1
|
Rigby M, Grillo FW, Compans B, Neves G, Gallinaro J, Nashashibi S, Horton S, Pereira Machado PM, Carbajal MA, Vizcay-Barrena G, Levet F, Sibarita JB, Kirkland A, Fleck RA, Clopath C, Burrone J. Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens. Cell Rep 2023; 42:112397. [PMID: 37074915 PMCID: PMC10695768 DOI: 10.1016/j.celrep.2023.112397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/21/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Excitatory synapses are typically described as single synaptic boutons (SSBs), where one presynaptic bouton contacts a single postsynaptic spine. Using serial section block-face scanning electron microscopy, we found that this textbook definition of the synapse does not fully apply to the CA1 region of the hippocampus. Roughly half of all excitatory synapses in the stratum oriens involved multi-synaptic boutons (MSBs), where a single presynaptic bouton containing multiple active zones contacted many postsynaptic spines (from 2 to 7) on the basal dendrites of different cells. The fraction of MSBs increased during development (from postnatal day 22 [P22] to P100) and decreased with distance from the soma. Curiously, synaptic properties such as active zone (AZ) or postsynaptic density (PSD) size exhibited less within-MSB variation when compared with neighboring SSBs, features that were confirmed by super-resolution light microscopy. Computer simulations suggest that these properties favor synchronous activity in CA1 networks.
Collapse
Affiliation(s)
- Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Federico W Grillo
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Benjamin Compans
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Julia Gallinaro
- Bioengineering Department, Imperial College London, London, UK
| | - Sophie Nashashibi
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Angus Kirkland
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
2
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
3
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
4
|
Postnatal Maturation of Glutamatergic Inputs onto Rat Jaw-closing and Jaw-opening Motoneurons. Neuroscience 2022; 480:42-55. [PMID: 34780923 DOI: 10.1016/j.neuroscience.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Motoneurons that innervate the jaw-closing and jaw-opening muscles play a critical role in oro-facial behaviors, including mastication, suckling, and swallowing. These motoneurons can alter their physiological properties through the postnatal period during which feeding behavior shifts from suckling to mastication; however, the functional synaptic properties of developmental changes in these neurons remain unknown. Thus, we explored the postnatal changes in glutamatergic synaptic transmission onto the motoneurons that innervate the jaw-closing and jaw-opening musculatures during early postnatal development in rats. We measured miniature excitatory postsynaptic currents (mEPSCs) mediated by non-NMDA receptors (non-NMDA mEPSCs) and NMDA receptors in the masseter and digastric motoneurons. The amplitude, frequency, and rise time of non-NMDA mEPSCs remained unchanged among postnatal day (P)2-5, P9-12, and P14-17 age groups in masseter motoneurons, whereas the decay time dramatically decreased with age. The properties of the NMDA mEPSCs were more predominant at P2-5 masseter motoneurons, followed by reduction as neurons matured. The decay time of NMDA mEPSCs of masseter motoneurons also shortened remarkably across development. Furthermore, the proportion of NMDA/non-NMDA EPSCs induced in response to the electrical stimulation of the supratrigeminal region was quite high in P2-5 masseter motoneurons, and then decreased toward P14-17. In contrast to masseter motoneurons, digastric motoneurons showed unchanged properties in non-NMDA and NMDA EPSCs throughout postnatal development. Our results suggest that the developmental patterns of non-NMDA and NMDA receptor-mediated inputs vary among jaw-closing and jaw-opening motoneurons, possibly related to distinct roles of respective motoneurons in postnatal development of feeding behavior.
Collapse
|
5
|
Hintze A, Gültas M, Semmelhack EA, Wichmann C. Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice. iScience 2021; 24:102282. [PMID: 33851098 PMCID: PMC8022229 DOI: 10.1016/j.isci.2021.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Endbulbs of Held are located in the anteroventral cochlear nucleus and present the first central synapses of the auditory pathway. During development, endbulbs mature functionally to enable rapid and powerful synaptic transmission with high temporal precision. This process is accompanied by morphological changes of endbulb terminals. Loss of the hair cell-specific protein otoferlin (Otof) abolishes neurotransmission in the cochlea and results in the smaller endbulb of Held terminals. Thus, peripheral hearing impairment likely also leads to alterations in the morphological synaptic vesicle (SV) pool size at individual endbulb of Held active zones (AZs). Here, we investigated endbulb AZs in pre-hearing, young, and adult wild-type and Otof−/− mice. During maturation, SV numbers at endbulb AZs increased in wild-type mice but were found to be reduced in Otof−/− mice. The SV population at a distance of 0–15 nm was most strongly affected. Finally, overall SV diameters decreased in Otof−/− animals during maturation. Maturation of wt endbulb of Held active zones leads to more synaptic vesicles At endbulbs of otoferlin knockout mice, synaptic vesicles decline with age Mainly two distinct synaptic vesicle populations are affected Synaptic vesicles sizes are reduced in six-month-old otoferlin knockout animals
Collapse
Affiliation(s)
- Anika Hintze
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Esther A Semmelhack
- Developmental, Neural, and Behavioral Biology MSc/PhD Program, University of Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Wu C, Peng Y, Liu Y, Wei J, Xiao Z. Synaptic excitation underlies processing of paired stimulation in the mouse inferior colliculus. Eur J Neurosci 2021; 53:2511-2531. [PMID: 33595869 DOI: 10.1111/ejn.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
The inferior colliculus (IC) receives inputs from the ascending auditory pathway and helps localize the sound source by shaping neurons' responses. However, the contributions of excitatory or inhibitory synaptic inputs evoked by paired binaural stimuli with different inter-stimulus intervals to auditory responses of IC neurons remain unclear. Here, we firstly investigated the IC neuronal response to the paired binaural stimuli with different inter-stimulus intervals using in vivo loose-patch recordings in anesthetized C57BL/6 mice. It was found that the total acoustic evoked spikes remained unchanged under microsecond interval conditions, but persistent suppression would be observed when the time intervals were extended. We further studied the paired binaural stimuli evoked excitatory/inhibitory inputs using in vivo whole-cell voltage-clamp techniques and blockage of the auditory nerve. The amplitudes of the contralateral excitatory inputs could be suppressed, unaffected or facilitated as the interaural delay varied. In contrast, contralateral inhibitory inputs and ipsilateral synaptic inputs remained almost unchanged. Most IC neurons exhibited the suppression of contralateral excitatory inputs over the interval range of dozens of milliseconds. The facilitative effect was generated by the summation of contralateral and ipsilateral excitation. Suppression and facilitation were completely abolished when ipsilateral auditory nerve was blocked pharmacologically, indicating that these effects were exerted by ipsilateral stimulation. These results suggested that the IC would inherit the binaural inputs integrated at the brainstem as well as within the IC and synaptic excitations, modulated by ipsilateral stimulation, underlie the binaural acoustic response.
Collapse
Affiliation(s)
- Chaochen Wu
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Yunyi Peng
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Yun Liu
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Jinxing Wei
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. Curr Top Dev Biol 2021; 142:371-407. [PMID: 33706922 DOI: 10.1016/bs.ctdb.2020.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
8
|
Sierksma MC, Slotman JA, Houtsmuller AB, Borst JGG. Structure-function relation of the developing calyx of Held synapse in vivo. J Physiol 2020; 598:4603-4619. [PMID: 33439501 PMCID: PMC7689866 DOI: 10.1113/jp279976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS During development the giant, auditory calyx of Held forms a one-to-one connection with a principal neuron of the medial nucleus of the trapezoid body. While anatomical studies described that most of the target cells are temporarily contacted by multiple calyces, multi-calyceal innervation was only sporadically observed in in vivo recordings, suggesting a structure-function discrepancy. We correlated synaptic strength of inputs, identified in in vivo recordings, with post hoc labelling of the recorded neuron and synaptic terminals containing vesicular glutamate transporters (VGluT). During development only one input increased to the level of the calyx of Held synapse, and its strength correlated with the large VGluT cluster contacting the postsynaptic soma. As neither competing strong inputs nor multiple large VGluT clusters on a single cell were observed, our findings did not indicate a structure-function discrepancy. ABSTRACT In adult rodents, a principal neuron in the medial nucleus of the trapezoid (MNTB) is generally contacted by a single, giant axosomatic terminal called the calyx of Held. How this one-on-one relation is established is still unknown, but anatomical evidence suggests that during development principal neurons are innervated by multiple calyces, which may indicate calyceal competition. However, in vivo electrophysiological recordings from principal neurons indicated that only a single strong synaptic connection forms per cell. To test whether a mismatch exists between synaptic strength and terminal size, we compared the strength of synaptic inputs with the morphology of the synaptic terminals. In vivo whole-cell recordings of the MNTB neurons from newborn Wistar rats of either sex were made while stimulating their afferent axons, allowing us to identify multiple inputs. The strength of the strongest input increased to calyceal levels in a few days across cells, while the strength of the second strongest input was stable. The recorded cells were subsequently immunolabelled for vesicular glutamate transporters (VGluT) to reveal axosomatic terminals with structured-illumination microscopy. Synaptic strength of the strongest input was correlated with the contact area of the largest VGluT cluster at the soma (r = 0.8), and no indication of a mismatch between structure and strength was observed. Together, our data agree with a developmental scheme in which one input strengthens and becomes the calyx of Held, but not with multi-calyceal competition.
Collapse
Affiliation(s)
- Martijn C Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands.,Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, F-75012, France
| | - Johan A Slotman
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
9
|
Nanostructural Diversity of Synapses in the Mammalian Spinal Cord. Sci Rep 2020; 10:8189. [PMID: 32424125 PMCID: PMC7235094 DOI: 10.1038/s41598-020-64874-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form ‘tripartite synapses’, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.
Collapse
|
10
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
11
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Simeone X, Karch R, Ciuraszkiewicz A, Orr‐Urtreger A, Lemmens‐Gruber R, Scholze P, Huck S. The role of the nAChR subunits α5, β2, and β4 on synaptic transmission in the mouse superior cervical ganglion. Physiol Rep 2019; 7:e14023. [PMID: 30891952 PMCID: PMC6424856 DOI: 10.14814/phy2.14023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Our previous immunoprecipitation analysis of nicotinic acetylcholine receptors (nAChRs) in the mouse superior cervical ganglion (SCG) revealed that approximately 55%, 24%, and 21% of receptors are comprised of α3β4, α3β4α5, and α3β4β2 subunits, respectively. Moreover, mice lacking β4 subunits do not express α5-containing receptors but still express a small number of α3β2 receptors. Here, we investigated how synaptic transmission is affected in the SCG of α5β4-KO and α5β2-KO mice. Using an ex vivo SCG preparation, we stimulated the preganglionic cervical sympathetic trunk and measured compound action potentials (CAPs) in the postganglionic internal carotid nerve. We found that CAP amplitude was unaffected in α5β4-KO and α5β2-KO ganglia, whereas the stimulation threshold for eliciting CAPs was significantly higher in α5β4-KO ganglia. Moreover, intracellular recordings in SCG neurons revealed no difference in EPSP amplitude. We also found that the ganglionic blocking agent hexamethonium was the most potent in α5β4-KO ganglia (IC50 : 22.1 μmol/L), followed by α5β2-KO (IC50 : 126.7 μmol/L) and WT ganglia (IC50 : 389.2 μmol/L). Based on these data, we estimated an IC50 of 568.6 μmol/L for a receptor population consisting solely of α3β4α5 receptors; and we estimated that α3β4α5 receptors comprise 72% of nAChRs expressed in the mouse SCG. Similarly, by measuring the effects of hexamethonium on ACh-induced currents in cultured SCG neurons, we found that α3β4α5 receptors comprise 63% of nAChRs. Thus, in contrast to our results obtained using immunoprecipitation, these data indicate that the majority of receptors at the cell surface of SCG neurons consist of α3β4α5.
Collapse
Affiliation(s)
- Xenia Simeone
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Rudolf Karch
- Institute of Biosimulation and BioinformaticsCenter for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | - Anna Ciuraszkiewicz
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
- Present address:
Research Group Molecular PhysiologyLeibniz Institute for NeurobiologyBrenneckestraße 6D‐39118MagdeburgGermany
| | - Avi Orr‐Urtreger
- Genetic InstituteTel Aviv Sourasky Medical Center and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | | | - Petra Scholze
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sigismund Huck
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
13
|
ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins. Proc Natl Acad Sci U S A 2018; 115:E9717-E9726. [PMID: 30242134 PMCID: PMC6187130 DOI: 10.1073/pnas.1809382115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurogenetic studies demonstrate that copy number variations (CNVs) in the ASTN2 gene occur in patients with neurodevelopmental disorders (NDDs), including autism spectrum. Here, we show that ASTN2 associates with recycling and degradative vesicles in cerebellar neurons, and binds to and promotes the endocytic trafficking and degradation of synaptic proteins. Overexpression of ASTN2 in neurons increases synaptic activity and reduces the levels of ASTN2 binding partners, an effect dependent on its FNIII domain, which is recurrently perturbed by CNVs in patients with NDDs. These findings suggest that ASTN2 is a key regulator of dynamic trafficking of synaptic proteins and lend support to the idea that aberrant regulation of protein homeostasis in neurons is a contributing cause of complex NDDs. Surface protein dynamics dictate synaptic connectivity and function in neuronal circuits. ASTN2, a gene disrupted by copy number variations (CNVs) in neurodevelopmental disorders, including autism spectrum, was previously shown to regulate the surface expression of ASTN1 in glial-guided neuronal migration. Here, we demonstrate that ASTN2 binds to and regulates the surface expression of multiple synaptic proteins in postmigratory neurons by endocytosis, resulting in modulation of synaptic activity. In cerebellar Purkinje cells (PCs), by immunogold electron microscopy, ASTN2 localizes primarily to endocytic and autophagocytic vesicles in the cell soma and in subsets of dendritic spines. Overexpression of ASTN2 in PCs, but not of ASTN2 lacking the FNIII domain, recurrently disrupted by CNVs in patients, including in a family presented here, increases inhibitory and excitatory postsynaptic activity and reduces levels of ASTN2 binding partners. Our data suggest a fundamental role for ASTN2 in dynamic regulation of surface proteins by endocytic trafficking and protein degradation.
Collapse
|
14
|
Gjoni E, Aguet C, Sahlender DA, Knott G, Schneggenburger R. Ultrastructural basis of strong unitary inhibition in a binaural neuron. J Physiol 2018; 596:4969-4982. [PMID: 30054922 DOI: 10.1113/jp276015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Neurons of the lateral superior olive (LSO) in the brainstem receive powerful glycinergic inhibition that originates from the contralateral ear, and that plays an important role in sound localization. We investigated the ultrastructural basis for strong inhibition of LSO neurons using serial block face scanning electron microscopy. The soma and the proximal dendrite of an LSO neuron are surrounded by a high density of inhibitory axons, whereas excitatory axons are much sparser. A given inhibitory axon establishes contacts via several large axonal thickenings, called varicosities, which typically elaborate several active zones (range 1-11). The number of active zones across inhibitory axon segments is variable. These data thus provide an ultrastructural correlate for the strong and multiquantal, but overall variable, unitary IPSC amplitude observed for inhibitory inputs to LSO neuron. ABSTRACT Binaural neurons in the lateral superior olive (LSO) integrate sound information arriving from each ear, and powerful glycinergic inhibition of these neurons plays an important role in this process. In the present study, we investigated the ultrastructural basis for strong inhibitory inputs onto LSO neurons using serial block face scanning electron microscopy. We reconstructed axon segments that make contact with the partially reconstructed soma and proximal dendrite of a mouse LSO neuron at postnatal day 18. Using functional measurements and the Sr2+ method, we find a constant quantal size but a variable quantal content between 'weak' and 'strong' unitary IPSCs. A 3-D reconstruction of a LSO neuron and its somatic synaptic afferents reveals how a large number of inhibitory axons intermingle in a complex fashion on the soma and proximal dendrite of an LSO neuron; a smaller number of excitatory axons was also observed. A given inhibitory axon typically contacts an LSO neuron via several large varicosities (average diameter 3.7 μm), which contain several active zones (range 1-11). The number of active zones across individual axon segments was highly variable. These data suggest that the variable unitary IPSC amplitude is caused by a variable number of active zones between inhibitory axons that innervate a given LSO neuron. The results of the present study show that relatively large multi-active zone varicosities, which can be repeated many times in a given presynaptic axon, provide the ultrastructural basis for the strong multiquantal inhibition received by LSO neurons.
Collapse
Affiliation(s)
- Enida Gjoni
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clémentine Aguet
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Master's Program Life Science and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniela A Sahlender
- Bioelectron Microscopy Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Graham Knott
- Bioelectron Microscopy Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Muniak MA, Ayeni FE, Ryugo DK. Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hear Res 2018; 364:104-117. [DOI: 10.1016/j.heares.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 12/17/2022]
|
16
|
García-Cabezas MÁ, Barbas H. Anterior Cingulate Pathways May Affect Emotions Through Orbitofrontal Cortex. Cereb Cortex 2017; 27:4891-4910. [PMID: 27655930 PMCID: PMC6075591 DOI: 10.1093/cercor/bhw284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
The anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) are associated with emotional regulation. These regions are old in phylogeny and have widespread connections with eulaminate neocortices, intricately linking areas associated with emotion and cognition. The ACC and pOFC have distinct cortical and subcortical connections and are also interlinked, but the pattern of their connections-which may be used to infer the flow of information between them-is not well understood. Here we found that pathways from ACC area 32 innervated all pOFC areas with a significant proportion of large and efficient terminals, seen at the level of the system and the synapse. The pathway from area 32 targeted overwhelmingly elements of excitatory neurons in pOFC, with few postsynaptic sites found on presumed inhibitory neurons. Moreover, pathways from area 32 originated mostly in the upper layers and innervated preferentially the middle-deep layers of the least differentiated pOFC areas, in a pattern reminiscent of feedforward communication. Pathway terminations from area 32 overlapped in the deep layers of pOFC with output pathways that project to the thalamus and the amygdala, and may have cascading downstream effects on emotional and cognitive processes and their disruption in psychiatric disorders.
Collapse
Affiliation(s)
- Miguel Á. García-Cabezas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| | - Helen Barbas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| |
Collapse
|
17
|
Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J Neurosci 2017; 36:6097-115. [PMID: 27251629 DOI: 10.1523/jneurosci.3804-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.
Collapse
|
18
|
Held M, Berz A, Hensgen R, Muenz TS, Scholl C, Rössler W, Homberg U, Pfeiffer K. Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex. Front Behav Neurosci 2016; 10:186. [PMID: 27774056 PMCID: PMC5053983 DOI: 10.3389/fnbeh.2016.00186] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/21/2016] [Indexed: 02/05/2023] Open
Abstract
While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body’s (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.
Collapse
Affiliation(s)
- Martina Held
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| | - Annuska Berz
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| | - Thomas S Muenz
- Biozentrum, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Christina Scholl
- Biozentrum, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Wolfgang Rössler
- Biozentrum, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| |
Collapse
|
19
|
Central presynaptic terminals are enriched in ATP but the majority lack mitochondria. PLoS One 2015; 10:e0125185. [PMID: 25928229 PMCID: PMC4416033 DOI: 10.1371/journal.pone.0125185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.
Collapse
|
20
|
Trojanova J, Kulik A, Janacek J, Kralikova M, Syka J, Turecek R. Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal. Front Neural Circuits 2014; 8:120. [PMID: 25339867 PMCID: PMC4186306 DOI: 10.3389/fncir.2014.00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/12/2014] [Indexed: 11/13/2022] Open
Abstract
The physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy. We performed a quantitative analysis of GlyR-associated immunogold (IG) labeling in 3D reconstructed calyceal segments. A variable density of IG particles and their putative accumulations, inferred from the frequency distribution of inter-IG distances, indicated a non-uniform distribution of the receptors in the calyx. Subsequently, increased densities of IG particles were found in calyceal swellings, structures characterized by extensive exocytosis of glutamate. In swellings as well as in larger calyceal stalks, IG particles did not tend to accumulate near the glutamate releasing zones. On the other hand, GlyRs in swellings (but not in stalks) preferentially occupied membrane regions, unconnected to postsynaptic cells and presumably accessible by ambient glycine. Furthermore, the sites with increased GlyR concentrations were found in swellings tightly juxtaposed with GABA/glycinergic nerve endings. Thus, the results support the concept of an indirect mechanism underlying the modulatory effects of calyceal GlyRs, activated by glycine spillover. We also suggest the existence of an activity-dependent mechanism regulating the surface distribution of α homomeric GlyRs in axonal terminals of central neurons.
Collapse
Affiliation(s)
- Johana Trojanova
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Akos Kulik
- Department of Physiology II, University of Freiburg Freiburg, Germany ; BIOSS Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| | - Jiri Janacek
- Department of Biomathematics, Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Michaela Kralikova
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Rostislav Turecek
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
21
|
Deardorff AS, Romer SH, Sonner PM, Fyffe REW. Swimming against the tide: investigations of the C-bouton synapse. Front Neural Circuits 2014; 8:106. [PMID: 25278842 PMCID: PMC4167003 DOI: 10.3389/fncir.2014.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a “signaling ensemble”) for cholinergic regulation of outward K+ currents. Moreover, synaptic reorganization at these critical sites has been observed in a variety of pathologic states. Yet despite recent advances, there are still great challenges for understanding the role of C-bouton regulation and dysregulation in human health and disease. The development of new therapeutic interventions for devastating neurological conditions will rely on a complete understanding of the molecular mechanisms that underlie these complex synapses. Therefore, to close this review, we propose a comprehensive hypothetical mechanism for the cholinergic modification of α-MN excitability at C-bouton synapses, based on findings in several well-characterized neuronal systems.
Collapse
Affiliation(s)
- Adam S Deardorff
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Shannon H Romer
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Patrick M Sonner
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Robert E W Fyffe
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| |
Collapse
|
22
|
Köck J, Kreher S, Lehmann K, Riedel R, Bardua M, Lischke T, Jargosch M, Haftmann C, Bendfeldt H, Hatam F, Mashreghi MF, Baumgrass R, Radbruch A, Chang HD. Nuclear factor of activated T cells regulates the expression of interleukin-4 in Th2 cells in an all-or-none fashion. J Biol Chem 2014; 289:26752-26761. [PMID: 25037220 PMCID: PMC4175318 DOI: 10.1074/jbc.m114.587865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens.
Collapse
Affiliation(s)
- Juliana Köck
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephan Kreher
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katrin Lehmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - René Riedel
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Bardua
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Lischke
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Manja Jargosch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Haftmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanna Bendfeldt
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Farahnaz Hatam
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Ria Baumgrass
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Bunce JG, Zikopoulos B, Feinberg M, Barbas H. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices. J Comp Neurol 2014; 521:4260-83. [PMID: 23839697 DOI: 10.1002/cne.23413] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/19/2023]
Abstract
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases.
Collapse
Affiliation(s)
- Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, 02215
| | | | | | | |
Collapse
|
24
|
Gao XP, Liu Q, Nair B, Wong-Riley MTT. Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. Eur J Neurosci 2014; 40:2183-95. [PMID: 24666389 DOI: 10.1111/ejn.12568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | | | | | |
Collapse
|
25
|
Michalski N, Babai N, Renier N, Perkel D, Chédotal A, Schneggenburger R. Robo3-Driven Axon Midline Crossing Conditions Functional Maturation of a Large Commissural Synapse. Neuron 2013; 78:855-68. [DOI: 10.1016/j.neuron.2013.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
26
|
Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C, Knott G, Schneggenburger R. BMP signaling specifies the development of a large and fast CNS synapse. Nat Neurosci 2013; 16:856-64. [PMID: 23708139 DOI: 10.1038/nn.3414] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Abstract
Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, the mechanisms that determine synapse size in CNS circuits are largely unknown. Here we use the calyx of Held synapse, a major relay in the auditory system, to identify and study signaling pathways that specify large nerve terminal size and fast synaptic transmission. Using genome-wide screening, we identified bone morphogenetic proteins (BMPs) as candidate signaling molecules in the area of calyx synapses. Conditional deletion of BMP receptors in the auditory system of mice led to aberrations of synapse morphology and function specifically at the calyx of Held, with impaired nerve terminal growth, loss of monoinnervation and less mature transmitter release properties. Thus, BMP signaling specifies large and fast-transmitting synapses in the auditory system in a process that shares homologies with, but also extends beyond, retrograde BMP signaling at Drosophila neuromuscular synapses.
Collapse
Affiliation(s)
- Le Xiao
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Differential distribution of glycine receptor subtypes at the rat calyx of Held synapse. J Neurosci 2013; 32:17012-24. [PMID: 23175852 DOI: 10.1523/jneurosci.1547-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of glycine receptors (GlyRs) depend upon their subunit composition. While the prevalent adult forms of GlyRs are heteromers, previous reports suggested functional α homomeric receptors in mature nervous tissues. Here we show two functionally different GlyRs populations in the rat medial nucleus of trapezoid body (MNTB). Postsynaptic receptors formed α1/β-containing clusters on somatodendritic domains of MNTB principal neurons, colocalizing with glycinergic nerve endings to mediate fast, phasic IPSCs. In contrast, presynaptic receptors on glutamatergic calyx of Held terminals were composed of dispersed, homomeric α1 receptors. Interestingly, the parent cell bodies of the calyces of Held, the globular bushy cells of the cochlear nucleus, expressed somatodendritic receptors (α1/β heteromers) and showed similar clustering and pharmacological profile as GlyRs on MNTB principal cells. These results suggest that specific targeting of GlyR β-subunit produces segregation of GlyR subtypes involved in two different mechanisms of modulation of synaptic strength.
Collapse
|
28
|
da Silva AJ, Lima RF, Moret MA. Nonextensivity and self-affinity in the mammalian neuromuscular junction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041925. [PMID: 22181193 DOI: 10.1103/physreve.84.041925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/05/2011] [Indexed: 05/31/2023]
Abstract
We study time series and the spontaneous miniature end-plate potentials (MEPPs) of mammals recorded at neuromuscular junctions using two different approaches: generalized thermostatistics and detrended fluctuation analysis (DFA). Classical concepts establish that the magnitude of these potentials is characterized by Gaussian statistics and that their intervals are randomly displayed. First we show that MEPP distributions adequately satisfy the q-Gaussian distributions that maximize the Tsallis entropy, indicating their nonextensive and nonequilibrium behavior. We then examine the intervals between the miniature potentials via DFA, where the profile of the intervals between events configures a deviation from the expected random behavior. Some possible physiological substrates for these findings are discussed.
Collapse
Affiliation(s)
- A J da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-910 Belo Horizonte, Minas Gerais, Brazil.
| | | | | |
Collapse
|
29
|
Understanding the functional consequences of synaptic specialization: insight from the Drosophila antennal lobe. Curr Opin Neurobiol 2011; 21:254-60. [PMID: 21441021 DOI: 10.1016/j.conb.2011.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 11/20/2022]
Abstract
Synapses exhibit diverse functional properties, and it seems likely that these properties are specialized to perform specific computations. The Drosophila antennal lobe provides a useful experimental preparation for exploring the relationship between synaptic physiology and neural computations. This review summarizes recent progress in describing synaptic properties in the Drosophila antennal lobe. These studies reveal that several types of synapses in this circuit are highly specialized, and that these specializations are in some cases under tight regulatory control. These synaptic specializations can be understood in terms of the computational features they confer on the circuit. Specifically, many of these properties appear to promote odor detection when odor concentrations are low, while promoting adaptive gain control when odor concentrations are high.
Collapse
|
30
|
Gao XP, Liu QS, Liu Q, Wong-Riley MTT. Excitatory-inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat. J Physiol 2011; 589:1991-2006. [PMID: 21486774 DOI: 10.1113/jphysiol.2010.198945] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hypoglossal motoneurons (HMs) innervate tongue muscles and are critical in maintaining patency of the upper airway during respiration. Abnormalities in HMs have been implicated in sudden infant death syndrome (SIDS) and obstructive sleep apnoea. Previously, we found a critical period in respiratory network development in rats around postnatal day (P) 12-13, when abrupt neurochemical, metabolic and physiological changes occurred. To test our hypothesis that an imbalance between inhibitory and excitatory synaptic transmission exists during the critical period, whole-cell patch-clamp recordings of HMs were done in brainstem slices of rats daily from P0 to P16. The results indicated that: (1) the amplitude and charge transfer of miniature excitatory postsynaptic currents (mEPSCs) were significantly reduced at P12-13; (2) the amplitude, mean frequency and charge transfer of miniature inhibitory postsynaptic currents (mIPSCs) were significantly increased at P12-13; (3) the kinetics (rise time and decay time) of both mEPSCs and mIPSCs accelerated with age; (4) the amplitude and frequency of spontaneous EPSCs were significantly reduced at P12-13, whereas those of spontaneous IPSCs were significantly increased at P12-13; and (5) both glycine and GABA contributed to mIPSCs. However, GABAergic currents fluctuated within a narrow range during the first three postnatal weeks, whereas glycinergic ones exhibited age-dependent changes comparable to those of total mIPSCs, indicating a reversal in dominance from GABA to glycine with development. Thus, our results provide strong electrophysiological evidence for an excitatory-inhibitory imbalance in HMs during the critical period of postnatal development in rats that may have significant implications for SIDS.
Collapse
Affiliation(s)
- Xiu-ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
31
|
Bunce JG, Barbas H. Prefrontal pathways target excitatory and inhibitory systems in memory-related medial temporal cortices. Neuroimage 2011; 55:1461-74. [PMID: 21281716 DOI: 10.1016/j.neuroimage.2011.01.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/30/2022] Open
Abstract
The anterior cingulate cortex (ACC), situated in the caudal part of the medial prefrontal cortex, is involved in monitoring on-going behavior pertaining to memory of previously learned outcomes. How ACC information interacts with the medial temporal lobe (MTL) memory system is not well understood. The present study used a multitiered approach to address two questions on the interactions between the ACC and the parahippocampal cortices in the rhesus monkey: (1) What are the presynaptic characteristics of ACC projections to the parahippocampal cortices? (2) What are the postsynaptic targets of the pathway and are there laminar differences in innervation of local excitatory and inhibitory systems? Labeled ACC terminations were quantified in parahippocampal areas TH and TF and a cluster analysis showed that boutons varied in size, with a population of small (≤0.97 μm) and large (>0.97 μm) terminations that were nearly evenly distributed in the upper and deep layers. Exhaustive sampling as well as unbiased stereological techniques independently showed that small and large boutons were about evenly distributed within cortical layers in the parahippocampal cortex. Synaptic analysis of the pathway, performed at the electron microscope (EM), showed that while most of the ACC projections formed synapses with excitatory neurons, a significant proportion (23%) targeted presumed inhibitory classes with a preference for parvalbumin (PV+) inhibitory neurons. These findings suggest synaptic mechanisms that may help integrate signals associated with attention and memory.
Collapse
Affiliation(s)
- Jamie G Bunce
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
32
|
Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J Neurosci 2010; 30:1441-51. [PMID: 20107071 DOI: 10.1523/jneurosci.3244-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs recorded from pairs of L2/3 neurons ranged between 40 microV and 2.9 mV. EPSP rise times were consistent with the majority of the synapses being located on basal dendrites; this was confirmed by full anatomical reconstructions of a subset of connected pairs. Over a third of the connections could be described using a quantal model that assumed simple binomial statistics. Release probability (P(r)) and quantal size (Q), as measured at the somatic recording site, showed considerable heterogeneity between connections. However, across the population of connections, values of P(r) and Q for individual connections were positively correlated with one another. This correlation also held for inputs to layer 5 pyramidal neurons from both layer 2/3 and neighboring layer 5 pyramidal neurons, suggesting that during development of cortical connections presynaptic and postsynaptic strengths are dependently scaled. For 2/3 to 2/3 connections, mean EPSP amplitude was correlated with both Q and P(r) values but uncorrelated with N, the number of functional release sites mediating the connection. The efficacy of a cortical connection is thus set by coordinated presynaptic and postsynaptic strength.
Collapse
|
33
|
Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG. An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 2010; 7:036004. [PMID: 20440054 DOI: 10.1088/1741-2560/7/3/036004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cochlear nucleus (CN) is the first auditory processing site within the brain and the target location of the auditory brainstem implant (ABI), which provides speech perception to patients who cannot benefit from a cochlear implant (CI). Although there is variance between ABI recipient speech performance outcomes, performance is typically low compared to CI recipients. Temporal aspects of neural firing such as first spike latency (FSL) are thought to code for many speech features; however, no studies have investigated FSL from CN stimulation. Consequently, ABIs currently do not incorporate CN-specific temporal information. We therefore systematically investigated inferior colliculus (IC) neuron's FSL response to frequency-specific electrical stimulation of the CN in rats. The range of FSLs from electrical stimulation of many neurons indicates that both monosynaptic and polysynaptic pathways were activated, suggesting initial activation of multiple CN neuron types. Electrical FSLs for a single neuron did not change irrespective of the CN frequency region stimulated, indicating highly segregated projections from the CN to the IC. These results present the first evidence of temporal responses to frequency-specific CN electrical stimulation. Understanding the auditory system's temporal response to electrical stimulation will help in future ABI designs and stimulation strategies.
Collapse
Affiliation(s)
- Stefan J Mauger
- School of Psychological Science, La Trobe University, VIC 3086, Australia. The Bionic Ear Institute, East Melbourne, VIC 3002, Australia
| | | | | | | | | |
Collapse
|
34
|
Cooke RM, Parker D. Locomotor Recovery after Spinal Cord Lesions in the Lamprey Is Associated with Functional and Ultrastructural Changes below Lesion Sites. J Neurotrauma 2009; 26:597-612. [PMID: 19271969 DOI: 10.1089/neu.2008.0660] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ria Mishaal Cooke
- Department of Physiology, Development, and Neuroscience and Department of Zoology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development, and Neuroscience and Department of Zoology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
35
|
Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci 2008; 28:9692-701. [PMID: 18815255 DOI: 10.1523/jneurosci.1551-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionotropic glutamate receptors play important roles in spinal processing of nociceptive sensory signals and induction of central sensitization in chronic pain. Here we applied highly sensitive freeze-fracture replica labeling to laminae I-II of the spinal dorsal horn of rats and investigated the numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual postsynaptic membrane specializations with a high resolution. All glutamatergic postsynaptic membranes in laminae I-II expressed AMPA receptors, and most of them (96%) were also immunoreactive for the NR1 subunit of NMDA receptors. The numbers of gold particles for AMPA and NMDA receptors at individual postsynaptic membranes showed a linear correlation with the size of postsynaptic membrane specializations and varied in the range of 8-214 and 5-232 with median values of 37 and 28, whereas their densities varied in the range of 325-3365/microm(2) and 102-2263/microm(2) with median values of 1115/microm(2) and 777/microm(2), respectively. Virtually all (99%) glutamatergic postsynaptic membranes expressed GluR2, and most of them (87%) were also immunoreactive for GluR1. The numbers of gold particles for pan-AMPA, NR1, and GluR2 subunits showed a linear correlation with the size of postsynaptic surface areas. Concerning GluR1, there may be two populations of synapses with high and low GluR1 densities. In synapses larger than 0.1 microm(2), GluR1 subunits were recovered in very low numbers. Differential expression of GluR1 and GluR2 subunits suggests regulation of AMPA receptor subunit composition by presynaptic mechanism.
Collapse
|
36
|
Kazama H, Wilson RI. Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 2008; 58:401-13. [PMID: 18466750 DOI: 10.1016/j.neuron.2008.02.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/30/2008] [Accepted: 02/25/2008] [Indexed: 01/27/2023]
Abstract
Here we describe the properties of a synapse in the Drosophila antennal lobe and show how they can explain certain sensory computations in this brain region. The synapse between olfactory receptor neurons (ORNs) and projection neurons (PNs) is very strong, reflecting a large number of release sites and high release probability. This is likely one reason why weak ORN odor responses are amplified in PNs. Furthermore, the amplitude of unitary synaptic currents in a PN is matched to the size of its dendritic arbor. This matching may compensate for a lower input resistance of larger dendrites to produce uniform depolarization across PN types. Consistent with this idea, a genetic manipulation that lowers input resistance increases unitary synaptic currents. Finally, strong stimuli produce short-term depression at this synapse. This helps explain why PN odor responses are transient, and why strong ORN odor responses are not amplified as powerfully as weak responses.
Collapse
Affiliation(s)
- Hokto Kazama
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston MA 02115, USA
| | | |
Collapse
|
37
|
Abstract
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca(2+)-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Bâtiment AAB, Station 15, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
38
|
de la Rocha J, Parga N. Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J Neurosci 2006; 25:8416-31. [PMID: 16162924 PMCID: PMC6725676 DOI: 10.1523/jneurosci.0631-05.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unreliability is a ubiquitous feature of synaptic transmission in the brain. The information conveyed in the discharges of an ensemble of cells (e.g., in the spike count or in the timing of synchronous events) may not be faithfully transmitted to the postsynaptic cell because a large fraction of the spikes fail to elicit a synaptic response. In addition, short-term depression increases the failure rate with the presynaptic activity. We use a simple neuron model with stochastic depressing synapses to understand the transformations undergone by the spatiotemporal patterns of incoming spikes as these are first converted into synaptic current and afterward into the cell response. We analyze the mean and SD of the current produced by different stimuli with spatiotemporal correlations. We find that the mean, which carries information only about the spike count, rapidly saturates as the input rate increases. In contrast, the current deviation carries information about the correlations. If the afferent action potentials are uncorrelated, it saturates monotonically, whereas if they are correlated it increases, reaches a maximum, and then decreases to the value produced by the uncorrelated stimulus. This means that, at high input rates, depression erases from the synaptic current any trace of the spatiotemporal structure of the input. The non-monotonic behavior of the deviation can be inherited by the response rate provided that the mean current saturates below the current threshold setting the cell in the fluctuation-driven regimen. Afferent correlations therefore enable the modulation of the response beyond the saturation of the mean current.
Collapse
Affiliation(s)
- Jaime de la Rocha
- Departamento de Física Teórica, Universidad Autónoma de Madrid, Canto-Blanco, 28049 Madrid, Spain.
| | | |
Collapse
|
39
|
Cathala L, Holderith NB, Nusser Z, DiGregorio DA, Cull-Candy SG. Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs. Nat Neurosci 2005; 8:1310-8. [PMID: 16172604 DOI: 10.1038/nn1534] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/01/2005] [Indexed: 11/08/2022]
Abstract
At many excitatory and inhibitory synapses throughout the nervous system, postsynaptic currents become faster as the synapse matures, primarily owing to changes in receptor subunit composition. The origin of the developmental acceleration of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) remains elusive. We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells. We found that the main developmental change that permits submillisecond transmission at mature synapses is an alteration in the glutamate concentration waveform as experienced by AMPARs. This can be accounted for by changes in the synaptic structure and surrounding neuropil, rather than by a change in AMPAR properties. Our findings raise the possibility that structural alterations could be a general mechanism underlying the change in the time course of AMPAR-mediated synaptic transmission.
Collapse
|
40
|
Germuska M, Saha S, Fiala J, Barbas H. Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates. ACTA ACUST UNITED AC 2005; 16:865-75. [PMID: 16151179 DOI: 10.1093/cercor/bhj030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prefrontal pathways exert diverse effects in widespread cortical areas, issuing projections both to the middle layers and to layer I, which are anatomically and functionally distinct. Here we addressed the still unanswered question of whether cortical pathways that terminate in different layers are distinct at the synaptic level. We addressed this issue using as a model system the robust and functionally significant pathways from prefrontal areas 10 and 32 to superior temporal areas in rhesus monkeys. Boutons from prefrontal axons synapsing in the middle layers of superior temporal cortex were significantly larger than boutons synapsing in layer I. Most synapses were on spines in both layers, which are found on dendrites of excitatory neurons. The less prevalent synapses on smooth dendrites, characteristic of inhibitory interneurons, were more common in the middle cortical layers than in layer I. Bouton volume was linearly related to vesicular and mitochondrial content in both layers, though a subset of small boutons, found mostly in layer I, contained no mitochondria. The systematic laminar-specific presynaptic differences in stable cortical synapses in adult primates were independent of their origin in the functionally distinct prefrontal areas 10 and 32, or their destination in architectonically distinct superior temporal areas. This synaptic distinction suggests differences in efficacy of synaptic transmission and metabolic demands in laminar-specific pathways that may be selectively recruited in behavior.
Collapse
Affiliation(s)
- Michael Germuska
- Department of Biomedical Engineering, Boston University and School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Taschenberger H, Scheuss V, Neher E. Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. J Physiol 2005; 568:513-37. [PMID: 16096340 PMCID: PMC1474746 DOI: 10.1113/jphysiol.2005.093468] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have characterized developmental changes in the kinetics and quantal parameters of action potential (AP)-evoked neurotransmitter release during maturation of the calyx of Held synapse. Quantal size (q) and peak amplitudes of evoked EPSCs increased moderately, whereas the fraction of vesicles released by single APs decreased. During synaptic depression induced in postnatal day (P) 5-7 synapses by 10-100 Hz stimulation, q declined rapidly to 40-12% of its initial value. The decrease in q was generally smaller in more mature synapses (P12-14), but quite severe for frequencies > or = 300 Hz. The stronger decline of q in immature synapses resulted from a slower recovery from desensitization, presumably due to delayed glutamate clearance. Recovery from this desensitization followed an exponential time course with a time constant of approximately 480 ms in P5-7 synapses, and sped up > 20-fold during maturation. Deconvolution analysis of EPSCs revealed a significant acceleration of the release time course during development, which was accompanied by a 2-fold increase of the peak release rate. During long 100 Hz trains, more mature synapses were able to sustain average rates of 8-10 quanta s(-1) per active zone for phasic release. The rates of asynchronous vesicle release increased transiently > 35-fold immediately after such stimuli and decayed rapidly with an exponential time constant of approximately 50 ms to low resting levels of spontaneous release. However, even following extended periods of 100 Hz stimulation, the amount of asynchronous release was relatively minor with peak rates of less than 5% of the average rate of synchronous release measured at steady state during the tetani. Therefore, a multitude of mechanisms seems to converge on the generation of fast, temporally precise and reliable high-frequency transmission at the mature calyx of Held synapse.
Collapse
|
42
|
Cushing S, Bui T, Rose PK. Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons. J Neurophysiol 2005; 94:3465-78. [PMID: 16079193 DOI: 10.1152/jn.00439.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A single spinal motoneuron receives tens of thousands of synapses. The neurotransmitters released by many of these synapses act on iontotropic receptors and alter the driving potential of neighboring synapses. This interaction introduces an intrinsic nonlinearity in motoneuron input-output properties where the response to two simultaneous inputs is less than the linear sum of the responses to each input alone. Our goal was to determine the impact of this nonlinearity on the current delivered to the soma during activation of predetermined numbers and distributions of excitatory and inhibitory synapses. To accomplish this goal we constructed compartmental models constrained by detailed measurements of the geometry of the dendritic trees of three feline motoneurons. The current "lost" as a result of local changes in driving potential was substantial and resulted in a highly nonlinear relationship between the number of active synapses and the current reaching the soma. Background synaptic activity consisting of a balanced activation of excitatory and inhibitory synapses further decreased the current delivered to the soma, but reduced the nonlinearity with respect to the total number of active excitatory synapses. Unexpectedly, simulations that mimicked experimental measures of nonlinear summation, activation of two sets of excitatory synapses, resulted in nearly linear summation. This result suggests that nonlinear summation can be difficult to detect, despite the substantial "loss" of current arising from nonlinear summation. The magnitude of this "loss" appears to limit motoneuron activity, based solely on activation of iontotropic receptors, to levels that are inadequate to generate functionally meaningful muscle forces.
Collapse
Affiliation(s)
- S Cushing
- Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Center for Neuroscience, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
43
|
Oleskevich S, Youssoufian M, Walmsley B. Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. J Physiol 2004; 560:709-19. [PMID: 15331689 PMCID: PMC1665284 DOI: 10.1113/jphysiol.2004.066662] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 08/23/2004] [Indexed: 11/08/2022] Open
Abstract
Large calyceal synapses are often regarded as simple relay points, built for high-fidelity and high-frequency synaptic transmission and a minimal requirement for synaptic plasticity, but this view is oversimplified. Calyceal synapses can exhibit surprising activity-dependent developmental plasticity. Here we compare basal synaptic transmission and activity-dependent plasticity at two stereotypical calyceal synapses in the auditory pathway, the endbulb and the calyx of Held. Basal synaptic transmission was more powerful at the calyx than the endbulb synapse: the amplitude of evoked AMPA receptor-mediated excitatory postsynaptic currents (eEPSCs) was significantly greater at the calyx, as were the release probability, and the number of release sites. The quantal amplitude was smaller at the calyx, consistent with the smaller amplitude of spontaneous miniature EPSCs at this synapse. High-frequency trains of stimuli revealed that the calyx had a larger readily releasable pool of vesicles (RRP), less tetanic depression and less asynchronous transmitter release. Activity-dependent synaptic plasticity was assessed in congenitally deaf mutant mice (dn/dn). Previously we showed that a lack of synaptic activity in deaf mice increases synaptic strength at the endbulb of Held via presynaptic mechanisms. In contrast, we have now found that deafness does not affect synaptic transmission at the calyx synapse, as eEPSC and mEPSC amplitude, release probability, number of release sites, size of RRP, tetanic depression and asynchronous release were unchanged compared to normal mice. Synaptic transmission at the calyx synapse is more powerful and has less capacity for developmental plasticity compared to the endbulb synapse.
Collapse
Affiliation(s)
- S Oleskevich
- Garvan Institute of Medical Research, St-Vincents Hospital, 384 Victoria Street, Sydney, NSW 2010, Australia.
| | | | | |
Collapse
|
44
|
Sampath AP, Rieke F. Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 2004; 41:431-43. [PMID: 14766181 DOI: 10.1016/s0896-6273(04)00005-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 11/03/2003] [Accepted: 12/29/2003] [Indexed: 10/26/2022]
Abstract
A threshold-like nonlinearity in signal transfer from mouse rod photoreceptors to rod bipolar cells dramatically improves the absolute sensitivity of the rod signals. The work described here reaches three conclusions about the mechanisms generating this nonlinearity. (1) The nonlinearity is caused primarily by saturation of the feedforward rod-to-rod bipolar synapse and not by feedback from horizontal or amacrine cells. This saturation renders the rod bipolar current insensitive to small changes in transmitter release from the rod. (2) Saturation occurs within the G protein cascade that couples receptors to channels in the rod bipolar dendrites, with little or no contribution from presynaptic mechanisms or saturation of the postsynaptic receptors. (3) Between 0.5 and 2 bipolar transduction channels are open in darkness at each synapse, compared to the approximately 30 channels open at the peak of the single photon response.
Collapse
Affiliation(s)
- Alapakkam P Sampath
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
45
|
van Zundert B, Alvarez FJ, Tapia JC, Yeh HH, Diaz E, Aguayo LG. Developmental-dependent action of microtubule depolymerization on the function and structure of synaptic glycine receptor clusters in spinal neurons. J Neurophysiol 2004; 91:1036-49. [PMID: 12968009 DOI: 10.1152/jn.00364.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubules have been proposed to interact with gephyrin/glycine receptors (GlyRs) in synaptic aggregates. However, the consequence of microtubule disruption on the structure of postsynaptic GlyR/gephyrin clusters is controversial and possible alterations in function are largely unknown. In this study, we have examined the physiological and morphological properties of GlyR/gephyrin clusters after colchicine treatment in cultured spinal neurons during development. In immature neurons (5-7 DIV), disruption of microtubules resulted in a 33 +/- 4% decrease in the peak amplitude and a 72 +/- 15% reduction in the frequency of spontaneous glycinergic miniature postsynaptic currents (mIPSCs) recorded in whole cell mode. However, similar colchicine treatments resulted in smaller effects on 10-12 DIV neurons and no effect on mature neurons (15-17 DIV). The decrease in glycinergic mIPSC amplitude and frequency reflects postsynaptic actions of colchicine, since postsynaptic stabilization of microtubules with GTP prevented both actions and similar reductions in mIPSC frequency were obtained by modifying the Cl(-) driving force to obtain parallel reductions in mIPSC amplitude. Confocal microscopy revealed that colchicine reduced the average length and immunofluorescence intensity of synaptic gephyrin/GlyR clusters in immature (approximately 30%) and intermediate (approximately 15%) neurons, but not in mature clusters. Thus the structural and functional changes of postsynaptic gephyrin/GlyR clusters after colchicine treatment were tightly correlated. Finally, RT-PCR, kinetic analysis and picrotoxin blockade of glycinergic mIPSCs indicated a reorganization of the postsynaptic region from containing both alpha2beta and alpha1beta GlyRs in immature neurons to only alpha1beta GlyRs in mature neurons. Microtubule disruption preferentially affected postsynaptic sites containing alpha2beta-containing synaptic receptors.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
46
|
Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 2003; 7:17-23. [PMID: 14699415 DOI: 10.1038/nn1170] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 12/01/2003] [Indexed: 11/09/2022]
Abstract
Early in postnatal development, inhibitory inputs to rat lateral superior olive (LSO) neurons change from releasing predominantly GABA to releasing predominantly glycine into the synapse. Here we show that spontaneous miniature inhibitory postsynaptic currents (mIPSCs) also change from GABAergic to glycinergic over the first two postnatal weeks. Many 'mixed' mIPSCs, resulting from co-release of glycine and GABA from the same vesicles, are seen during this transition. Immunohistochemistry showed that a large number of terminals contained both GABA and glycine at postnatal day 8 (P8). By P14, both the content of GABA in these mixed terminals and the contribution of GABA to the mixed mIPSCs had decreased. The content of glycine in terminals increased over the same period. Our results indicate that switching from GABAergic to glycinergic inputs to the LSO may occur at the level of a single presynaptic terminal. This demonstrates a new form of developmental plasticity at the level of a single central synapse.
Collapse
Affiliation(s)
- Junichi Nabekura
- Department of Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mikula S, Niebur E. Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector. Neural Comput 2003; 15:2339-58. [PMID: 14511524 DOI: 10.1162/089976603322362383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this letter, we extend our previous analytical results (Mikula & Niebur, 2003) for the coincidence detector by taking into account probabilistic frequency-dependent synaptic depression. We present a solution for the steady-state output rate of an ideal coincidence detector receiving an arbitrary number of input spike trains with identical binomial count distributions (which includes Poisson statistics as a special case) and identical arbitrary pairwise cross-correlations, from zero correlation (independent processes) to perfect correlation (identical processes). Synapses vary their efficacy probabilistically according to the observed depression mechanisms. Our results show that synaptic depression, if made sufficiently strong, will result in an inverted U-shaped curve for the output rate of a coincidence detector as a function of input rate. This leads to the counterintuitive prediction that higher presynaptic (input) rates may lead to lower postsynaptic (output) rates where the output rate may fall faster than the inverse of the input rate.
Collapse
Affiliation(s)
- Shawn Mikula
- Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
48
|
Transmission security for single kinesthetic afferent fibers of joint origin and their target cuneate neurons in the cat. J Neurosci 2003. [PMID: 12684485 DOI: 10.1523/jneurosci.23-07-02980.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmission between single identified, kinesthetic afferent fibers of joint origin and their central target neurons of the cuneate nucleus was examined in anesthetized cats by means of paired electrophysiological recording. Fifty-three wrist joint afferent-cuneate neuron pairs were isolated in which the single joint afferent fiber exerted suprathreshold excitatory actions on the target cuneate neuron. For each pair, the minimum kinesthetic input, a single spike, was sufficient to generate cuneate spike output, often amplified as a pair or burst of spikes, particularly at input rates up to 50-100 impulses per second. The high security was confirmed quantitatively by construction of stimulus-response relationships and calculation of transmission security measures in response to both static and dynamic vibrokinesthetic disturbances applied to the joint capsule. Graded stimulus-response relationships demonstrated that the output for this synaptic connection between single joint afferents and cuneate neurons could provide a sensitive indicator of the strength of joint capsule stimuli. The transmission security measures, calculated as the proportion of joint afferent spikes that generated cuneate spike output, were high (>85-90%) even at afferent fiber discharge rates up to 100-200 impulses per second. Furthermore, tight phase locking in the cuneate responses to vibratory stimulation of the joint capsule demonstrated that the synaptic linkage preserved, with a high level of fidelity, the temporal information about dynamic kinesthetic perturbations that affected the joint. The present study establishes that single kinesthetic afferents of joint origin display a capacity similar to that of tactile afferent fibers for exerting potent synaptic actions on central target neurons of the major ascending kinesthetic sensory pathway.
Collapse
|
49
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
50
|
Meinrenken CJ, Borst JGG, Sakmann B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 2003; 547:665-89. [PMID: 12562955 PMCID: PMC2342725 DOI: 10.1113/jphysiol.2002.032714] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 01/10/2003] [Indexed: 11/08/2022] Open
Abstract
During the last decade, advances in experimental techniques and quantitative modelling have resulted in the development of the calyx of Held as one of the best preparations in which to study synaptic transmission. Here we review some of these advances, including simultaneous recording of pre- and postsynaptic currents, measuring the Ca2+ sensitivity of transmitter release, reconstructing the 3-D anatomy at the electron microscope (EM) level, and modelling the buffered diffusion of Ca2+ in the nerve terminal. An important outcome of these studies is an improved understanding of the Ca2+ signal that controls phasic transmitter release. This article illustrates the spatial and temporal aspects of the three main steps in the presynaptic signalling cascade: Ca2+ influx through voltage-gated calcium channels, buffered Ca2+ diffusion from the channels to releasable vesicles, and activation of the Ca2+ sensor for release. Particular emphasis is placed on how presynaptic Ca2+ buffers affect the Ca2+ signal and thus the amplitude and time course of the release probability. Since many aspects of the signalling cascade were first conceived with reference to the squid giant presynaptic terminal, we include comparisons with the squid model and revisit some of its implications. Whilst the characteristics of buffered Ca2+ diffusion presented here are based on the calyx of Held, we demonstrate the circumstances under which they may be valid for other nerve terminals at mammalian CNS synapses.
Collapse
|