 18:119-25. [PMID: 15649702 DOI: 10.1016/j.nbd.2004.09.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 11/25/2022] Open
Abstract
Recent epidemiological, biological and genetic data indicate a relationship between cholesterol and Alzheimer's disease (AD) including the association of polymorphisms of ABCA1 (a gene that is known to participate in cholesterol and phospholipid transport) with AD prevalence. Based on these data, we postulated that genetic variation in the related and brain-specific ABCA2 gene leads to increase risk of AD. A large case-control study was conducted where the sample was randomly divided into a hypothesis-testing sample (230 cases/286 controls) and a validation sample (210 cases/233 controls). Among the 45 SNPs we tested, one synonymous SNP (rs908832) was found significantly associated with AD in both samples. Additional analyses performed on the whole sample showed a very strong association between this marker and early-onset AD (OR = 3.82, 95% C.I. = [2.00 - 7.30], P = 5 x 10(-5)). Further research is needed to understand the functional role of this polymorphism. However, together with the reported associations of AD with APOE, CYP46A1 and ABCA1, the present result adds a very significant support for the role of cholesterol and phospholipid homeostasis in AD and a rationale for testing novel cholesterol homeostasis-related therapeutic strategies in AD.
Collapse
Affiliation(s)
- Sandrine Macé
- Aventis Pharma, Evry Genetics Center and Neurodegenerative Disease Group, Paris Research Center, 94400 Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Morelli L, Bulloj A, Leal MC, Castaño EM. Amyloid beta degradation: a challenging task for brain peptidases. Subcell Biochem 2005; 38:129-45. [PMID: 15709476 DOI: 10.1007/0-387-23226-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Amyloid beta (Abeta) accumulates in the neuropil and within the walls of cerebral vessels in association with normal aging, dementia or stroke. Abeta is released from its precursor protein as soluble monomeric species yet, under pathological conditions, it self-aggregates to form soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Abeta levels could be lowered by inhibiting its generation or by promoting its clearance by transport or degradation. Here we will summarize recent findings on brain proteases capable of degrading Abeta, with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence supporting a role in the proteolysis of Abeta in vivo.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas, CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Paul CA, Reid PC, Boegle AK, Karten B, Zhang M, Jiang ZG, Franz D, Lin L, Chang TY, Vance JE, Blanchette-Mackie J, Maue RA. Adenovirus expressing an NPC1-GFP fusion gene corrects neuronal and nonneuronal defects associated with Niemann pick type C disease. J Neurosci Res 2005; 81:706-19. [PMID: 16015597 DOI: 10.1002/jnr.20592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Niemann Pick type C (NPC) disease is an autosomal recessive disorder characterized by abnormal cholesterol metabolism and accumulation in lysosomal and endosomal compartments. Although peripheral organs are affected, the progressive neurodegeneration in the brain is typically most deleterious, leading to dystonia, ataxia, seizures, and premature death. Although the two genes underlying this disorder in humans and mouse models of the disease have been identified (NPC1 in 95% and NPC2/HE1 in 5% of human cases), their cellular roles have not Been fully defined, and there is currently no effective treatment for this disorder. To help address these issues, we constructed a recombinant adenovirus, Ad(NPC1-GFP), which contains a cDNA encoding a mouse NPC1 protein with a green fluorescent protein (GFP) fused to its C-terminus. Fluorescence microscopy and cholesterol trafficking assays demonstrate that the GFP-tagged NPC1 protein is functional and detectable in cells from different species (hamster, mouse, human) and of different types (ovary-derived cells, fibroblasts, astrocytes, neurons from peripheral and central nervous systems) in vitro. Combined with results from time-lapse microscopy and in vivo brain injections, our findings suggest that this adenovirus offers advantages for expressing NPC1 and analyzing its cellular localization, movement, functional properties, and beneficial effects in vitro and in vivo.
Collapse
Affiliation(s)
- C A Paul
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Puglielli L, Ellis BC, Ingano LAM, Kovacs DM. Role of acyl-coenzyme a: cholesterol acyltransferase activity in the processing of the amyloid precursor protein. J Mol Neurosci 2004; 24:93-6. [PMID: 15314256 DOI: 10.1385/jmn:24:1:093] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory deficit, cognitive impairment, and personality changes accompanied by specific structural abnormalities in the brain. Deposition of amyloid-beta (Abeta) peptide into senile plaques is a consistent feature of the brains of patients affected by AD. Studies with both animal and cellular models of AD have shown that cholesterol homeostasis and distribution regulate Abeta generation. We have provided genetic, biochemical, and metabolic evidence that implicates intracellular cholesterol distribution, rather than total cholesterol levels, in the regulation of Abeta generation. This minireview focuses on the role of acyl-coenzyme A: cholesterol acyltransferase activity (ACAT) in Abeta generation. In genetically mutant cell lines that overproduce cholesterol but cannot synthesize cholesteryl esters (CEs) because of deficient ACAT activity, Abeta production is almost completely inhibited. Acyl-coenzyme A: cholesterol acyltransferase activity (ACAT) inhibitors, currently being developed for the treatment and prevention of atherosclerosis, reduce CE levels and Abeta generation by up to 50% in cell culture models of AD. Future mechanistic and transgenic animal studies are needed to evaluate the potential use of ACAT inhibitors in the therapeutic treatment or prevention of AD.
Collapse
Affiliation(s)
- Luigi Puglielli
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit/NIND, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
45
|
Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 2004; 44:227-38. [PMID: 15473963 DOI: 10.1016/j.neuron.2004.08.043] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 07/28/2004] [Accepted: 08/17/2004] [Indexed: 12/31/2022]
Abstract
Amyloid beta-peptide (Abeta) accumulation in specific brain regions is a pathological hallmark of Alzheimer's disease (AD). We have previously reported that a well-characterized acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, inhibits Abeta production in cell-based experiments. Here, we assessed the efficacy of CP-113,818 in reducing AD-like pathology in the brains of transgenic mice expressing human APP(751) containing the London (V717I) and Swedish (K670M/N671L) mutations. Two months of treatment with CP-113,818 reduced the accumulation of amyloid plaques by 88%-99% and membrane/insoluble Abeta levels by 83%-96%, while also decreasing brain cholesteryl-esters by 86%. Additionally, soluble Abeta(42) was reduced by 34% in brain homogenates. Spatial learning was slightly improved and correlated with decreased Abeta levels. In nontransgenic littermates, CP-113,818 also reduced ectodomain shedding of endogenous APP in the brain. Our results suggest that ACAT inhibition may be effective in the prevention and treatment of AD by inhibiting generation of the Abeta peptide.
Collapse
Affiliation(s)
- Birgit Hutter-Paier
- JSW-Research Forschungslabor GmbH, Institute of Experimental Pharmacology, Rankengasse 28, 8020 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fagan AM, Christopher E, Taylor JW, Parsadanian M, Spinner M, Watson M, Fryer JD, Wahrle S, Bales KR, Paul SM, Holtzman DM. ApoAI deficiency results in marked reductions in plasma cholesterol but no alterations in amyloid-beta pathology in a mouse model of Alzheimer's disease-like cerebral amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1413-22. [PMID: 15466405 PMCID: PMC1618648 DOI: 10.1016/s0002-9440(10)63399-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2004] [Indexed: 11/24/2022]
Abstract
Epidemiological studies suggest links between cholesterol metabolism and Alzheimer's disease (AD), with hypercholesterolemia associated with increased AD risk, and use of cholesterol-lowering drugs associated with decreased risk. Animal models using cholesterol-modifying dietary or pharmacological interventions demonstrate similar findings. Proposed mechanisms include effects of cholesterol on the metabolism of amyloid-beta (Abeta), the protein that deposits in AD brain. To investigate the effect of genetic alterations in plasma cholesterol on Abeta pathology, we crossed the PDAPP transgenic mouse model of AD-like cerebral amyloidosis to apolipoprotein AI-null mice that have markedly reduced plasma cholesterol levels due to a virtual absence of high density lipoproteins, the primary lipoprotein in mice. Interestingly and in contrast to models using non-physiological high fat diets or cholesterol-lowering drugs to modify plasma cholesterol, we observed no differences in Abeta pathology in PDAPP mice of the various apoAI genotypes despite robust differences in plasma cholesterol levels between the groups. Absence of apoAI also resulted in reductions in brain but not cerebrospinal fluid cholesterol, but had no effect on brain apolipoprotein E levels. These and other data suggest that it is perhaps the level of brain apolipoprotein E, not cholesterol per se, that plays a primary role in brain Abeta metabolism.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology and Center for the Study of Nervous System Injury, Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Ave., Box 8111, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Q, Powers ET, Nieva J, Huff ME, Dendle MA, Bieschke J, Glabe CG, Eschenmoser A, Wentworth P, Lerner RA, Kelly JW. Metabolite-initiated protein misfolding may trigger Alzheimer's disease. Proc Natl Acad Sci U S A 2004; 101:4752-7. [PMID: 15034169 PMCID: PMC387320 DOI: 10.1073/pnas.0400924101] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anfinsen showed that a protein's fold is specified by its sequence. Although it is clear why mutant proteins form amyloid, it is harder to rationalize why a wild-type protein adopts a native conformation in most individuals, but it misfolds in a minority of others, in what should be a common extracellular environment. This discrepancy suggests that another event likely triggers misfolding in sporadic amyloid disease. One possibility is that an abnormal metabolite, generated only in some individuals, covalently modifies the protein or peptide and causes it to misfold, but evidence for this is sparse. Candidate metabolites are suggested by the recently appreciated links between Alzheimer's disease (AD) and atherosclerosis, known chronic inflammatory metabolites, and the newly discovered generation of ozone during inflammation. Here we report detection of cholesterol ozonolysis products in human brains. These products and a related, lipid-derived aldehyde covalently modify Abeta, dramatically accelerating its amyloidogenesis in vitro, providing a possible chemical link between hypercholesterolemia, inflammation, atherosclerosis, and sporadic AD.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Johansson A, Katzov H, Zetterberg H, Feuk L, Johansson B, Bogdanovic N, Andreasen N, Lenhard B, Brookes AJ, Pedersen NL, Blennow K, Prince JA. Variants of CYP46A1 may interact with age and APOE to influence CSF Abeta42 levels in Alzheimer's disease. Hum Genet 2004; 114:581-7. [PMID: 15034781 DOI: 10.1007/s00439-004-1107-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 02/18/2004] [Indexed: 11/28/2022]
Abstract
Recent studies have suggested that variants of CYP46A1, encoding cholesterol 24-hydroxylase (CYP46), confer risk for Alzheimer's disease (AD), a prospect substantiated by evidence of genetic association from several quantitative traits related to AD pathology, including cerebrospinal fluid (CSF) levels of the 42 amino-acid cleavage product of beta-amyloid (Abeta42) and the tau protein. In the present study, these claims have been explored by the genotyping of previously associated markers in CYP46A1 in three independent northern European case-control series encompassing 1323 individuals and including approximately 400 patients with measurements of CSF Abeta42 and phospho-tau protein levels. Tests of association in case-control models revealed limited evidence that CYP46A1 variants contributed to AD risk across these samples. However, models testing for potential effects upon CSF measures suggested a possible interaction of an intronic marker (rs754203) with age and APOE genotype. In stratified analyses, significant effects were evident that were restricted to elderly APOE epsilon4 carriers for both CSF Abeta42 ( P=0.0009) and phospho-tau ( P=0.046). Computational analyses indicate that the rs754203 marker probably does not impact the binding of regulatory factors, suggesting that other polymorphic sites underlie the observed associations. Our results provide an important independent replication of previous findings, supporting the existence of CYP46A1 sequence variants that contribute to variability in beta-amyloid metabolism.
Collapse
Affiliation(s)
- Annica Johansson
- Department of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sponne I, Fifre A, Koziel V, Oster T, Olivier JL, Pillot T. Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide. FASEB J 2004; 18:836-8. [PMID: 15001562 DOI: 10.1096/fj.03-0372fje] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal cell death in Alzheimer's disease (AD) is partly induced by the interaction of the amyloid-beta peptide (Abeta) with the plasma membrane of target cells. Accordingly, recent studies have suggested that cholesterol, an important component of membranes that controls their physical properties and functions, plays a critical role in neurodegenerative diseases. We report here that the enrichment of the neuronal plasma membrane with cholesterol protects cortical neurons from apoptosis induced by soluble oligomers of the Abeta(1-40) peptide. Conversely, cholesterol depletion using cyclodextrin renders cells more vulnerable to the cytotoxic effects of the Abeta-soluble oligomers. Increasing the cholesterol content of small unilamellar liposomes also decreases Abeta-dependent liposome fusion. We clearly demonstrate that cholesterol protection is specific to the soluble conformation of Abeta, because we observed no protective effects on cortical neurons treated by amyloid fibrils of the Abeta(1-40) peptide. This may provide a new opportunity for the development of an effective AD therapy as well as elucidate the impact of the cholesterol level during AD development.
Collapse
|
50
|
Schreurs BG, Smith-Bell CA, Lochhead J, Sparks DL. Cholesterol modifies classical conditioning of the rabbit (Oryctolagus cuniculus) nictitating membrane response. Behav Neurosci 2004; 117:1220-32. [PMID: 14674842 DOI: 10.1037/0735-7044.117.6.1220] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholesterol plays an important role in synapse formation, receptor function, and synaptic plasticity, and animal studies show that modifying cholesterol may improve learning and memory. Other data show that feeding animals cholesterol can induce beta amyloid accumulation. Rabbits (Oryctolagus cuniculus) fed 2% cholesterol for 8 weeks were given trace conditioning of the nictitating membrane response using a 100-ms tone, a 700-ms trace, and periorbital electrical stimulation or airpuff. Rabbits fed cholesterol showed significant facilitation of trace conditioning to airpuff and conditioning-specific reflex modification to periorbital electrical stimulation and airpuff. The cholesterol-fed rabbits had beta amyloid accumulation in the cortex, but little in the hippocampus. The data suggest cholesterol had facilitative effects that outweighed potential amnesic effects of cortical beta amyloid.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia, USA.
| | | | | | | |
Collapse
|