1
|
Lee R, Kim G, Black ER, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction, fear memory loss, and amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for amyloid pathology and cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction, amyloid pathology, and fear memory loss in the amyloid pathology model mice. This suggests that co-activation of PV+ and SST+ cells via stimulating α7- and α4β2-nAChRs together is a novel strategy for neuroprotection against AD.
Collapse
|
2
|
Kosel F, Hartley MR, Franklin TB. Aberrant Cortical Activity in 5xFAD Mice in Response to Social and Non-Social Olfactory Stimuli. J Alzheimers Dis 2024; 97:659-677. [PMID: 38143360 DOI: 10.3233/jad-230858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. OBJECTIVE To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. METHODS We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. RESULTS Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. CONCLUSIONS These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.
Collapse
Affiliation(s)
- Filip Kosel
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Mackenzie Rae Hartley
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Tamara Brook Franklin
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Ali R, Hameed R, Chauhan D, Sen S, Wahajuddin M, Nazir A, Verma S. Multiple Actions of H 2S-Releasing Peptides in Human β-Amyloid Expressing C. elegans. ACS Chem Neurosci 2022; 13:3378-3388. [PMID: 36351248 DOI: 10.1021/acschemneuro.2c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder characterized by the loss of cognitive function. A major challenge in treating this ailment fully is its multifactorial nature, as it is associated with effects like deposition of Aβ plaques, oxidative distress, inflammation of neuronal cells, and low levels of the neurotransmitter acetylcholine (ACh). In the present work, we demonstrate the design, synthesis, and biological activity of peptide conjugates by coupling a H2S-releasing moiety to the peptides known for their Aβ antiaggregating properties. These conjugates release H2S in a slow and sustained manner, due to the formation of self-assembled structures and delivered a significant amount of H2S within Caenorhabditis elegans. These conjugates are shown to target multiple factors responsible for the progression of AD: notably, we observed reduction in oxidative distress, inhibition of Aβ aggregation, and significantly increased ACh levels in the C. elegans model expressing human Aβ.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Centre for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
6
|
Schwab EDP, Queiroz R, Fiebrantz AKB, Bastos M, Bonini JS, Silva WCFND. Hypothesis on ontogenesis and pathophysiology of Alzheimer’s disease. EINSTEIN-SAO PAULO 2022; 20:eRW0170. [DOI: 10.31744/einstein_journal/2022rw0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/23/2022] [Indexed: 11/13/2022] Open
|
7
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
8
|
Orive G, Lopera F, Carro E. Saliva is a Good Candidate to be the New Gold-Standard Sample for Neurodegenerative Diseases. J Alzheimers Dis 2022; 87:1497-1501. [DOI: 10.3233/jad-220144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Barcelona, Spain
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia. Medellín, Colombia
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
9
|
Roberts JP, Stokoe SA, Sathler MF, Nichols RA, Kim S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloid-induced synaptic dysfunction. J Biol Chem 2021; 296:100402. [PMID: 33571523 PMCID: PMC7961090 DOI: 10.1016/j.jbc.2021.100402] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/04/2023] Open
Abstract
Beta-amyloid (Aβ) has been recognized as an early trigger in the pathogenesis of Alzheimer's disease (AD) leading to synaptic and cognitive impairments. Aβ can alter neuronal signaling through interactions with nicotinic acetylcholine receptors (nAChRs), contributing to synaptic dysfunction in AD. The three major nAChR subtypes in the hippocampus are composed of α7-, α4β2-, and α3β4-nAChRs. Aβ selectively affects α7- and α4β2-nAChRs, but not α3β4-nAChRs in hippocampal neurons, resulting in neuronal hyperexcitation. However, how nAChR subtype selectivity for Aβ affects synaptic function in AD is not completely understood. Here, we showed that Aβ associated with α7- and α4β2-nAChRs but not α3β4-nAChRs. Computational modeling suggested that two amino acids in α7-nAChRs, arginine 208 and glutamate 211, were important for the interaction between Aβ and α7-containing nAChRs. These residues are conserved only in the α7 and α4 subunits. We therefore mutated these amino acids in α7-containing nAChRs to mimic the α3 subunit and found that mutant α7-containing receptors were unable to interact with Aβ. In addition, mutant α3-containing nAChRs mimicking the α7 subunit interact with Aβ. This provides direct molecular evidence for how Aβ selectively interacted with α7- and α4β2-nAChRs, but not α3β4-nAChRs. Selective coactivation of α7- and α4β2-nAChRs also sufficiently reversed Aβ-induced AMPA receptor dysfunction, including Aβ-induced reduction of AMPA receptor phosphorylation and surface expression in hippocampal neurons. Moreover, costimulation of α7- and α4β2-nAChRs reversed the Aβ-induced disruption of long-term potentiation. These findings support a novel mechanism for Aβ's impact on synaptic function in AD, namely, the differential regulation of nAChR subtypes.
Collapse
Affiliation(s)
- Jessica P Roberts
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stokoe
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
10
|
Heo HJ, Park SY, Lee YS, Shin HK, Hong KW, Kim CD. Combination therapy with cilostazol, aripiprazole, and donepezil protects neuronal cells from β-amyloid neurotoxicity through synergistically enhanced SIRT1 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:299-310. [PMID: 32587124 PMCID: PMC7317180 DOI: 10.4196/kjpp.2020.24.4.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aβ accumulation, GSK-3β, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased β-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, β-catenin and a7-nicotinic cholinergic receptors in neuronal cells in the presence of Aβ1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.
Collapse
Affiliation(s)
- Hye Jin Heo
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - So Youn Park
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Yi Sle Lee
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, Pusan National University School of Korean Medicine, Yangsan 50612, Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
11
|
Findley CA, Bartke A, Hascup KN, Hascup ER. Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression. ASN Neuro 2020; 11:1759091419855541. [PMID: 31213067 PMCID: PMC6582288 DOI: 10.1177/1759091419855541] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) ranks sixth on the Centers for Disease Control and Prevention Top 10 Leading Causes of Death list for 2016, and the Alzheimer’s Association attributes 60% to 80% of dementia cases as AD related. AD pathology hallmarks include accumulation of senile plaques and neurofibrillary tangles; however, evidence supports that soluble amyloid beta (Aβ), rather than insoluble plaques, may instigate synaptic failure. Soluble Aβ accumulation results in depression of long-term potentiation leading to cognitive deficits commonly characterized in AD. The mechanisms through which Aβ incites cognitive decline have been extensively explored, with a growing body of evidence pointing to modulation of the glutamatergic system. The period of glutamatergic hypoactivation observed alongside long-term potentiation depression and cognitive deficits in later disease stages may be the consequence of a preceding period of increased glutamatergic activity. This review will explore the Aβ-related changes to the tripartite glutamate synapse resulting in altered cell signaling throughout disease progression, ultimately culminating in oxidative stress, synaptic dysfunction, and neuronal loss.
Collapse
Affiliation(s)
- Caleigh A Findley
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- 3 Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,4 Department of Molecular Biology, Microbiology & Biochemistry, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
12
|
Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019; 24:E4410. [PMID: 31816853 PMCID: PMC6930470 DOI: 10.3390/molecules24234410] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
Collapse
Affiliation(s)
- Jéssika P. Teixeira
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Alexandre A. de Castro
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
The Interplay between Ca 2+ Signaling Pathways and Neurodegeneration. Int J Mol Sci 2019; 20:ijms20236004. [PMID: 31795242 PMCID: PMC6928941 DOI: 10.3390/ijms20236004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) homeostasis is essential for cell maintenance since this ion participates in many physiological processes. For example, the spatial and temporal organization of Ca2+ signaling in the central nervous system is fundamental for neurotransmission, where local changes in cytosolic Ca2+ concentration are needed to transmit information from neuron to neuron, between neurons and glia, and even regulating local blood flow according to the required activity. However, under pathological conditions, Ca2+ homeostasis is altered, with increased cytoplasmic Ca2+ concentrations leading to the activation of proteases, lipases, and nucleases. This review aimed to highlight the role of Ca2+ signaling in neurodegenerative disease-related apoptosis, where the regulation of intracellular Ca2+ homeostasis depends on coordinated interactions between the endoplasmic reticulum, mitochondria, and lysosomes, as well as specific transport mechanisms. In neurodegenerative diseases, alterations-increased oxidative stress, energy metabolism alterations, and protein aggregation have been identified. The aggregation of α-synuclein, β-amyloid peptide (Aβ), and huntingtin all adversely affect Ca2+ homeostasis. Due to the mounting evidence for the relevance of Ca2+ signaling in neuroprotection, we would focus on the expression and function of Ca2+ signaling-related proteins, in terms of the effects on autophagy regulation and the onset and progression of neurodegenerative diseases.
Collapse
|
14
|
Sun JL, Stokoe SA, Roberts JP, Sathler MF, Nip KA, Shou J, Ko K, Tsunoda S, Kim S. Co-activation of selective nicotinic acetylcholine receptors is required to reverse beta amyloid-induced Ca 2+ hyperexcitation. Neurobiol Aging 2019; 84:166-177. [PMID: 31629115 DOI: 10.1016/j.neurobiolaging.2019.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (Aβ) peptide accumulation has long been implicated in the pathogenesis of Alzheimer's disease (AD). Hippocampal network hyperexcitability in the early stages of the disease leads to increased epileptiform activity and eventually cognitive decline. We found that acute application of 250 nM soluble Aβ42 oligomers increased Ca2+ activity in hippocampal neurons in parallel with a significant decrease in activity in Aβ42-treated interneurons. A potential target of Aβ42 is the nicotinic acetylcholine receptor (nAChR). Three major subtypes of nAChRs (α7, α4β2, and α3β4) have been reported in the human hippocampus. Simultaneous inhibition of both α7 and α4β2 nAChRs mimicked the Aβ42 effects on both excitatory and inhibitory neurons. However, inhibition of all 3 subtypes showed the opposite effect. Importantly, simultaneous activation of α7 and α4β2 nAChRs was required to reverse Aβ42-induced neuronal hyperexcitation. We suggest co-activation of α7 and α4β2 nAChRs is required to reverse Aβ42-induced Ca2+ hyperexcitation.
Collapse
Affiliation(s)
- Julianna L Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Sarah A Stokoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Jessica P Roberts
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaila A Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaitlyn Ko
- Poudre High School, Fort Collins, CO, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA; Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
15
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Zhu Z, Yang T, Zhang L, Liu L, Yin E, Zhang C, Guo Z, Xu C, Wang X. Inhibiting Aβ toxicity in Alzheimer's disease by a pyridine amine derivative. Eur J Med Chem 2019; 168:330-339. [DOI: 10.1016/j.ejmech.2019.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022]
|
17
|
Designing Hybrids Targeting the Cholinergic System by Modulating the Muscarinic and Nicotinic Receptors: A Concept to Treat Alzheimer's Disease. Molecules 2018; 23:molecules23123230. [PMID: 30544533 PMCID: PMC6320942 DOI: 10.3390/molecules23123230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The cholinergic hypothesis has been reported first being the cause of memory dysfunction in the Alzheimer's disease. Researchers around the globe have focused their attention on understanding the mechanisms of how this complicated system contributes to processes such as learning, memory, disorientation, linguistic problems, and behavioral issues in the indicated chronic neurodegenerative disease. The present review reports recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) and the study of their therapeutic relevance. The rationale and the design of the bifunctional compounds will be discussed in order to understand their potential as tools to investigate the role of the cholinergic system in AD.
Collapse
|
18
|
Zyśk M, Bielarczyk H, Gul-Hinc S, Dyś A, Gapys B, Ronowska A, Sakowicz-Burkiewicz M, Szutowicz A. Phenotype-Dependent Interactions between N-acetyl-L-Aspartate and Acetyl-CoA in Septal SN56 Cholinergic Cells Exposed to an Excess of Zinc. J Alzheimers Dis 2018; 56:1145-1158. [PMID: 28106547 DOI: 10.3233/jad-160693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike others, require additional amounts of acetyl-CoA for acetylcholine synthesis. Therefore, several neurotoxic signals, which inhibit pyruvate dehydrogenase, generate deeper shortages of acetyl-CoA and greater mortality of cholinergic neurons than noncholinergic ones. NAA is considered to be a marker of neuronal energy status in neuropathic brains. However, there is no data on putative differential fractional distribution of the acetyl-CoA pool between energy producing and NAA or acetylcholine synthesizing pathways in noncholinergic and cholinergic neurons, respectively. Therefore, the aim of this study was to investigate whether zinc-excess, a common excitotoxic signal, may evoke differential effects on the NAA metabolism in neuronal cells with low and high expression of the cholinergic phenotype. Differentiated SN56 neuronal cells, displaying a high activity of choline acetyltransferase and rates of acetylcholine synthesis, contained lower levels of acetyl-CoA and NAA, being more susceptible to ZnCl2 exposition that the nondifferentiated SN56 or differentiated dopaminergic SHSY5Y neuronal and astroglial C6 cells. Differentiated SN56 accumulated greater amounts of Zn2 + from extracellular space than the other ones, and displayed a stronger suppression of pyruvate dehydrogenase complex activity and acetyl-CoA, NAA, ATP, acetylcholine levels, and loss of viability. These data indicate that the acetyl-CoA synthesizing system in neurons constitutes functional unity with energy generating and NAA or acetylcholine pathways of its utilization, which are uniformly affected by neurotoxic conditions.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Gapys
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Cuddy LK, Seah C, Pasternak SH, Rylett RJ. Amino-Terminal β-Amyloid Antibody Blocks β-Amyloid-Mediated Inhibition of the High-Affinity Choline Transporter CHT. Front Mol Neurosci 2017; 10:361. [PMID: 29163036 PMCID: PMC5681948 DOI: 10.3389/fnmol.2017.00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disorder that is characterized by progressive cognitive decline. The deficits in cognition and attentional processing that are observed clinically in AD are linked to impaired function of cholinergic neurons that release the neurotransmitter acetylcholine (ACh). The high-affinity choline transporter (CHT) is present at the presynaptic cholinergic nerve terminal and is responsible for the reuptake of choline produced by hydrolysis of ACh following its release. Disruption of CHT function leads to decreased choline uptake and ACh synthesis, leading to impaired cholinergic neurotransmission. We report here that cell-derived β-amyloid peptides (Aβ) decrease choline uptake activity and cell surface CHT protein levels in SH-SY5Y neural cells. Moreover, we make the novel observation that the amount of CHT protein localizing to early endosomes and lysosomes is decreased significantly in cells that have been treated with cell culture medium that contains Aβ peptides released from neural cells. The Aβ-mediated loss of CHT proteins from lysosomes is prevented by blocking lysosomal degradation of CHT with the lysosome inhibitor bafilomycin A1 (BafA1). BafA1 also attenuated the Aβ-mediated decrease in CHT cell surface expression. Interestingly, however, lysosome inhibition did not block the effect of Aβ on CHT activity. Importantly, neutralizing Aβ using an anti-Aβ antibody directed at the N-terminal amino acids 1-16 of Aβ, but not by an antibody directed at the mid-region amino acids 22-35 of Aβ, attenuates the effect of Aβ on CHT activity and trafficking. This indicates that a specific N-terminal Aβ epitope, or specific conformation of soluble Aβ, may impair CHT activity. Therefore, Aβ immunotherapy may be a more effective therapeutic strategy for slowing the progression of cognitive decline in AD than therapies designed to promote CHT cell surface levels.
Collapse
Affiliation(s)
- Leah K Cuddy
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Claudia Seah
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stephen H Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer's disease. Sci Rep 2017; 7:11706. [PMID: 28916821 PMCID: PMC5601919 DOI: 10.1038/s41598-017-09780-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023] Open
Abstract
Acetylcholinesterase inhibitors are approved drugs currently used for the treatment of Alzheimer's disease (AD) dementia. Basal forebrain cholinergic system (BFCS) atrophy is reported to precede both entorhinal cortex atrophy and memory impairment in AD, challenging the traditional model of the temporal sequence of topographical pathology associated with AD. We studied the effect of one-year Donepezil treatment on the rate of BFCS atrophy in prodromal AD patients using a double-blind, randomized, placebo-controlled trial of Donepezil (10 mg/day). Reduced annual BFCS rates of atrophy were found in the Donepezil group compared to the Placebo treated arm. Secondary analyses on BFCS subregions demonstrated the largest treatment effects in the Nucleus Basalis of Meynert (NbM) and the medial septum/diagonal band (Ch1/2). Donepezil administered at a prodromal stage of AD seems to substantially reduce the rate of atrophy of the BFCS nuclei with highest concentration of cholinergic neurons projecting to the cortex (NbM), hippocampus and entorhinal cortex (Ch1/2).
Collapse
|
21
|
Abstract
Both Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are two common
forms of disease worldwide and many studies indicate that people with diabetes,
especially DM, are at higher risk of developing AD. AD is characterized by
progressive cognitive decline and accumulation of β-amyloid (Aβ)
forming senile plaques. DM is a metabolic disorder characterized by
hyperglycemia in the context of insulin resistance and relative lack of insulin.
Both diseases also share common characteristics such as loss of cognitive
function and inflammation. Inflammation resulting from Aβ further induces
production of Aβ1-42 peptides. Inflammation due to
overnutrition induces insulin resistance and consequently DM. Memory deficit and
a decrease in GLUT4 and hippocampal insulin signaling have been observed in
animal models of insulin resistance. The objective of this review was to show
the shared characteristics of AD and DM.
Collapse
Affiliation(s)
- Aparecida Marcelino de Nazareth
- Physiotherapist, Specialist in Neurofunctional Physical Therapy, Master of Neurosciences from the (UFSC), SC, Brazil, and PhD in Sciences (Pharmacology and Medicinal Chemistry) from the Federal University of Rio de Janeiro (UFRJ), RJ, Brazil
| |
Collapse
|
22
|
Biswas K, Azad AK, Sultana T, Khan F, Hossain S, Alam S, Chowdhary R, Khatun Y. Assessment of in-vitro cholinesterase inhibitory and thrombolytic potential of bark and seed extracts of Tamarindus indica (L.) relevant to the treatment of Alzheimer's disease and clotting disorders. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:115-120. [PMID: 28163969 PMCID: PMC5289080 DOI: 10.5455/jice.20161229055750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Low level of acetylcholine (ACh) is an important hallmark of Alzheimer's disease (AD), a common type of progressive neurodegenerative disorder. Effective treatment strategies rely mostly on either enhancing the cholinergic function of the brain by improving the level of ACh from being a breakdown by cholinesterase enzymes. Again atherothrombosis is major life-threatening cerebral diseases. Traditionally Tamarindus indica (L.) has widely known for its medicinal values. Our aim is to investigate the cholinesterase inhibitory activities as well as thrombolytic activities of the bark and seeds crude methanolic extracts (CMEs) in the treatment of AD and clotting disorder. MATERIALS AND METHODS The crude methanol extract was prepared by cold extraction method and was assessed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities by the Ellman's method. For thrombolytic activity clot lysis method was applied. RESULTS To compare both the fractions, extracts from the bark got more AChE inhibitory activity than the seed with the inhibitory concentration 50% IC50 values of 268.09 and 287.15 µg/ml, respectively. The inhibitory activity of BuChE was quiet similar to that of AChE as IC50 values of both the fractions were 201.25 and 254.71 µg/ml. Again in-vitro thrombolytic activity of bark was 30.17% and of seed it was 22.53%. CONCLUSION The results revealed that the CME of bark and seed both have moderate cholinesterases inhibitory activities as well as thrombolytic activities, worth of further investigations to identify the promising molecule(s) potentially useful in the treatment of AD as well as in clotting disorders.
Collapse
Affiliation(s)
- Kushal Biswas
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - A K Azad
- Department of Pharmacy, Bangladesh University, Dhaka, Bangladesh
| | - Taposhi Sultana
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Saiyara Hossain
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Sanzida Alam
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Rayhan Chowdhary
- Department of Pharmacy, Bangladesh University, Dhaka, Bangladesh
| | - Yasmin Khatun
- Department of Pharmacy, Bangladesh University, Dhaka, Bangladesh
| |
Collapse
|
23
|
Ovsepian SV, O'Leary VB, Zaborszky L. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist 2016; 22:238-51. [PMID: 26002948 PMCID: PMC4681696 DOI: 10.1177/1073858415588264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
24
|
Woodruff-Pak DS, Gould TJ. Neuronal Nicotinic Acetylcholine Receptors: Involvement in Alzheimer’s Disease and Schizophrenia. ACTA ACUST UNITED AC 2016; 1:5-20. [PMID: 17715584 DOI: 10.1177/1534582302001001002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a role in a variety of diseases of the central nervous system including Alzheimer's disease (AD) and schizophrenia. There is great interest in evaluating disease-related nAChR changes, and pharmacological treatment of nAChR deficits is a promising therapy. In AD, 7 nAChRs remain relatively stable, contrasting to 4 2 nAChRs that are lost in substantial numbers. -amyloid, a major neuropathology in AD, blocks 4 2 and 7 nAChRs. Agonists selective to 7 nAChRs are neuroprotective against amyloid. Paradoxically, 7 nAChRs may function as receptors for -amyloid. These results indicate 7 nAChR antagonists may be appropriate therapy in AD. In schizophrenia, 7 nAChRs are significantly reduced in hippocampus and neocortex. The exceptionally high rate of smoking in schizophrenics is likely a form of self-medication. Therapy with 7 nAChR agonists relieves some schizophrenic symptoms. Despite disparities in etiology and symptomatology, AD and schizophrenia share a target for therapeutic intervention— 7 nAChRs.
Collapse
|
25
|
Sivaraman D, Panneersel P, Muralidhar P. Memory and Brain Neurotransmitter Restoring Potential of Hydroalcoholic Extract of Ipomoea aquatica Forsk on Amyloid Beta Aβ (25-35) Induced Cognitive Deficits in Alzheimer’s Mice. INT J PHARMACOL 2016; 12:52-65. [DOI: 10.3923/ijp.2016.52.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7361613. [PMID: 27034741 PMCID: PMC4807045 DOI: 10.1155/2016/7361613] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease. In this review, we carefully detail amyloid-β metabolism and its role in AD. We also consider the various genetic animal models used to evaluate therapeutics. Finally, we consider the role of synthetic and plant-based compounds in therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saurabh Srivastav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Amarish Kumar Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
27
|
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015; 52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance.
Collapse
Affiliation(s)
- Sagar H Barage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India; Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
28
|
Struhal W, Javor A, Benesch T, Vosko MR, Ransmayr G. The Peripheral Sympathetic Neuron is Intact in Alzheimer's Disease and Behavioral Variant of Frontotemporal Dementia. Am J Alzheimers Dis Other Demen 2015; 30:400-4. [PMID: 25280792 PMCID: PMC10852730 DOI: 10.1177/1533317514552319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The study was undertaken to evaluate the postganglionic sympathetic sudomotor function employing the quantitative sudomotor axon reflex test (QSART) in tauopathies Alzheimer's disease (AD) and behavioral variant of frontotemporal dementia (bvFTD). METHODS Patients were recruited in a prospective pilot study. A structured history was taken and QSART was recorded. RESULTS In all, 15 patients with AD (7 female) and 14 patients with bvFTD (9 female) were included. Mean age (±standard deviation) of patients with AD and bvFTD was 74 ± 9 and 71 ± 10 years, respectively. Severe sudomotor dysfunction (Composite Autonomic Severity sudomotor score 3) was present in 3 (20%) patients with AD and 0 (0%) patients with bvFTD (P = .037). The upper extremity was only involved in 1 patient with AD and 1 patient with bvFTD. Sweat results of the 4 recording sites did not differ between both groups. Patients' history correlated with severe autonomic symptoms as assessed with QSART. CONCLUSION Postganglionic sudomotor involvement in AD and bvFTD is most likely not part of the disease.
Collapse
Affiliation(s)
- Walter Struhal
- Autonomic Unit, Department of Neurology and Psychiatry, Johannes Kepler University, Linz, Austria
| | - Andrija Javor
- Autonomic Unit, Department of Neurology and Psychiatry, Johannes Kepler University, Linz, Austria
| | - Thomas Benesch
- Department of Medical Statistics, Vienna Medical University, Vienna, Austria
| | - Milan R Vosko
- Autonomic Unit, Department of Neurology and Psychiatry, Johannes Kepler University, Linz, Austria
| | - Gerhard Ransmayr
- Autonomic Unit, Department of Neurology and Psychiatry, Johannes Kepler University, Linz, Austria
| |
Collapse
|
29
|
The Binding Receptors of Aβ: an Alternative Therapeutic Target for Alzheimer's Disease. Mol Neurobiol 2014; 53:455-471. [PMID: 25465238 DOI: 10.1007/s12035-014-8994-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood. Recently, increasing evidence suggests that some potential receptors which bind specifically with Aβ may play important roles in inducing the toxicity of the neurons in AD pathology. These receptors include the cellular prion protein (PrPc), the α7 nicotinic acetylcholine receptor (α7nAChR), the p75 neurotrophin receptor (p75(NTR)), the beta-adrenergic receptors (β-ARs), the Eph receptors, the paired immunoglobulin-like receptor B (PirB), the PirB's human ortholog receptor (LilrB2), and the Fcγ receptor II-b (FcγRIIb). This review summarizes the characters of these prominent receptors and how the bindings of them with Aβ inhibit the LTP, decrease the number of dendritic spine, damage the neurons, and so on in AD pathogenesis. Blocking or rescuing these receptors may have significant importance for AD treatments.
Collapse
|
30
|
Chapuis J, Wilson DA. Cholinergic modulation of olfactory pattern separation. Neurosci Lett 2013; 545:50-3. [PMID: 23624024 DOI: 10.1016/j.neulet.2013.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022]
Abstract
Pattern separation plays an important role in perception and memory. In olfaction, pattern separation is critical component of piriform cortical odor processing contributing to behavioral perception of overlapping odor mixtures. Previous work has demonstrated that odor discrimination ability is modulated by acetylcholine. Here, we extended this previous work by using a distinct, well characterized complex odor stimulus set that has been shown to differentially involve pattern separation processes within piriform cortex. We find that the cholinergic muscarinic receptor agonist oxotremorine facilitates the acquisition of odor discrimination. Furthermore, the muscarinic receptor antagonist scopolamine impairs acquisition of odor discrimination even if the antagonist is limited to the piriform cortex. Finally, acetylcholine effects are most robust during discrimination acquisition, with minimal effects during expression.
Collapse
Affiliation(s)
- Julie Chapuis
- Child & Adolescent Psychiatry, New York University Langone School of Medicine, USA
| | | |
Collapse
|
31
|
Zakrzewska-Pniewska B, Gawel M, Szmidt-Salkowska E, Kepczynska K, Nojszewska M. Clinical and functional assessment of dysautonomia and its correlation in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2012; 27:592-9. [PMID: 23007287 PMCID: PMC10845696 DOI: 10.1177/1533317512459792] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aims were to assess dysautonomia in Alzheimer's Disease (AD), clinically and electrophysiologically, using sympathetic skin response (SSR) test and R-R interval variation (RRIV) test and to analyze the relationship between symptoms of dysautonomia and SSR/RRIV results. A tota of 54 patients with AD and 37 controls were evaluated using Autonomic Symptoms Questionnaire and SSR/RRIV test. Clinical dysautonomia was observed in 66% of patients (eg, orthostatic hypotension in 34.5%, constipation in 17.2%, urinary incontinence in 13.8%). The SSR test was abnormal in 26%, but the RRIV test was abnormal in 97.7% of cases; there was significant difference in RRIV test results between AD and controls (R mean 8.05% and 14.6%, respectively). In AD, clinical dysautonomia occurs at a various degree, and the abnormal SSR and RRIV test results were not always related to the presence of clinical dysautonomia; this observation points that the tests could be used as a useful tool in the assessment of subclinical dysautonomia.
Collapse
Affiliation(s)
| | - Malgorzata Gawel
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Abstract
Wider use of pharmacological models would facilitate the development of new drugs for Alzheimer's disease (AD), The two main models currently used are based on the cholinergic and glutamatergic hypotheses of AD, Although they lead to some of the attention and memory impairment observed in AD, they do not fully reproduce the AD pattern. The few studies that used a combination modeling approach, ie, the simultaneous administration of several drugs with the aim of impairing several neurotransmitters or different aspects of a single system, have reported no or marginal cumulative effect. On the basis of current understanding of glutamate and acetylcholine involvement in AD pathophysiology, we suggest that models using selective muscarinic-1 (M(1)) receptor blockers would better mimic the status of the cholinergic system in AD, This kind of model might be suitable for the assessment of drugs that do not act directly on the cholinergic system.
Collapse
Affiliation(s)
- C Gilles
- CNS Aging Research, FORENAP - Institute for Research in Neuroscience and Neuropsychiatry, Rouffach, France
| | | |
Collapse
|
33
|
O'Hara R, Derouesné C, Fountoulakis KN, Yesavage JA. Therapeutic approaches to age-associated neurocognitive disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033831 PMCID: PMC3181653 DOI: 10.31887/dcns.2001.3.3/rohara] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The United Nations projects that the number of individuals with dementia in developed countries alone will be approximately 36,7 million by the year 2050. International recognition of the significant emotional and economic burden of Alzheimer's disease has been matched by a dramatic increase in the development of pharmacological and nonpharmacological approaches to this illness in the past decade. Changing demographics have underscored the necessity to develop similar approaches for the remediation of the cognitive impairment associated with more benign syndromes, such as mild cognitive impairment (MCI) and age-associated cognitive decline (AACD). The present article aims to provide an overview of the most current therapeutic approaches to age-associated neurocognitive disorders. Additionally, it discusses the conceptual and methodological issues that surround the design, implementation, and interpretation of such approaches.
Collapse
Affiliation(s)
- R O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, Calif, USA
| | | | | | | |
Collapse
|
34
|
Krištofiková Z, Kříž Z, Řípová D, Koča J. Interactions of Amyloid β Peptide 1–40 and Cerebrosterol. Neurochem Res 2011; 37:604-13. [DOI: 10.1007/s11064-011-0650-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
35
|
Chambon C, Wegener N, Gravius A, Danysz W. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behav Brain Res 2011; 225:623-41. [PMID: 21884730 DOI: 10.1016/j.bbr.2011.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
A better understanding of Alzheimer's disease (AD) and the development of disease modifying therapies are some of the biggest challenges of the 21st century. One of the core features of AD are amyloid plaques composed of amyloid-beta (Aβ) peptides. The first hypothesis proposed that cognitive deficits are linked to plaque-development and transgenic mice have been generated to study this link, thereby providing a good model to develop new therapeutic approaches. Since later it was recognised that in AD patients the cognitive deficit is rather correlated to soluble amyloid levels, consequently, a new hypothesis appeared associating the earliest amyloid toxicity to these soluble species. The purpose of this review is to give a summary of behavioural and cellular data obtained after soluble Aβ peptide administration into rodents' brain, thereby showing that this model is a valid tool to investigate AD pathology when no plaques are present. Additionally, this method offers an excellent, efficient model to test compounds which could act at such early stages of the disease.
Collapse
Affiliation(s)
- Caroline Chambon
- In Vivo Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
36
|
Campbell NR, Fernandes CC, Halff AW, Berg DK. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci 2010; 30:8734-44. [PMID: 20592195 PMCID: PMC2905643 DOI: 10.1523/jneurosci.0931-10.2010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/19/2010] [Accepted: 05/12/2010] [Indexed: 12/20/2022] Open
Abstract
Neurogenesis in the dentate gyrus occurs throughout adult mammalian life and is essential for proper hippocampal function. Early in their development, adult-born neurons express homomeric alpha7-containing nicotinic acetylcholine receptors (alpha7-nAChRs) and receive direct cholinergic innervation. We show here that functional alpha7-nAChRs are necessary for normal survival, maturation, and integration of adult-born neurons in the dentate gyrus. Stereotaxic retroviral injection into the dentate gyrus of wild-type and alpha7-knock-out (alpha7KO) male and female mice was used to label and birthdate adult-born neurons for morphological and electrophysiological measures; BrdU (5-bromo-2-deoxyuridine) injections were used to quantify cell survival. In alpha7KO mice, we find that adult-born neurons develop with truncated, less complex dendritic arbors and display GABAergic postsynaptic currents with immature kinetics. The neurons also have a prolonged period of GABAergic depolarization characteristic of an immature state. In this condition, they receive fewer spontaneous synaptic currents and are more prone to die during the critical period when adult-born neurons are normally integrated into behaviorally relevant networks. Even those adult-born neurons that survive the critical period retain long-term dendritic abnormalities in alpha7KO mice. Interestingly, local infection with retroviral constructs to knockdown alpha7-mRNA mimics the alpha7KO phenotype, demonstrating that the relevant alpha7-nAChR signaling is cell autonomous. The results indicate a profound role for alpha7-nAChRs in adult neurogenesis and predict that alpha7-nAChR loss will cause progressive impairment in hippocampal circuitry and function over time as fewer neurons are added to the dentate gyrus and those that are added integrate less well.
Collapse
Affiliation(s)
- Nolan R. Campbell
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357, and
| | - Catarina C. Fernandes
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357, and
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Andrew W. Halff
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357, and
| | - Darwin K. Berg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357, and
| |
Collapse
|
37
|
Muralidharan P, Kumar VR, Balamurugan G. Protective effect of Morinda citrifolia
fruits on β-amyloid (25-35) induced cognitive dysfunction in mice: An experimental and biochemical study. Phytother Res 2009; 24:252-8. [DOI: 10.1002/ptr.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Jazi R, Lalonde R, Qian S, Strazielle C. Regional brain evaluation of acetylcholinesterase activity in PS1/A246E transgenic mice. Neurosci Res 2009; 63:106-14. [DOI: 10.1016/j.neures.2008.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
39
|
Effects of β-amyloid peptide on the density of M2 muscarinic acetylcholine receptor protein in the hippocampus of the rat: relationship with GABA-, calcium-binding protein and somatostatin-containing cells. Neuropathol Appl Neurobiol 2008; 34:506-22. [DOI: 10.1111/j.1365-2990.2007.00932.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Søderman A, Thomsen MS, Hansen HH, Nielsen EØ, Jensen MS, West MJ, Mikkelsen JD. The nicotinic α7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-β1–42. Brain Res 2008; 1227:240-7. [DOI: 10.1016/j.brainres.2008.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/14/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
41
|
Deuther-Conrad W, Patt JT, Lockman PR, Allen DD, Patt M, Schildan A, Ganapathy V, Steinbach J, Sabri O, Brust P. Norchloro-fluoro-homoepibatidine (NCFHEB) - a promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. Eur Neuropsychopharmacol 2008; 18:222-9. [PMID: 17728108 DOI: 10.1016/j.euroneuro.2007.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/27/2007] [Accepted: 07/05/2007] [Indexed: 11/15/2022]
Abstract
Cholinergic neurotransmission depends on the integrity of nicotinic acetylcholine receptors (nAChRs), and impairment of both is characteristic for various neurodegenerative diseases. Visualization of specific receptor subtypes by positron emission tomography (PET) has potential to assist with diagnosis of such neurodegenerative diseases and with design of suitable therapeutic approaches. The goal of our study was to evaluate in vivo the potential of (18)F-labelled (+)- and (-)-norchloro-fluoro-homoepibatidine ([(18)F]NCFHEB) in comparison to 2-[(18)F]F-A-85380 as PET tracers. In the brains of NMRI mice, highest levels of radioactivity were detected at 20 min post-injection of (+)-[(18)F]NCFHEB, (-)-[(18)F]NCFHEB, and 2-F-[(18)F]-A-85380 (7.45, 5.60, and 3.2% ID/g tissue, respectively). No marked pharmacological adverse effects were observed at 25 mug NCFHEB/kg. Uptake studies in RBE4 cells and in situ perfusion studies suggest an interaction of epibatidine and NCFHEB with the carrier-mediated choline transport at the blood-brain barrier. The data indicate that (+)- and (-)-[(18)F]NCFHEB have potential for further development as PET tracers.
Collapse
Affiliation(s)
- W Deuther-Conrad
- Institute of Interdisciplinary Isotope Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Goto Y, Niidome T, Hongo H, Akaike A, Kihara T, Sugimoto H. Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Eur J Pharmacol 2008; 583:84-91. [PMID: 18282567 DOI: 10.1016/j.ejphar.2008.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/07/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Cholinergic hypothesis and amyloid cascade hypothesis are mainly proposed for Alzheimer's disease; however, the relationship between these hypotheses is poorly understood. To address the question of whether amyloid beta-peptide pathology affects cholinergic neurotransmission, we examined the effect of a cholinesterase inhibitor, physostigmine, on field excitatory postsynaptic potentials (EPSPs) evoked by single-pulse stimulation in the CA1 region of the hippocampus of various APPswe/PS1dE9 transgenic mice with different degrees of amyloid beta-peptide pathology. Reduced field EPSPs by physostigmine in transgenic mice at 3 months of age, when the mice had negligible amyloid beta-peptide levels and no amyloid beta-peptide deposits, were indistinguishable from those in age-matched wild-type mice. In contrast, reduced field EPSPs by physostigmine in transgenic mice at 5 months of age, when the mice had low amyloid beta-peptide levels and subtle amyloid beta-peptide deposits, were significantly lower than those in age-matched wild-type mice. Next, we characterized acetylcholine receptors, which play important roles in cholinergic neurotransmission, because physostigmine resulted in increased acetylcholine levels in the synaptic cleft. Different reductions of field EPSPs by physostigmine between transgenic and wild-type mice at 5 months of age were not affected by a nicotinic receptor antagonist, mecamylamine; however, reduced field EPSPs by physostigmine in both transgenic and wild-type mice were restored to basal levels by a muscarinic receptor antagonist, atropine. These results indicate that cholinergic modulation of glutamatergic transmission is already impaired at the onset of the formation of amyloid beta-peptide deposits, and muscarinic receptor dysfunction is one of the causes of this impairment.
Collapse
Affiliation(s)
- Yasuaki Goto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Chen G, Chen P, Tan H, Ma D, Dou F, Feng J, Yan Z. Regulation of the NMDA receptor-mediated synaptic response by acetylcholinesterase inhibitors and its impairment in an animal model of Alzheimer's disease. Neurobiol Aging 2007; 29:1795-804. [PMID: 17555845 PMCID: PMC2613405 DOI: 10.1016/j.neurobiolaging.2007.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/30/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The cholinergic system is crucial for cognitive processes and the deficient acetylcholine (ACh) function has been implicated in Alzheimer's disease (AD). Inhibitors of acetylcholinesterase (AChE), which act to enhance cholinergic function by prolonging the action of endogenously released ACh, have been used as the major therapy of AD. To understand the functional roles of cholinergic enhancement in prefrontal cortex (PFC), a key brain region for cognition, we examined the impact of AChE inhibitors in PFC neurons on synaptic responses mediated by the NMDA receptor (NMDAR), an important player in learning and memory. We found that AChE inhibitors produced a strong and persistent reduction of the amplitude of NMDA receptor-mediated excitatory postsynaptic current (NMDAR-EPSC). This effect was mainly mediated by nicotinic ACh receptors, and through a Ca(2+)-dependent mechanism. Inhibition of extracellular signal-regulated kinases (ERK) abolished the regulation of NMDAR function by AChE inhibitors, suggesting the involvement of ERK. In the transgenic mouse model of AD overexpressing mutant beta-amyloid precursor protein (APP), the effect of AChE inhibitors on NMDAR-EPSC was significantly impaired, which was associated with their diminished effect on ERK activation. Taken together, these results suggest that one of the key targets of endogenous ACh involved in cognition is the NMDAR-mediated transmission. Loss of the regulation of synaptic NMDAR responses by endogenous ACh may contribute to the cognitive deficiency in AD.
Collapse
Affiliation(s)
- Guojun Chen
- Dept. of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Paul Chen
- Dept. of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Huibing Tan
- Dept. of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Da Ma
- Dept. Genetics and Development Biology, Southeast University Medical School, Nanjing, China
| | - Fei Dou
- Dept. Genetics and Development Biology, Southeast University Medical School, Nanjing, China
| | - Jian Feng
- Dept. of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Zhen Yan
- Dept. of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Correspondence should be addressed to Zhen Yan, Ph.D., Department of Physiology and Biophysics, State University of New York at Buffalo, 124 Sherman Hall, Buffalo, NY, 14214, USA. . Tel: 716-829-3058. Fax: 716-829-2699
| |
Collapse
|
44
|
Feldman HH, Ferris S, Winblad B, Sfikas N, Mancione L, He Y, Tekin S, Burns A, Cummings J, del Ser T, Inzitari D, Orgogozo JM, Sauer H, Scheltens P, Scarpini E, Herrmann N, Farlow M, Potkin S, Charles HC, Fox NC, Lane R. Effect of rivastigmine on delay to diagnosis of Alzheimer's disease from mild cognitive impairment: the InDDEx study. Lancet Neurol 2007; 6:501-12. [PMID: 17509485 DOI: 10.1016/s1474-4422(07)70109-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the effect of rivastigmine in patients with mild cognitive impairment (MCI) on the time to clinical diagnosis of Alzheimer's disease (AD) and the rate of cognitive decline. METHODS The study was a double-blind, randomised, placebo-controlled trial of up to 48 months. All patients had MCI operationally defined by having cognitive symptoms, a global clinical dementia rating stage of 0.5, a score of less than 9 on the New York University delayed paragraph recall test, and by not meeting the diagnostic criteria for AD. Primary efficacy variables were time to clinical diagnosis of AD, and change in performance on a cognitive test battery. This study is registered with the US National Institutes of Health clinical trials database (ClinicalTrials.gov), number NCT00000174. FINDINGS Of 1018 study patients enrolled, 508 were randomly assigned to rivastigmine and 510 to placebo; 17.3% of patients on rivastigmine and 21.4% on placebo progressed to AD (hazard ratio 0.85 [95% CI 0.64-1.12]; p=0.225). There was no significant difference between the rivastigmine and placebo groups on the standardised Z score for the cognitive test battery measured as mean change from baseline to endpoint (-0.10 [95% CI -0.63 to 0.44], p=0.726). Serious adverse events were reported by 141 (27.9%) rivastigmine-treated patients and 155 (30.5%) patients on placebo; adverse events of all types were reported by 483 (95.6%) rivastigmine-treated patients and 472 (92.7%) placebo-treated patients. The predominant adverse events were cholinergic: the frequencies of nausea, vomiting, diarrhoea, and dizziness were two to four times higher in the rivastigmine group than in the placebo group. INTERPRETATION There was no significant benefit of rivastigmine on the progression rate to AD or on cognitive function over 4 years. The overall rate of progression from MCI to AD in this randomised clinical trial was much lower than predicted. Rivastigmine treatment was not associated with any significant safety concerns.
Collapse
Affiliation(s)
- Howard H Feldman
- Division of Neurology, University of British Columbia Hospital, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
González I, Arévalo-Serrano J, Sanz-Anquela JM, Gonzalo-Ruiz A. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya. Acta Neuropathol 2007; 113:637-51. [PMID: 17294199 DOI: 10.1007/s00401-007-0201-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.
Collapse
Affiliation(s)
- Iván González
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and León, University of Valladolid, Campus de los Pajaritos de Soria, 42004 Soria, Spain
| | | | | | | |
Collapse
|
46
|
Chauhan NB. Intracerebroventricular passive immunization with anti-oligoAbeta antibody in TgCRND8. J Neurosci Res 2007; 85:451-63. [PMID: 17086547 DOI: 10.1002/jnr.21110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Based on the central dogma of beta-amyloid (Abeta) as a key seeding event in the pathogenesis of Alzheimer disease (AD), immunoneutralization strategies have been actively pursued both in AD and in models of AD as a potential means for treating AD. Both active and passive immunizations targeted at fibrillar Abeta successfully remove cerebral plaque load and attenuate Abeta-induced toxicity. Consistently with this, intracerebroventricular (ICV) passive immunization established in our laboratory using antibody against fibrillar Abeta (anti-fAbeta) reduced cerebral plaque load and reversed early synaptic deficits at pre/early plaque stage when there is an abundance of soluble dimeric/oligomeric Abeta but sparse fibrillar Abeta, indicating that anti-fAbeta-mediated partial neutralization of toxic oligomeric Abeta species might have reduced early synaptotoxicity. In the previous investigation, we found that immunoneutralization with anti-fAbeta transiently reduced cerebral Abeta and associated toxicity. The current investigation tested whether ICV im munization using antibody to conformationally changed oligomeric Abeta (anti-oligoAbeta) will overcome the transient restorative nature of anti-fAbeta and produce persistent, long-lasting preventive effects. Because oligomeric Abeta is strongly correlated with synaptotoxicity, we investigated whether immunoneutralization of oligomeric Abeta will reverse synaptic deficits by analyzing presynaptic molecular marker (SNAP-25) profile within hippocampal dendritic fields, where SNAP-25 is abundantly expressed. Results show that, in contrast to ICV anti-fAbeta antibody, ICV anti-oligoAbeta antibody significantly prevented cerebral Abeta build and almost completely restored SNAP-25 immunoreaction up to 8 weeks postinjection in TgCRND8 brain. Results show that ICV passive immunization with anti-oligoAbeta antibody might be an improved ICV immunization strategy for preventing permanent structural damage in AD.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Research and Development (151), Jesse Brown VA Medical Center Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
47
|
|
48
|
Morbo di Alzheimer. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Abstract
Neuronal degeneration is a key feature of both Alzheimer disease (AD) and vascular dementia (VaD). Although the exact cause(s) of neurodegeneration in AD is uncertain, strong candidates are beta-amyloid and neurofibrillary tangles (NFT) within neurons. VaD arises as a consequence of ischemic insults such as hemorrhage and hypoperfusion that trigger neurodegeneration by depriving the cells of oxygen and glucose. The initial insults in AD and VaD result in regional differences in the pattern of neurodegeneration, with cholinergic and glutamatergic neurons being particularly vulnerable in AD, and neurons of whatever neurochemical phenotype close to the vascular insult being more at risk of death in VaD. Although the initial trigger of neurodegeneration and the population of neurons affected differ in AD and VaD, there is considerable overlap in the downstream pathways that mediate cell death. As a consequence there are, therefore, a number of levels in the cytotoxic pathway common to AD and VaD at which a neuroprotective agent might be targeted.
Collapse
Affiliation(s)
- Paul Francis
- Wolfson Centre for Age-related Disorders, King's College London, London, UK.
| |
Collapse
|
50
|
Bielarczyk H, Gul S, Ronowska A, Bizon-Zygmanska D, Pawelczyk T, Szutowicz A. RS-alpha-lipoic acid protects cholinergic cells against sodium nitroprusside and amyloid-beta neurotoxicity through restoration of acetyl-CoA level. J Neurochem 2006; 98:1242-51. [PMID: 16787407 DOI: 10.1111/j.1471-4159.2006.03966.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The work presented here verifies the hypothesis that RS-alpha-lipoic acid may exert its cholinoprotective and cholinotrophic activities through the maintenance of appropriate levels of acetyl-CoA in mitochondrial and cytoplasmic compartments of cholinergic neurons. Sodium nitroprusside (SNP) and amyloid-beta decreased pyruvate dehydrogenase, choline acetyltransferase activities, acetyl-CoA content in mitochondria and cytoplasm, as well as increased fraction of non-viable, trypan blue positive cells in cultured differentiated cholinergic SN56 neuroblastoma cells. Lipoic acid totally reversed toxin-evoked suppression of choline acetyltrasferase and pyruvate dehydrogenase activities, as well as mitochondrial and cytoplasmic acetyl-CoA levels, and partially attenuated increase of cell mortality. Significant negative correlations were found between enzyme activities, acetyl-CoA levels and cell mortality in different neurotoxic and neuroprotective conditions employed here. The level of cytoplamic acetyl-CoA correlated with mitochondrial acetyl-CoA, whereas choline acetyltransferase activity followed shifts in cytoplasmic acetyl-CoA. Thus, we conclude that, in cholinergic neurons, particular elements of the pyruvate-acetyl-CoA-acetylcholine pathway form a functional unit responding uniformly to nerotoxic and neuroprotectory conditions.
Collapse
Affiliation(s)
- Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|