1
|
Kim JH, Seo HJ, Noh BW, He MT, Choi YH, Cho EJ, Noh JS. Protective effects of Cuscuta chinensis Lam. extract against learning and memory dysfunction induced by streptozotocin and amyloid β 25-35 in vivo model. Arch Physiol Biochem 2025:1-13. [PMID: 40353733 DOI: 10.1080/13813455.2025.2502861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
Alzheimer's disease (AD) is associated with hyperglycaemia and amyloid beta (Aβ) accumulation. In the present study, we investigated whether an aqueous extract of Cuscuta chinensis Lam. (CCWE) improved cognitive disorder in a hyperglycaemic and cognitive-impaired mouse model. Hyperglycaemia was induced by streptozotocin (STZ, 50 mg/kg) and a single intracerebroventricular injection of Aβ25-35 (25 nM) was performed. The Aβ25-35-injected hyperglycaemic mice were then administered CCWE (100 or 200 mg/kg/day) for 14-d. The protective effects of the CCWE were evaluated by behavioural tests and western blot analysis. The bioactive compounds in CCWE were isolated by UPLC-QTOF/MS analysis. The administration of CCWE improved the learning and memory function in STZ/Aβ25-35-injected mice. Moreover, CCWE positively regulated the amyloidogenic pathway-related proteins and insulin signalling-related proteins. The bioactive components in CCWE were also identified. These findings suggest the possibility of CCWE as a potential candidate for the dual-targeting treatment of hyperglycaemia and AD.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, Republic of Korea
| |
Collapse
|
2
|
Tseitlin L, Schreiber S, Richmond-Hacham B, Bikovski L, Pick CG. Enhancing cognitive function after traumatic brain injury in male mice: The benefits of running regardless of intervention timing. Exp Neurol 2025; 384:115069. [PMID: 39577609 DOI: 10.1016/j.expneurol.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The significant benefits of physical activity are well-documented in academic literature, with growing evidence highlighting its positive effects (among others) on memory and cognitive function. Exercise, particularly aerobic activities, has been shown to mitigate neuroinflammatory processes, promote neuronal regeneration, facilitate recovery from cerebral trauma, and reduce the risk of neurodegenerative diseases. Among neurological conditions, traumatic brain injury (TBI) is the most common in individuals under 50, with 80-90 % of cases categorized as mild traumatic brain injury (mTBI). This study investigates the impact of exercise on visual and spatial memory deficits in mice following mTBI. ICR mice were subjected to a seventeen-day treadmill training protocol initiated at four different time intervals post-mTBI (2, 7, 13, and 30 days). A battery of specific behavioral tests was used to assess anxiety-like behaviors, motor skills, and visual and spatial memory. Our results indicate that running positively affected mTBI in both novel object recognition (p < 0.001) and Y-maze (p < 0.001) regardless of the running protocol's initiation time, demonstrating that aerobic exercise significantly alleviates cognitive deficits associated with mTBI. Importantly, mTBI did not appear to impact motor abilities or anxiety-like behaviors based on the assessment paradigms utilized. In conclusion, aerobic exercise effectively enhances visual and spatial memory post-mTBI, with promising results observed even when the running protocol is initiated up to one-month post-injury.
Collapse
Affiliation(s)
- Liron Tseitlin
- Department of Anatomy and Anthropology, Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Tel Aviv University Faculty of Medicine, Tel Aviv, Israel; School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Tel Aviv University Faculty of Medicine, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel; Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Kim JH, Seok JY, Kim YH, Kim HJ, Lee JK, Kim HR. Exposure to Radiofrequency Induces Synaptic Dysfunction in Cortical Neurons Causing Learning and Memory Alteration in Early Postnatal Mice. Int J Mol Sci 2024; 25:8589. [PMID: 39201275 PMCID: PMC11355025 DOI: 10.3390/ijms25168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Yun-Hee Kim
- Department of Biology Education, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52609, Republic of Korea;
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| |
Collapse
|
4
|
Shindo M, Terao M, Takada S, Ichinose M, Matsuzaka E, Yokoi T, Azuma N, Mizuno S, Tsumura H. Establishment and visual analysis of CBA/J-Pde6b Y347Y/Y347X and C3H/HeJ-Pde6b Y347Y/Y347X mice. Exp Anim 2024; 73:203-210. [PMID: 38171880 PMCID: PMC11091356 DOI: 10.1538/expanim.23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca2+ influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6bY347Y/Y347X and C3H/HeJ-Pde6bY347Y/Y347X mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark latency tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.
Collapse
Affiliation(s)
- Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Minoru Ichinose
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Emiko Matsuzaka
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tadashi Yokoi
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideki Tsumura
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
5
|
Natsi A, Valkanou M, Anousi E, Labrakakis C. Differential behavioral response to predator odor in neuropathic pain in mice. FRONTIERS IN PAIN RESEARCH 2024; 4:1283550. [PMID: 38259981 PMCID: PMC10800923 DOI: 10.3389/fpain.2023.1283550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Neuropathic pain, a type of chronic pain caused by injury or disease of the somatosensory system, affects ∼10% of the general population and is difficult to treat. It is strongly associated with mood disorder comorbidities and impairs quality of life. It was recently suggested that hypervigilance caused by chronic pain might be of advantage in some species, helping them avoid predators during injury when they are most vulnerable. Here, we sought to confirm the hypervigilance hypothesis by using two predator odor (PO) paradigms, one with transient and one with continuous odor presentation. We observed behavioral responses to PO in neuropathic and control mice in an open field setting. We find that neuropathic mice show hypervigilance to PO, confirming previous results. However, we also find increased anxiety responses to neutral odor in neuropathic mice, which manifests as maladaptive pain. This demonstrates that this maladaptive nature of pain could be an evolutionary adaptation aimed at reducing injury-induced vulnerability.
Collapse
Affiliation(s)
- Amalia Natsi
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Mary Valkanou
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Athens International Master’s Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elissavet Anousi
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), Ioannina, Greece
| |
Collapse
|
6
|
Tseitlin L, Richmond-Hacham B, Vita A, Schreiber S, Pick CG, Bikovski L. Measuring anxiety-like behavior in a mouse model of mTBI: Assessment in standard and home cage assays. Front Behav Neurosci 2023; 17:1140724. [PMID: 37035620 PMCID: PMC10073456 DOI: 10.3389/fnbeh.2023.1140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Traumatic brain injury (TBI) is a primary global health concern and one of the most common causes of neurological impairments in people under 50. Mild TBI (mTBI) accounts for the majority of TBI cases. Anxiety is the most common complaint after mTBI in humans. This study aims to evaluate behavioral tests designed to assess anxiety-like phenotypes in a mice model of mTBI. ICR mice underwent mTBI using the weight-drop model. Seven days post-injury, mice were subjected to one of five different behavioral tests: Elevated Plus Maze (EPM), Open Field apparatus (OF), Marble Burying test (MBT), Light Dark Box (LDB), and the Light Spot test within the PhenoTyper home cage (LS). In the EPM and OF tests, there were no significant differences between the groups. During the 30-min test period of the MBT, mTBI mice buried significantly more marbles than control mice. In the LDB, mTBI mice spent significantly less time on the far side of the arena than control mice. In addition, the time it took for mTBI mice to get to the far side of the arena was significantly longer compared to controls. Results of LS show significant within-group mean differences for total distance traveled for mTBI mice but not for the control. Furthermore, injured mice moved significantly more than control mice. According to the results, the anxiety traits exhibited by mTBI mice depend upon the time of exposure to the aversive stimulus, the apparatus, and the properties of the stressors used. Therefore, the characterization of anxiety-like behavior in mTBI mice is more complicated than was initially suggested. Based on our findings, we recommend incorporating a variety of stressors and test session lengths when assessing anxiety-like behavior in experimental models of mTBI.
Collapse
Affiliation(s)
- Liron Tseitlin
- Department of Anatomy and Anthropology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Adi Vita
- Department of Anatomy and Anthropology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| |
Collapse
|
7
|
Martínez-González K, Serrano-Cuevas L, Almeida-Gutiérrez E, Flores-Chavez S, Mejía-Aranguré JM, Garcia-delaTorre P. Citrulline supplementation improves spatial memory in a murine model for Alzheimer's disease. Nutrition 2021; 90:111248. [PMID: 33940559 DOI: 10.1016/j.nut.2021.111248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) correlates with the dysfunction of metabolic pathways that translates into neurological symptoms. An arginine deficiency, a precursor of nitric oxide (NO), has been reported for patients with AD. We aimed to evaluate the effect of citrulline oral supplementation on cognitive decline in an AD murine model. METHODS Three-month citrulline or water supplementation was blindly given to male and female wild-type and 3 × Tg mice with AD trained and tested in the Morris water maze. Cerebrospinal fluid and brain tissue were collected. Ultra-performance liquid chromatography was used for arginine determinations and the Griess method for NO. RESULTS Eight-month-old male 3 × Tg mice with AD supplemented with citrulline performed significantly better in the Morris water maze task. Arginine levels increased in the cerebrospinal fluid although no changes were seen in brain tissue and only a tendency of increase of NO was observed. CONCLUSIONS Citrulline oral administration is a viable treatment for memory improvement in the early stages of AD, pointing to NO as a viable, efficient target for memory dysfunction in AD.
Collapse
Affiliation(s)
- Katia Martínez-González
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México, Universidad Nacional Autónoma de México
| | - Leonor Serrano-Cuevas
- Coordinación de Unidades Médicas, División de Evaluación y Rendición de Cuentas de los Procesos de Atención Médica en Unidades Médicas de Alta Especialidad, Instituto Mexicano del Seguro Social, México
| | - Eduardo Almeida-Gutiérrez
- Head of Medical Education and Research, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México
| | - Salvador Flores-Chavez
- Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México
| | | | - Paola Garcia-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México.
| |
Collapse
|
8
|
Wang M, Yu Z, Li G, Yu X. Multiple Morphological Factors Underlie Experience-Dependent Cross-Modal Plasticity in the Developing Sensory Cortices. Cereb Cortex 2020; 30:2418-2433. [PMID: 31828301 DOI: 10.1093/cercor/bhz248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 11/14/2022] Open
Abstract
Sensory experience regulates the structural and functional wiring of sensory cortices. In previous work, we showed that whisker deprivation (WD) from birth not only reduced excitatory synaptic transmission of layer (L) 2/3 pyramidal neurons of the correspondent barrel cortex in mice, but also cross-modally reduced synaptic transmission of L2/3 pyramidal neurons in other sensory cortices. Here, we used in utero electroporation, in combination with optical clearing, to examine the main morphological components regulating neural circuit wiring, namely presynaptic bouton density, spine density, as well as dendrite and axon arbor lengths. We found that WD from P0 to P14 reduced presynaptic bouton density in both L4 and L2/3 inputs to L2/3 pyramidal neurons, as well as spine density across the dendritic tree of L2/3 pyramidal neurons, in the barrel field of the primary somatosensory cortex. The cross-modal effects in the primary auditory cortex were manifested mostly as reduced dendrite and axon arbor size, as well as reduced bouton density of L2/3 inputs. Increasing sensory experience by rearing mice in an enriched environment rescued the effects of WD. Together, these results demonstrate that multiple morphological factors contribute to experience-dependent structural plasticity during early wiring of the sensory cortices.
Collapse
Affiliation(s)
- Miao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Zhu B, Eom J, Hunt RF. Transplanted interneurons improve memory precision after traumatic brain injury. Nat Commun 2019; 10:5156. [PMID: 31727894 PMCID: PMC6856380 DOI: 10.1038/s41467-019-13170-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Repair of the traumatically injured brain has been envisioned for decades, but regenerating new neurons at the site of brain injury has been challenging. We show GABAergic progenitors, derived from the embryonic medial ganglionic eminence, migrate long distances following transplantation into the hippocampus of adult mice with traumatic brain injury, functionally integrate as mature inhibitory interneurons and restore post-traumatic decreases in synaptic inhibition. Grafted animals had improvements in memory precision that were reversed by chemogenetic silencing of the transplanted neurons and a long-lasting reduction in spontaneous seizures. Our results reveal a striking ability of transplanted interneurons for incorporating into injured brain circuits, and this approach is a powerful therapeutic strategy for correcting post-traumatic memory and seizure disorders.
Collapse
Affiliation(s)
- Bingyao Zhu
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Jisu Eom
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Rodrigues S, Ferreira TL. Muscimol injection into the substantia nigra but not globus pallidus affects prepulse inhibition and startle reflex. Neuropharmacology 2019; 162:107796. [PMID: 31563465 DOI: 10.1016/j.neuropharm.2019.107796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Behavioral arrest is an essential feature of an animal's survival. Acoustic startle reflex (ASR) is an involuntary whole-body contraction of the skeletal musculature to an unexpected auditory stimulus. This strong reaction can be decreased by prepulse inhibition (PPI) phenomenon; which, for example, is important in reducing distraction during the processing of sensory input. Several brainstem regions are involved in the PPI and startle reflex, but a previous study from our laboratory showed that the main input structure of Basal Ganglia (BG) - the striatum - modulates PPI. The pallidum and nigra are connected with striatum and these brainstem structures. Here, we investigated the role of these striatum outputs in the brain regions on startle amplitude, PPI regulation, and exploratory behavior in Wistar rats. The temporary bilateral inhibition of the globus pallidus (GP) by muscimol lead to motor impairment, without disturbing startle amplitude or PPI. Similarly, inhibition of the entopeduncular nucleus (EPN) specifically disrupted the exploratory behavior. On the other hand, the substantia nigra reticulata (SNr) inhibition interfered in all measured behaviors: decreased the PPI percentage, increased ASR and impaired the locomotor activity. The nigra is a key BG output structure which projects to the thalamus and brainstem. These findings extend our previous study showing that the striatum neurons expressing D1 receptors involvement in PPI occurs via the direct pathway to SNr, but not to the pallidum which more likely occurs by its connection with the caudal pontine nucleus, superior colliculus and/or pedunculopontine nucleus pivotal structures for startle reflex modulation.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | | |
Collapse
|
11
|
Yoon WB, Choi HJ, Kim JE, Park JW, Kang MJ, Bae SJ, Lee YJ, Choi YS, Kim KS, Jung YS, Cho JY, Hwang DY, Song HK. Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks. Lab Anim Res 2018; 34:317-328. [PMID: 30671121 PMCID: PMC6333609 DOI: 10.5625/lar.2018.34.4.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Cognitive impairment responses are important research topics in the study of degenerative brain diseases as well as in understanding of human mental activities. To compare response to scopolamine (SPL)-induced cognitive impairment, we measured altered parameters for learning and memory ability, inflammatory response, oxidative stress, cholinergic dysfunction and neuronal cell damages, in Korl:ICR stock and two commercial breeder stocks (A:ICR and B:ICR) after relevant SPL exposure. In the water maze test, Korl:ICR showed no significant difference in SPL-induced learning and memory impairment compared to the two different ICRs, although escape latency was increased after SPL exposure. Although behavioral assessment using the manual avoidance test revealed reduced latency in all ICR mice after SPL treatment as compared to Vehicle, no differences were observed between the three ICR stocks. To determine cholinergic dysfunction induction by SPL exposure, activity of acetylcholinesterase (AChE) assessed in the three ICR stocks revealed no difference of acetylcholinesterase activity. Furthermore, low levels of superoxide dismutase (SOD) activity and high levels of inflammatory cytokines in SPL-treated group were maintained in all three ICR stocks, although some variations were observed between the SPLtreated groups. Neuronal cell damages induced by SPL showed similar response in all three ICR stocks, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, Nissl staining analysis and expression analyses of apoptosis-related proteins. Thus, the results of this study provide strong evidence that Korl:ICR is similar to the other two ICR. Stocks in response to learning and memory capacity.
Collapse
Affiliation(s)
- Woo Bin Yoon
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Young Ju Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - You Sang Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Kil Soo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyun Keun Song
- Biomedical Science Institute, Changwon National University, Changwon, Korea
| |
Collapse
|
12
|
Individual responses of rodents in modelling of affective disorders and in their treatment: prospective review. Acta Neuropsychiatr 2018; 30:323-333. [PMID: 29909818 DOI: 10.1017/neu.2018.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IntroductionLack of good animal models for affective disorders, including major depression and bipolar disorder, is noted as a major bottleneck in attempts to study these disorders and develop better treatments. We suggest that an important approach that can help in the development and use of better models is attention to variability between model animals. RESULTS: Differences between mice strains were studied for some decades now, and sex differences get more attention than in the past. It is suggested that one factor that is mostly neglected, individual variability within groups, should get much more attention. The importance of individual differences in behavioral biology and ecology was repeatedly mentioned but its application to models of affective illness or to the study of drug response was not heavily studied. The standard approach is to overcome variability by standardization and by increasing the number of animals per group. CONCLUSIONS: Possibly, the individuality of specific animals and their unique responses to a variety of stimuli and drugs, can be helpful in deciphering the underlying biology of affective behaviors as well as offer better prediction of drug responses in patients.
Collapse
|
13
|
Kozanian OO, Rohac DJ, Bavadian N, Corches A, Korzus E, Huffman KJ. Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala. Front Behav Neurosci 2018; 12:200. [PMID: 30233337 PMCID: PMC6131196 DOI: 10.3389/fnbeh.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70–P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Niusha Bavadian
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Alex Corches
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States.,Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
15
|
Somredngan S, Thong-asa W. Neurological Changes in Vulnerable Brain Areas of Chronic Cerebral Hypoperfusion Mice. Ann Neurosci 2018; 24:233-242. [PMID: 29849447 PMCID: PMC5969357 DOI: 10.1159/000481789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is associated with neurological changes and cognitive decline. It is a major cause of vascular dementia and a contributing factor in Alzheimer disease. Animal models are useful in helping to elucidate the mechanisms of these diseases while demonstrating differences in pathological onset and severity. Furthermore, different mouse strains show differences in their susceptibility to neurological damage resulting in different cognitive outcomes. PURPOSE This study investigated the effect of CCH induced by permanent unilateral common carotid artery occlusion (UCO) on neurological damage in vulnerable brain regions such as hippocampus, striatum, and white matter areas from 2 to 8 weeks following CCH induction. METHODS Thirty-six male Institute of Cancer Research (ICR) mice were randomly divided into 2 main experimental groups, Sham and UCO. These 2 main groups were further divided into 3 observation periods of 2, 4, and 8 weeks following CCH. Histological study was then employed using 0.1% cresyl violet and luxol fast blue staining to assess neurological damage. RESULTS We found equal levels of neurological damage induced by CCH between ipsi- and contralateral hemispheres. Hippocampus and striatum damage were slightly increased from 2 to 8 weeks rising to significance at 8 weeks in both areas, while the white matter densities of the corpus callosum, internal capsule, optic tract and striatum fiber did not change. CONCLUSION CCH induced by UCO in ICR mice induces hippocampal and striatal damage at 8 weeks while leaving white matter undamaged.
Collapse
Affiliation(s)
| | - Wachiryah Thong-asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Madsen HB, Guerin AA, Kim JH. Investigating the role of dopamine receptor- and parvalbumin-expressing cells in extinction of conditioned fear. Neurobiol Learn Mem 2017; 145:7-17. [DOI: 10.1016/j.nlm.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022]
|
17
|
Lee AY, Choi JM, Lee J, Lee MH, Lee S, Cho EJ. Effects of Vegetable Oils with Different Fatty Acid Compositions on Cognition and Memory Ability in Aβ 25-35-Induced Alzheimer's Disease Mouse Model. J Med Food 2016; 19:912-921. [PMID: 27696934 DOI: 10.1089/jmf.2016.3737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to investigate the protective effect of three kinds of vegetable oils with different fatty acid compositions against cognitive impairment in an Alzheimer's disease (AD) mouse model. After intracerebroventricular injection of amyloid beta25-35 (Aβ25-35) into the brain of institute of cancer research mice, olive oil (rich in oleic acid, C18:1), corn oil (rich in linoleic acid, C18:2), and perilla oil (rich in α-linolenic acid [ALA], C18:3) were administered at the oral dose of 500 mg/kg/day for 14 days. The results revealed that Aβ25-35 induced learning and memory dysfunction according to the T-maze, novel object recognition, and Morris water maze tests. Among the three vegetable oils, however, the perilla oil group of mice showed marked attenuation of cognitive impairment, that is, a greater number of explorations on a new route/object than on an old route/object in the T-maze and novel object recognition tests. In the Morris water maze test, perilla oil decreased the time to reach the platform and increased the number of crossings over the target quadrant in which the platform was located previously. Furthermore, the beneficial effect of perilla oil supplementation on oxidative stress was reflected in the inhibition of malondialdehyde and nitric oxide (NO) production in Aβ25-35-injected mice. We also found that perilla oil downregulated protein expression levels of inducible NO synthase and cyclooxygenase-2 and upregulated brain-derived neurotrophic factor. These findings showed that ALA-rich perilla oil has a potential for prevention or treatment of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Ah Young Lee
- 1 Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| | - Ji Myung Choi
- 2 Department of Southern Area Crop Science, National Institute of Crop Science , Rural Development Administration, Miryang, Korea
| | - Jaemin Lee
- 3 Department of Integrative Plant Science, Chung-Ang University , Anseong, Korea
| | - Myoung Hee Lee
- 2 Department of Southern Area Crop Science, National Institute of Crop Science , Rural Development Administration, Miryang, Korea
| | - Sanghyun Lee
- 3 Department of Integrative Plant Science, Chung-Ang University , Anseong, Korea
| | - Eun Ju Cho
- 1 Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| |
Collapse
|
18
|
Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice. J Toxicol 2016; 2016:4763434. [PMID: 27375740 PMCID: PMC4916309 DOI: 10.1155/2016/4763434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/15/2016] [Indexed: 01/11/2023] Open
Abstract
Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.
Collapse
|
19
|
Szu JI, Binder DK. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory. Front Integr Neurosci 2016; 10:8. [PMID: 26941623 PMCID: PMC4764708 DOI: 10.3389/fnint.2016.00008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023] Open
Abstract
Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory.
Collapse
Affiliation(s)
| | - Devin K. Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, RiversideCA, USA
| |
Collapse
|
20
|
Kim CH, Hvoslef-Eide M, Nilsson SRO, Johnson MR, Herbert BR, Robbins TW, Saksida LM, Bussey TJ, Mar AC. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology (Berl) 2015; 232:3947-66. [PMID: 26415954 PMCID: PMC4600477 DOI: 10.1007/s00213-015-4081-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022]
Abstract
RATIONALE Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.
Collapse
Affiliation(s)
- Chi Hun Kim
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Martha Hvoslef-Eide
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Simon R O Nilsson
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Mark R Johnson
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Bronwen R Herbert
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Trevor W Robbins
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Adam C Mar
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
- Department of Neuroscience and Physiology Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
21
|
Moriya M, Inoue SI, Miyagawa-Tomita S, Nakashima Y, Oba D, Niihori T, Hashi M, Ohnishi H, Kure S, Matsubara Y, Aoki Y. Adult mice expressing a Braf Q241R mutation on an ICR/CD-1 background exhibit a cardio-facio-cutaneous syndrome phenotype. Hum Mol Genet 2015; 24:7349-60. [PMID: 26472072 DOI: 10.1093/hmg/ddv435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
Activation of the RAS pathway has been implicated in oncogenesis and developmental disorders called RASopathies. Germline mutations in BRAF have been identified in 50-75% of patients with cardio-facio-cutaneous (CFC) syndrome, which is characterized by congenital heart defects, distinctive facial features, short stature and ectodermal abnormalities. We recently demonstrated that mice expressing a Braf Q241R mutation, which corresponds to the most frequent BRAF mutation (Q257R) in CFC syndrome, on a C57BL/6J background are embryonic/neonatal lethal, with multiple congenital defects, preventing us from analyzing the phenotypic consequences after birth. Here, to further explore the pathogenesis of CFC syndrome, we backcrossed these mice onto a BALB/c or ICR/CD-1 genetic background. On a mixed (BALB/c and C57BL/6J) background, all heterozygous Braf(Q241R/+) mice died between birth and 24 weeks and exhibited growth retardation, sparse and ruffled fur, liver necrosis and atrial septal defects (ASDs). In contrast, 31% of the heterozygous Braf(Q241R/+) ICR mice survived over 74 weeks. The surviving Braf(Q241R/+) ICR mice exhibited growth retardation, sparse and ruffled fur, a hunched appearance, craniofacial dysmorphism, long and/or dystrophic nails, extra digits and ovarian cysts. The Braf(Q241R/+) ICR mice also showed learning deficits in the contextual fear-conditioning test. Echocardiography indicated the presence of pulmonary stenosis and ASDs in the Braf(Q241R/+) ICR mice, which were confirmed by histological analysis. These data suggest that the heterozygous Braf(Q241R/+) ICR mice show similar phenotypes as CFC syndrome after birth and will be useful for elucidating the pathogenesis and potential therapeutic strategies for RASopathies.
Collapse
Affiliation(s)
| | | | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology and Division of Cardiovascular Development and Differentiation, Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasumi Nakashima
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | | | | | - Misato Hashi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan and
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan and
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics and National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
22
|
Sun S, Yu H, Yu H, Honglin M, Ni W, Zhang Y, Guo L, He Y, Xue Z, Ni Y, Li J, Feng Y, Chen Y, Shao R, Chai R, Li H. Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity. Mol Neurobiol 2015; 51:252-67. [PMID: 24781382 DOI: 10.1007/s12035-014-8712-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/09/2014] [Indexed: 12/18/2022]
Abstract
One of the most unfortunate side effects of aminoglycoside (AG) antibiotics such as neomycin is that they target sensory hair cells (HCs) and can cause permanent hearing impairment. We have observed HC loss and microglia-like cell (MLC) activation in the inner ear (cochlea) following neomycin administration. We focused on CX3CL1, a membrane-bound glycoprotein expressed on neurons and endothelial cells, as a way to understand how the MLCs are activated and the role these cells play in HC loss. CX3CL1 is the exclusive ligand for CX3CR1, which is a chemokine receptor expressed on the surface of macrophages and MLCs. In vitro experiments showed that the expression levels of CX3CL1 and CX3CR1 increased in the cochlea upon neomycin treatment, and CX3CL1 was expressed on HCs, while CX3CR1 was expressed on MLCs. When cultured with 1 μg/mL exogenous CX3CL1, MLCs were activated by CX3CL1, and the cytokine level was increased in the cochleae leading to apoptosis in the HCs. In CX3CR1 knockout mice, a significantly greater number of cochlear HCs survived than in wild-type mice when the cochlear explants were cultured with neomycin in vitro. Furthermore, inhibiting the activation of MLCs with minocycline reduced the neomycin-induced HC loss and improved the hearing function in neomycin-treated mice in vivo. Our results demonstrate that CX3CL1-induced MLC activation plays an important role in the induction of HC death and provide evidence for CX3CL1 and CX3CR1 as promising new therapeutic targets for the prevention of hearing loss.
Collapse
Affiliation(s)
- Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
24
|
Scharfman HE, Binder DK. Aquaporin-4 water channels and synaptic plasticity in the hippocampus. Neurochem Int 2013; 63:702-11. [PMID: 23684954 DOI: 10.1016/j.neuint.2013.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, United States; Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY 10016, United States
| | | |
Collapse
|
25
|
Huang JN, Wang CY, Wang XL, Wu BZ, Gu XY, Liu WX, Gong LW, Xiao P, Li CH. Tenuigenin treatment improves behavioral Y-maze learning by enhancing synaptic plasticity in mice. Behav Brain Res 2013; 246:111-5. [PMID: 23499702 DOI: 10.1016/j.bbr.2013.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 11/25/2022]
Abstract
Polygala tenuifolia root has been used to improve memory and cognitive function in Traditional Chinese Medicine for more than 2000 years. Since tenuigenin (TEN) is one of the most utilized P. tenuifolia root extracts, it is surprising there is no evidence for the effects of TEN on learning and memory so far. In the present study, we investigated the effects of TEN on learning and memory with Y-maze test in mice. We found that oral administration of 4mg/kg TEN significantly improved learning and memory in Y-maze task. Treatment with 4mg/kg TEN markedly reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and increased superoxide dismutase (SOD) activity in hippocampus. In the electrophysiological test of hippocampal brain slice, 2μg/ml TEN perfusion substantially enhanced field excitatory postsynaptic potential (fEPSP) amplitude both in basic synaptic transmission and after high frequency stimulation (HFS) in Schaffer to CA1 pathway (Scha-CA1). These results indicate that TEN enhancing learning and memory may result from inhibiting AChE activity, improving antioxidation and enhancing synaptic plasticity in mice. Therefore, TEN shows promise as a potential nootropic product in improving learning and memory.
Collapse
Affiliation(s)
- Jun-ni Huang
- College of Life Science, South China Normal University, 55W Zhongshan Ave, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ge JF, Qi CC, Qiao JP, Wang CW, Zhou NJ. Sex differences in ICR mice in the Morris water maze task. Physiol Res 2012; 62:107-17. [PMID: 23173685 DOI: 10.33549/physiolres.932371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Morris water maze (MWM) is one of the most common tasks used to assess spatial learning and memory ability in rodents. Genetic strain and gender are two prominent variants that influence spatial performance. Although it was reported that ICR (Institute of Cancer Research) mice exhibited an unchanged baseline performance in the training phase of the MWM task, this outbred strain has been widely used in learning and memory studies, and little is known regarding the effects of sex on behavioral performance. In this study, we demonstrated that both male and female ICR mice could complete the MWM task. Furthermore, a significant sex difference was observed, with females having shorter escape latencies and longer durations in the target quadrant in both the acquisition and test phases. Our findings emphasize the necessity of careful examination of not only the strain effect on behavioral performance but also the sex effect.
Collapse
Affiliation(s)
- J F Ge
- Department of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Anhui, China
| | | | | | | | | |
Collapse
|
27
|
Schaefers ATU. Rearing conditions and domestication background determine regulation of hippocampal cell proliferation and survival in adulthood-laboratory CD1 and C57Bl/6 mice versus wild house mice. Neuroscience 2012; 228:120-7. [PMID: 23079634 DOI: 10.1016/j.neuroscience.2012.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022]
Abstract
Brain development is sensitive to an individual's interaction with its environment. Deprivation of natural environmental stimulation especially in the phase after weaning has long-lasting consequences on neuroplasticity. However, previous findings concerning the effects of rearing environment on adult hippocampal cell proliferation and neurogenesis in rodents remain contradictory. To address the question, whether the variability of hippocampal plasticity in response to environmental conditions is a unique feature at least in mice, the present study examined the effects of social and physical deprivation during brain development on hippocampal cell production and survival in adults of three mouse strains (Mus musculus) with different domestication background: outbred CD1, inbred C57Bl/6 and the F2-descendants of wild-caught house mice. Wheel running increased cell proliferation rates in the dentate gyrus of CD1 and C57Bl/6 mice reared under socially and physically deprived conditions, but not from enriched conditions. In wild house mice, neither the rearing conditions nor the wheel-running challenge did affect proliferative activity. This indicates, on the one hand, that wild house mice are more robust in their regulation of hippocampal cell proliferation against environmental influences and, on the other hand, that domestication and rearing background of laboratory animals impact neuroplastic potentials and responsiveness to external stimuli in adulthood.
Collapse
Affiliation(s)
- A T U Schaefers
- Department of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
28
|
Goodwin D, Hrubec TC, Klein BG, Strobl JS, Werre SR, Han Q, Zajac AM, Lindsay DS. Congenital infection of mice with Toxoplasma gondii induces minimal change in behavior and no change in neurotransmitter concentrations. J Parasitol 2012; 98:706-12. [PMID: 22468990 DOI: 10.1645/ge-3068.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We examined the effect of maternal Toxoplasma gondii infection on behavior and the neurotransmitter concentrations of congenitally infected CD-1 mice at 4 and 8 wk of age when latent tissue cysts would be present in their brains. Because of sex-associated behavioral changes that develop during aging, infected female mice were compared with control females and infected male mice were compared with control males. Only the short memory behavior (distance between goal box and first hole investigated) of male mice congenitally infected with T. gondii was significantly different (P < 0.05) from that of uninfected control males at both 4 and 8 wk by using the Barnes maze test. The other parameters examined in the latter test, i.e., functional observational battery tests, virtual cliff, visual placement, and activity tests, were not significantly different (P > 0.05) at 4 and 8 wk. Concentrations of neurotransmitters and their metabolites (dopamine; 3,4-dihydroxyphenylacetic acid; homovanillic acid; norepinephrine; epinephrine; 3-methoxy-4-hydroxyphenylglycol; serotonin; and 5-hydroxyindoleacetic acid) in the frontal cortex and striatum were not different (P > 0.05) between infected and control mice at 8 wk of age. The exact mechanism for the observed effect on short-term memory in male mice is not known, and further investigation may help elucidate the molecular mechanisms associated with the proposed link between behavioral changes and T. gondii infection in animals. We were not able, however, to confirm the widely held belief that changes in neurotransmitters result from chronic T. gondii infection of the brain.
Collapse
Affiliation(s)
- David Goodwin
- Via College of Osteopathic Medicine, Virginia Campus, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, McLinden KA, Boehm GW, Chumley MJ. Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 2012; 229:176-84. [DOI: 10.1016/j.bbr.2012.01.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022]
|
30
|
Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 2011; 31:6392-7. [PMID: 21525279 DOI: 10.1523/jneurosci.6249-10.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aquaporin-4 (AQP4) is the major water channel in the CNS and is primarily expressed in astrocytes. Little is known about the potential for AQP4 to influence synaptic plasticity, although many studies have shown that it regulates the response of the CNS to injury. Therefore, we evaluated long-term potentiation (LTP) and long-term depression (LTD) in AQP4 knock-out (KO) and wild-type mice. KO mice exhibited a selective defect in LTP and LTD without a change in basal transmission or short-term plasticity. Interestingly, the impairment in LTP in KO mice was specific for the type of LTP that depends on the neurotrophin BDNF, which is induced by stimulation at theta rhythm [theta-burst stimulation (TBS)-LTP], but there was no impairment in a form of LTP that is BDNF independent, induced by high-frequency stimulation. LTD was also impaired in KO mice, which was rescued by a scavenger of BDNF or blockade of Trk receptors. TrkB receptors, which mediate effects of BDNF on TBS-LTP, were not altered in KO mice, but p75NTR, the receptor that binds all neurotrophins and has been implicated in some types of LTD, was decreased. The KO mice also exhibited a cognitive defect, which suggests a new role for AQP4 and astrocytes in normal cognitive function. This defect was evident using a test for location-specific object memory but not Morris water maze or contextual fear conditioning. The results suggest that AQP4 channels in astrocytes play an unanticipated role in neurotrophin-dependent plasticity and influence behavior.
Collapse
|
31
|
Sartori SB, Hauschild M, Bunck M, Gaburro S, Landgraf R, Singewald N. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions. PLoS One 2011; 6:e16849. [PMID: 21386891 PMCID: PMC3046120 DOI: 10.1371/journal.pone.0016849] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/14/2011] [Indexed: 01/23/2023] Open
Abstract
The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5)-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck and Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
32
|
Bénit P, El-Khoury R, Schiff M, Sainsard-Chanet A, Rustin P. Genetic background influences mitochondrial function: modeling mitochondrial disease for therapeutic development. Trends Mol Med 2010; 16:210-7. [PMID: 20382561 DOI: 10.1016/j.molmed.2010.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 12/21/2022]
Abstract
Genetic background strongly influences the phenotype of human mitochondrial diseases. Mitochondrial biogenesis and function require up to 1500 nuclear genes, providing myriad opportunities for effects on disease expression. Phenotypic variability, combined with relative rarity, constitutes a major obstacle to establish cohorts for clinical trials. Animal models are, therefore, potentially valuable. However, several of these show no or very mild disease phenotypes compared with patients and can not be used for therapeutic studies. One reason might be the insufficient attention paid to the need for genetic diversity in order to capture the effects of genetic background on disease expression. Here, we use data from various models to emphasize the need to preserve genetic diversity when studying mitochondrial disease phenotypes or drug effects.
Collapse
|
33
|
Tkatchenko TV, Shen Y, Tkatchenko AV. Mouse experimental myopia has features of primate myopia. Invest Ophthalmol Vis Sci 2009; 51:1297-303. [PMID: 19875658 DOI: 10.1167/iovs.09-4153] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Several recent studies have suggested that experimental myopia can be induced in mice. However, it is not clear what role the photopic visual input plays in this process and whether mouse myopia is similar to human myopia. The purpose of this study was to carry out an in vivo high-resolution analysis of changes in ocular components and refractive state of the eye upon induction of experimental myopia in mice. METHODS A high-resolution small animal MRI system and a high-resolution automated eccentric infrared photorefractor were used to analyze changes of the refractive state and ocular components in C57BL/6J mice associated with experimental myopia induced by diffusers and -25 D lenses under photopic conditions. RESULTS The authors found that both diffusers and -25 D lenses induce myopia in C57BL/6J mice under photopic conditions (continuous light, 200 +/- 15 lux). The extent of myopic shift induced by -25 D lenses was greater than the shift induced by diffusers (-15.2 +/- 0.7 D, lenses; -12.0 +/- 1.4 D, diffusers). Myopia in mice is attributed to an increase in size of the postequatorial segment of the eye. Experimental myopia in mice can be induced only during the susceptible period in postnatal development, which ends around postnatal day 67. CONCLUSIONS Both diffusers and spectacle lenses induce myopia in mice under photopic conditions, during the susceptible period in postnatal development. Myopia in mice is associated with elongation of the vitreous chamber of the eye, as in humans and nonhuman primates.
Collapse
Affiliation(s)
- Tatiana V Tkatchenko
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
34
|
Natarajan D, de Vries H, Saaltink DJ, de Boer SF, Koolhaas JM. Delineation of violence from functional aggression in mice: an ethological approach. Behav Genet 2009; 39:73-90. [PMID: 18972199 PMCID: PMC9823070 DOI: 10.1007/s10519-008-9230-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 09/08/2008] [Indexed: 01/11/2023]
Abstract
The present study aims at delineating violence from aggression, using genetically selected high (SAL, TA, NC900) and low (LAL, TNA NC100) aggressive mouse strains. Unlike aggression, violence lacks intrinsic control, environmental constraints as well as functional endpoints. Conventional measures namely latency, frequency and duration were used initially to accomplish the objective of delineation using the above strains. However, these quantitative measures fail to reveal further details beyond the magnitude of differential aggression, especially within the high aggressive mouse strains. Hence, it was necessary to analyze further, the behavioral sequences that make up the agonistic encounter. Novel measures such as threat/(attack + chase) (T/AC) and offense/withdrawal (O/W) ratios, context dependency and first-order Markov chain analysis were used for the above purpose. Our present analyses reveal clear qualitative behavioral differences between the three high aggressive selection strains based on the following facets namely structure and context in an agonistic interaction. Structure refers to a detailed study of the agonistic interaction components (ritualistic display, offense and sensitivity to the opponent submission cues) between any two subjects (inter-male interaction for the present study). Context refers to the capacity to identify an opponent by nature of its state (free moving/anesthetized), sex and the environment (home/neutral territory). NC900 displayed context dependency and structurally a rich repertoire of agonistic interaction components with an opponent. SAL failed to show discrimination and its inter-male agonistic behavior is restricted to a repetitive and an opponent-insensitive pattern of attack and chase. TA was comparable to SAL in terms of the structure but sensitive to context variables. Thus, SAL seems to display a violent form of aggressive behavior, while NC900 display 'functional' hyperaggression against a docile opponent in an inter-male agonistic interaction.
Collapse
Affiliation(s)
- Deepa Natarajan
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Han de Vries
- grid.5477.10000000120346234Department of Behavioral Biology, University of Utrecht, P.O. Box 80.086, 3508 TB Utrecht, The Netherlands
| | - Dirk-Jan Saaltink
- grid.5132.50000000123121970Department of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University Medical Center, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sietse F. de Boer
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Jaap M. Koolhaas
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
35
|
Kim JS, Yang M, Son Y, Kim SH, Kim JC, Kim S, Lee Y, Shin T, Moon C. Strain-dependent Differences of Locomotor Activity and Hippocampus-dependent Learning and Memory in Mice. Toxicol Res 2008; 24:183-188. [PMID: 32038793 PMCID: PMC7006272 DOI: 10.5487/tr.2008.24.3.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/13/2008] [Accepted: 08/16/2008] [Indexed: 12/29/2022] Open
Abstract
The behavioral phenotypes of out-bred ICR mice were compared with those of in-bred C57BL/6 and BALB/c mice. In particular, this study examined the locomotor activity and two forms of hippocampus-dependent learning paradigms, passive avoidance and object recognition memory. The basal open-field activity of the ICR strain was greater than that of the C57BL/6 and BALB/c strains. In the passive avoidance task, all the mice showed a significant increase in the cross-over latency when tested 24 hours after training. The strength of memory retention in the ICR mice was relatively weak and measurable, as indicated by the shorter cross-over latency than the C57BL/6 and BALB/c mice. In the object recognition memory test, all strains had a significant preference for the novel object during testing. The index for the preference of a novel object was lower for the ICR and BALB/c mice. Nevertheless, the variance and the standard deviation in these strains were comparable. Overall, these results confirm the strain differences on locomotor activity and hippocampus-dependent learning and memory in mice.
Collapse
Affiliation(s)
- Joong-Sun Kim
- 14Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| | - Miyoung Yang
- 14Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| | - Yeonghoon Son
- 14Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| | - Sung-Ho Kim
- 14Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| | - Jong-Choon Kim
- 24Department of Veterinary Toxicology, College of Veterinary Medicine and Veterinary Medical Research Center, Chonnam National University, Gwangju, 500-757 Korea
| | - Seungjoon Kim
- 34Department of Veterinary Obstetrics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701 Korea
| | - Yongduk Lee
- 44Department of Veterinary Anatomy, College of Veterinary Medicine, Cheju National University, Jeju, 690-756 Korea
| | - Taekyun Shin
- 44Department of Veterinary Anatomy, College of Veterinary Medicine, Cheju National University, Jeju, 690-756 Korea
| | - Changjong Moon
- 14Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 Korea
| |
Collapse
|
36
|
A reliable method to study cue-, priming-, and stress-induced reinstatement of cocaine self-administration in mice. Psychopharmacology (Berl) 2008; 199:593-603. [PMID: 18488200 DOI: 10.1007/s00213-008-1184-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/21/2008] [Indexed: 12/12/2022]
Abstract
RATIONALE Cocaine addiction is a relapsing psychiatric disorder with a high prevalence in developed countries. To date, the reinstatement model has been difficult to implement in mice. The design of an appropriate reinstatement model in mice is required in order to use genetically modified animals with the aim of clarifying the mechanisms involved in cocaine relapse. OBJECTIVES Our aim was to develop an appropriate model of reinstatement of cocaine-seeking behavior and to investigate the factors that can trigger this reinstatement by using an operant intravenous self-administration procedure in mice. Discrete cues, priming injection of cocaine, and exposure to stress were the stimuli used to reinstate cocaine-seeking behavior. MATERIAL AND METHODS Mice were trained to acquire intravenous self-administration of cocaine (1 mg/kg per infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. After achieving the acquisition criteria, animals were led to extinguish the operant behavior. Subsequently, under extinction conditions, mice were tested after the administration of a cocaine priming injection (10 mg/kg i.p.), the presentation of a light cue associated with cocaine administration, or the exposure to a stressful situation (0.21 mA electric footshock). RESULTS Under our experimental conditions the three stimuli successfully reinstated an extinguished cocaine-seeking behavior. Reexposure to cocaine effects by a priming injection was revealed as the strongest stimulus, capable of reinstating cocaine-seeking behavior. CONCLUSIONS The effective reinstatement model that we have developed will become a useful tool for future understanding of the neurobiological basis of cocaine addiction and relapse, specifically, with the use of genetically modified mice.
Collapse
|
37
|
Apodemus sylvaticus (LOXT) is a suitable mouse strain for testing spatial memory retention in the Morris water maze. Neurobiol Learn Mem 2008; 89:552-9. [DOI: 10.1016/j.nlm.2007.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/21/2022]
|
38
|
Nicol CJ, Brocklebank S, Mendl M, Sherwin CM. A targeted approach to developing environmental enrichment for two strains of laboratory mice. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2007.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Caramaschi D, de Boer SF, de Vries H, Koolhaas JM. Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav Brain Res 2008; 189:263-72. [PMID: 18281105 DOI: 10.1016/j.bbr.2008.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 11/27/2022]
Abstract
Recent reviews on the validity of rodent aggression models for human violence have addressed the dimension of pathological, maladaptive, violent forms of aggression in male rodent aggressive behaviour. Among the neurobiological mechanisms proposed for the regulation of aggressive behaviour in its normal and pathological forms, serotonin plays a major role. However, the results on the detailed mechanism are still confusing and controversial, mainly because of difficulties in extrapolating from rodent to human psychopathological behaviour. Our aim was to investigate the involvement of serotonin in pathological aggression. We subjected mice genetically selected for high (SAL, TA, NC900 lines) and low (LAL, TNA, NC100) aggression levels to a repeated resident-intruder experience (RRI mice) or to handling as a control procedure (CTR mice). Pathological aggression parameters we recorded were aggression towards females and lack of communication between the resident and its opponent. In the same mice, we measured the monoamine levels in the prefrontal cortex, a brain region strongly involved in the regulation of motivated behaviour. Our results show that SAL mice augmented their proneness to attack and showed the most pathological phenotype, with disregard of the opponent's sex, high territorial behavioural patterns, and low sensitivity to signals of subordination. In contrast, TA and NC900 augmented their proneness to attack and low discrimination of the opponent's signals, without showing offence towards females. After repeated resident-intruder experience, serotonin levels in the prefrontal cortex were significantly lower in SAL than in LAL whereas dopamine turnover was significantly higher, compared to CTR mice. Serotonin turnover was significantly reduced in all RRI mice, with no strain differences. Noradrenaline was significantly lower in aggressive mice of the TA and NC900 lines compared to their low-aggressive counterparts, with no effect of the repeated resident-intruder experience. We conclude that social experience changes prefrontal cortex neurochemistry and elicits pathologically aggressive phenotypes.
Collapse
Affiliation(s)
- Doretta Caramaschi
- Department of Behavioural Physiology, Biology Centre, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Wong AA, Brown RE. Visual detection, pattern discrimination and visual acuity in 14 strains of mice. GENES BRAIN AND BEHAVIOR 2006; 5:389-403. [PMID: 16879633 DOI: 10.1111/j.1601-183x.2005.00173.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Based on the procedure of Prusky et al. (2000, Vision Research, 40, 2201-2209), we used a computer-based, two-alternative swim task to evaluate visual detection, pattern discrimination and visual acuity in 14 strains of mice from priority groups A and B of the JAX phenome project (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/Ei, DBA/2J, FVB/NJ, MOLF/Ei, SJL/J, SM/J and SPRET/Ei). Each mouse was tested for eight trials/day for 8 days on each of the three tests. There was a significant strain difference in visual ability in all three tests. Mice with reported normal vision (129S1/SvImJ, C57BL/6J and DBA/2J) and one albino strain (AKR/J) performed very well in these tasks. The other albino strains (A/J, BALB/cByJ and BALB/cJ) took longer to learn the tasks than mice with normal vision and did not reach the criterion of 70% correct. Mice with retinal degeneration (C3H/HeJ, FVB/NJ, MOLF/Ei and SJL/J) performed only at chance levels as did the three strains with unknown visual abilities (CAST/Ei, SM/J and SPRET/Ei). Because many behavioral tasks for rodents rely on visual cues, we suggest that the visual abilities of mice should be evaluated before they are tested in commonly used visuo-spatial learning and memory tasks.
Collapse
Affiliation(s)
- A A Wong
- Department of Psychology and Neuroscience Institute, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
41
|
Sison M, Cawker J, Buske C, Gerlai R. Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim (NY) 2006; 35:33-9. [PMID: 16645614 DOI: 10.1038/laban0506-33] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/13/2006] [Indexed: 11/08/2022]
Abstract
The zebrafish (Danio rerio) has been a favorite model of developmental biologists and geneticists, but only recently have investigators begun to appreciate its usefulness in behavior genetics. Papers focusing on the behavior or brain function of this species were once extremely rare, but during the past decade rapid growth has taken place. Despite the increased interest, however, the number of studies devoted to the analysis of the behavior of this species is still orders of magnitude less than those conducted on more traditional laboratory subjects including the rat and the mouse. The authors review selected literature and demonstrate that zebrafish is an excellent subject for behavior genetics research, especially in the area of forward genetics (mutagenesis).
Collapse
Affiliation(s)
- Margarette Sison
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON Canada
| | | | | | | |
Collapse
|
42
|
Langford DJ, Crager SE, Shehzad Z, Smith SB, Sotocinal SG, Levenstadt JS, Chanda ML, Levitin DJ, Mogil JS. Social modulation of pain as evidence for empathy in mice. Science 2006; 312:1967-70. [PMID: 16809545 DOI: 10.1126/science.1128322] [Citation(s) in RCA: 550] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Empathy is thought to be unique to higher primates, possibly to humans alone. We report the modulation of pain sensitivity in mice produced solely by exposure to their cagemates, but not to strangers, in pain. Mice tested in dyads and given an identical noxious stimulus displayed increased pain behaviors with statistically greater co-occurrence, effects dependent on visual observation. When familiar mice were given noxious stimuli of different intensities, their pain behavior was influenced by their neighbor's status bidirectionally. Finally, observation of a cagemate in pain altered pain sensitivity of an entirely different modality, suggesting that nociceptive mechanisms in general are sensitized.
Collapse
Affiliation(s)
- Dale J Langford
- Department of Psychology and Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Short JL, Drago J, Lawrence AJ. Comparison of ethanol preference and neurochemical measures of mesolimbic dopamine and adenosine systems across different strains of mice. Alcohol Clin Exp Res 2006; 30:606-20. [PMID: 16573578 DOI: 10.1111/j.1530-0277.2006.00071.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND To extend the known phenotype of strains commonly used in the development of mutant mice, ethanol, saccharin, and caffeine preferences were examined in C57Bl/6J, CD-1, and hybrid C57Bl/6J x CD-1 mice. As dopaminergic mechanisms are inherently involved in the neuronal processing of many drugs of abuse (including ethanol), and an important role for adenosine-dopamine interactions has also been reported, the dopaminergic and purinergic neurochemical profiles of mice were compared against the consummatory phenotype observed. METHODS Ethanol (5% v/v), saccharin (0.1% w/v), and caffeine (0.1% w/v) consumption and preference were examined using a 2-bottle free-choice paradigm. Dopamine and adenosine receptor and transporter mRNA and protein density were quantified using in situ hybridization histochemistry and in vitro autoradiography, respectively. RESULTS C57Bl/6J and hybrid C57Bl/6J x CD-1 mice demonstrated a clear ethanol preference, voluntarily consuming large quantities of ethanol when given the choice between drinking vessels containing either ethanol or water. Conversely, CD-1 mice were characterized as ethanol-avoiding under the present paradigm. Differences in D(1) receptor mRNA between the strains were consistent with the observed behavioral differences in ethanol preference. The high ethanol-preferring phenotype of C57Bl/6J mice could not be directly linked to alterations in dopamine transporter neurochemistry and/or enkephalin levels as proposed by earlier researchers. Ethanol-seeking behavior appeared to correlate with D2 receptor expression, however, with evidence that ethanol-preferring mice also exhibit an increased density of D2 receptors within limbic dopaminergic projection nuclei. Interestingly, strain differences in the expression of the ethanol-sensitive nucleoside transporter paralleled differences in ethanol consumption, a novel finding consonant with purinergic involvement in dopamine-related behaviors. CONCLUSIONS This study has highlighted the relevance of alterations in dopamine receptor expression and purinergic modulation within the mesolimbic pathway and predisposition toward the development of ethanol-seeking behavior.
Collapse
Affiliation(s)
- Jennifer Lynn Short
- Department of Pharmacology, Faculty of Medicine, Monash University, Clayton, Australia
| | | | | |
Collapse
|
44
|
Clapcote SJ, Lazar NL, Bechard AR, Roder JC. Effects of the rd1 mutation and host strain on hippocampal learning in mice. Behav Genet 2006; 35:591-601. [PMID: 16184487 DOI: 10.1007/s10519-005-5634-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Many of the inbred mouse strains commonly used in biomedical research are homozygous for the rd1 mutation of the Pde6b gene, which causes retinal degeneration. To dissociate the behavioural effects of rd1 homozygosity from those of the genetic background of the host strain in the most widely used paradigms for evaluating the cognitive abilities of mice, two rd1 homozygous strains (C3H/HeJ and CBA/J) were compared with two Pde6b wild-type strains, each possessing a genetic background identical (C3A.BLiA-Pde6b+/J) or very similar (CBA/CaJ) to that of its rd1 homozygous relative. In the fear conditioning procedure, the presence of the rd1 mutation had no effect on performance at any stage, as the superior contextual learning of the CBA/J and CBA/CaJ strains could be explained by genetic background effects alone. In the Morris water maze, only the Pde6b wild-type C3A.BLiA-Pde6b+/J and CBA/CaJ strains were able to demonstrate spatial learning. The study thus demonstrates how retinal degeneration and genetic background have different effects in these two tests of hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Steven J Clapcote
- Mount Sinai Hospital Research Institute, Room 860, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| | | | | | | |
Collapse
|
45
|
Schimanski LA, Nguyen PV. Mouse models of impaired fear memory exhibit deficits in amygdalar LTP. Hippocampus 2005; 15:502-17. [PMID: 15744733 DOI: 10.1002/hipo.20075] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inbred mouse strains have different genetic backgrounds that can result in impairments of synaptic plasticity and memory. They are valuable models for probing the mechanisms of memory impairments. We examined fear memory in several inbred strains, along with synaptic plasticity that may underlie fear memory. Long-term potentiation (LTP) is a form of activity-dependent synaptic plasticity that is a candidate cellular mechanism for some forms of learning and memory. Strains with impaired contextual or cued fear memory may have selective LTP deficits in different hippocampal subregions, or in the amygdala. We measured fear memory and its extinction in five inbred strains: C57BL/6NCrlBR (B6), A/J, BALB/cByJ (BALB), C57BL/10J (B10), and SM/J (SM). We also measured LTP in the basolateral amygdala and in the hippocampal Schaeffer collateral-commissural (SC) and medial perforant pathways (MPP). All strains exhibited intact contextual fear memory 24 h post-training, but cued fear memory was impaired in strains A/J, BALB, and SM. At 1 h post-training, both contextual and cued fear memory deficits were more widespread: all strains except for B6 and B10 showed impairments of both types of memory. Contextual fear extinction was impaired in BALB and SM. We found that amygdalar LTP was reduced in strains A/J and BALB, but SC LTP was intact in all strains (except for a selective multi-train LTP impairment in BALB). MPPLTP was similar in all five strains. Thus, reduced amygdalar LTP is correlated with impaired cued fear memory in strains A/J and BALB. Also, hippocampal SC LTP is more strongly correlated with 24-h (long-term) than with 1-h (short-term) contextual fear memory. In this first conjoint study of amygdala-dependent memory and amygdalar LTP in inbred mice, we identified specific hippocampal and amygdalar LTP deficits that correlate with fear memory impairments. These deficits should be considered when selecting inbred strains for genetic modification.
Collapse
Affiliation(s)
- Lesley A Schimanski
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
46
|
Schimanski LA, Nguyen PV. Impaired fear memories are correlated with subregion-specific deficits in hippocampal and amygdalar LTP. Behav Neurosci 2005; 119:38-54. [PMID: 15727511 DOI: 10.1037/0735-7044.119.1.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inbred mouse strains have different genetic backgrounds that likely influence memory and long-term potentiation (LTP). LTP, a form of synaptic plasticity, is a candidate cellular mechanism for some forms of learning and memory. Strains with impaired fear memory may have selective LTP deficits in different hippocampal subregions or in the amygdala. The authors assessed fear memory in 4 inbred strains: C57BL/6NCrlBR (B6), 129S1/SvImJ (129), C3H/HeJ (C3H), and DBA/2J (D2). The authors also measured LTP in the hippocampal Schaeffer collateral (SC) and medial perforant pathways (MPP) and in the basolateral amygdala. Contextual and cued fear memory, and SC and amygdalar LTP, were intact in B6 and 129, but all were impaired in C3H and D2. MPP LTP was similar in all 4 strains. Thus, SC, but not MPP, LTP correlates with hippocampus-dependent contextual memory expression, and amygdalar LTP correlates with amygdala-dependent cued memory expression, in these inbred strains.
Collapse
Affiliation(s)
- Lesley A Schimanski
- Department of Physiology, University of Alberta, School of Medicine, Edmonton, AB, Canada
| | | |
Collapse
|
47
|
Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, Yu JL, Köster A, Baez M, Schoepp DD. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 2002; 43:251-9. [PMID: 12213279 DOI: 10.1016/s0028-3908(02)00079-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pre-synaptic metabotropic glutamate (mGlu) receptors modulate neuronal excitability by controlling glutamate and gamma-aminobutyric acid (GABA) release. The mGlu8 receptor is predominantly found in pre-synaptic terminals and its expression is highly restricted. To study the role of this receptor, mGlu8 receptor-deficient mice were generated. Here we report that naïve mGlu8 receptor-deficient mice showed increased anxiety-related behavior in the elevated plus maze in low illumination conditions (red light). Open arm avoidance and risk assessment behavior were both significantly increased in mutant mice. Increased stressfulness of the testing conditions abolished this behavioral difference. Fluorescent light or prior restraint stress decreased the open arm activity of wild-type mice, while the open arm activity of mutant mice was essentially unaffected, leading to similar values in both strains. The total number of arm entries or closed arm entries was not significantly different between strains, indicating that the lack of mGlu8 receptor does not affect locomotor activity. No gross behavioral changes, or changes in the function of the autonomic nervous system or somatomotor systems were observed in mutant mice. Moreover, no significant differences in seizure susceptibility were detected between strains. Our results suggest that mGlu8 receptor may play a role in responses to novel stressful environment.
Collapse
Affiliation(s)
- A-M Linden
- Neuroscience Research Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gerlai R, Adams B, Fitch T, Chaney S, Baez M. Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype. Neuropharmacology 2002; 43:235-49. [PMID: 12213278 DOI: 10.1016/s0028-3908(02)00078-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Research, Lilly Research Laboratories, Lilly Corporate Center, Drop Code 0510, Indianapolis, IN 46285, USA.
| | | | | | | | | |
Collapse
|