1
|
Pinto-Almeida A, Mendes TMF, Ferreira P, Abecasis AB, Belo S, Anibal FF, Allegretti SM, Galinaro CA, Carrilho E, Afonso A. A Comparative Proteomic Analysis of Praziquantel-Susceptible and Praziquantel-Resistant Schistosoma mansoni Reveals Distinct Response Between Male and Female Animals. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.664642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a chronic neglected tropical disease saddling millions of people in the world, mainly children living in poor rural areas. Praziquantel (PZQ) is currently the only drug used for the treatment and control of this disease. However, the extensive use of this drug has brought concern about the emergence of PZQ-resistance/tolerance by Schistosoma mansoni. Studies of Schistosoma spp. genome, transcriptome, and proteome are crucial to better understand this situation. In this in vitro study, we compare the proteomes of a S. mansoni variant strain stably resistant to PZQ and isogenic to its fully susceptible parental counterpart, identifying proteins from male and female adult parasites of PZQ-resistant and PZQ-susceptible strains, exposed and not exposed to PZQ. A total of 60 Schistosoma spp. proteins were identified, some of which present or absent in either strain, which may putatively be involved in the PZQ-resistance phenomenon. These proteins were present in adult parasites not exposed to PZQ, but some of them disappeared when these adult parasites were exposed to the drug. Understanding the development of PZQ-resistance in S. mansoni is crucial to prolong the efficacy of the current drug and develop markers for monitoring the potential emergence of drug resistance.
Collapse
|
2
|
Shiee MR, Kia EB, Zahabiun F, Naderi M, Motevaseli E, Nekoeian S, Fasihi Harandi M, Dehpour AR. In vitro effects of tropisetron and granisetron against Echinococcus granulosus (s.s.) protoscoleces by involvement of calcineurin and calmodulin. Parasit Vectors 2021; 14:197. [PMID: 33845889 PMCID: PMC8042905 DOI: 10.1186/s13071-021-04691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a disease caused by the larval stage of Echinococcus granulosus sensu lato (s.l.). The treatment of CE mainly relies on the use of benzimidazoles, which can commonly cause adverse side effects. Therefore, more efficient treatment options are needed. Drug repurposing is a useful approach for advancing drug development. We have evaluated the in vitro protoscolicidal effects of tropisetron and granisetron in E. granulosus sensu stricto (s.s.) and assessed the expression of the calcineurin (CaN) and calmodulin (CaM) genes, both of which have been linked to cellular signaling activities and thus are potentially promising targets for the development of drugs. Methods Protoscoleces (PSC) of E. granulosus (s.s.) (genotype G1) obtained from sheep hepatic hydatid cysts were exposed to tropisetron and granisetron at concentrations of 50, 150 and 250 µM for various periods of time up to 10 days. Cyclosporine A (CsA) and albendazole sulfoxide were used for comparison. Changes in the morphology of PSC were investigated by light microscopy and scanning electron microscopy. Gene expression was assessed using real-time PCR at the mRNA level for E. granulosus calcineurin subunit A (Eg-CaN-A), calcineurin subunit B (Eg-CaN-B) and calmodulin (Eg-CaM) after a 24-h exposure at 50 and 250 µM, respectively. Results At 150 and 250 µM, tropisetron had the highest protoscolicidal effect, whereas CsA was most effective at 50 µM. Granisetron, however, was less effective than tropisetron at all three concentrations. Examination of morphological alterations revealed that the rate at which PSC were killed increased with increasing rate of PSC evagination, as observed in PSC exposed to tropisetron. Gene expression analysis revealed that tropisetron at 50 μM significantly upregulated Eg-CaN-B and Eg-CaM expression while at 250 μM it significantly downregulated both Eg-CaN-B and Eg-CaM expressions; in comparison, granisetron decreased the expression of all three genes at both concentrations. Conclusions Tropisetron exhibited a higher efficacy than granisetron against E. granulosus (s.s.) PSC, which is probably due to the different mechanisms of action of the two drugs. The concentration-dependent effect of tropisetron on calcineurin gene expression might reflect its dual functions, which should stimulate future research into its mechanism of action and evaluation of its potential therapeutical effect in the treatment of CE. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mohammad Reza Shiee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Zahabiun
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Abou-El-Naga IF. Schistosoma mansoni sarco/endoplasmic reticulum Ca2+ ATPases (SERCA): role in reduced sensitivity to praziquantel. J Bioenerg Biomembr 2020; 52:397-408. [DOI: 10.1007/s10863-020-09843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 01/17/2023]
|
4
|
Nicolao MC, Cumino AC. Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages. Acta Trop 2015; 146:141-51. [PMID: 25818323 DOI: 10.1016/j.actatropica.2015.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023]
Abstract
Calcineurin (CaN) is a Ca(2+)-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca(2+)/Ni(2+) and reduced by cyclosporine A and Ca(2+) chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca(2+) intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600 Mar del Plata, Argentina.
| |
Collapse
|
5
|
Liang S, Varrecchia M, Ishida K, Jolly ER. Evaluation of schistosome promoter expression for transgenesis and genetic analysis. PLoS One 2014; 9:e98302. [PMID: 24858918 PMCID: PMC4032330 DOI: 10.1371/journal.pone.0098302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/30/2014] [Indexed: 01/23/2023] Open
Abstract
Schistosome worms of the genus Schistosoma are the causative agents of schistosomiasis, a devastating parasitic disease affecting more than 240 million people worldwide. Schistosomes have complex life cycles, and have been challenging to manipulate genetically due to the dearth of molecular tools. Although the use of gene overexpression, gene knockouts or knockdowns are straight-forward genetic tools applied in many model systems, gene misexpression and genetic manipulation of schistosome genes in vivo has been exceptionally challenging, and plasmid based transfection inducing gene expression is limited. We recently reported the use of polyethyleneimine (PEI) as a simple and effective method for schistosome transfection and gene expression. Here, we use PEI-mediated schistosome plasmid transgenesis to define and compare gene expression profiles from endogenous and nonendogenous promoters in the schistosomula stage of schistosomes that are potentially useful to misexpress (underexpress or overexpress) gene product levels. In addition, we overexpress schistosome genes in vivo using a strong promoter and show plasmid-based misregulation of genes in schistosomes, producing a clear and distinct phenotype--death. These data focus on the schistosomula stage, but they foreshadow strong potential for genetic characterization of schistosome molecular pathways, and potential for use in overexpression screens and drug resistance studies in schistosomes using plasmid-based gene expression.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa Varrecchia
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kenji Ishida
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca(2+) concentration activates many proteins, including calmodulin and the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals.
Collapse
|
7
|
Hahnel S, Lu Z, Wilson RA, Grevelding CG, Quack T. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2336. [PMID: 23936567 PMCID: PMC3723596 DOI: 10.1371/journal.pntd.0002336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. Methodology/Principal Findings To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM) and bright-field microscopy (BF). We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP) as well as for post-transcriptional regulation (SmAQP). Conclusions/Significance The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved molecules that may represent potential targets for novel intervention strategies. Furthermore, gonads and other tissues are a basis for cell isolation, opening new perspectives for establishing cell lines, one of the tools desperately needed in the post-genomic era. As a neglected disease, schistosomiasis is still an enormous problem in the tropics and subtropics. Since the 1980s, Praziquantel (PZQ) has been the drug of choice but can be anticipated to lose efficacy in the future due to emerging resistance. Alternative drugs or efficient vaccines are still lacking, strengthening the need for the discovery of novel strategies and targets for combating schistosomiasis. One avenue is to understand the unique reproductive biology of this trematode in more detail. Sexual maturation of the adult female depends on a constant pairing with the male. This is a crucial prerequisite for the differentiation of the female reproductive organs such as the vitellarium and ovary, and consequently for the production of mature eggs. These are needed for life-cycle maintenance, but they also cause pathogenesis. With respect to adult males, the production of mature sperm is essential for fertilisation and life-cycle progression. In our study we present a convenient and inexpensive method to isolate reproductive tissues from adult schistosomes in high amounts and purity, representing a source for gonad-specific RNA and protein, which will serve for future sub-transcriptome and -proteome studies helping to characterise genes, or to unravel differentiation programs in schistosome gonads. Beyond that, isolated organs may be useful for approaches to establish cell cultures, desperately needed in the post-genomic era.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
8
|
Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, Webb T, Loker ES, Cunningham C. Towards an understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol 2009; 164:57-65. [PMID: 19100294 PMCID: PMC2886009 DOI: 10.1016/j.molbiopara.2008.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 11/27/2022]
Abstract
Although praziquantel (PZQ) has been used to treat schistosomiasis for over 20 years its mechanism of action remains unknown. We have developed an assay based on the transcriptional response of Schistosoma mansoni PR-1 to heat shock to confirm that while 6-week post-infection (p.i.) schistosomes are sensitive to PZQ, 4-week p.i. schistosomes are not. Further, we have used this assay to demonstrate that in mice this sensitivity develops between days 37 and 40 p.i. When PZQ is linked to the fluorophore BODIPY to aid microscopic visualization, it appears to enter the cells of intact 4 and 6-week p.i. schistosomes as well as mammalian NIH 3T3 cells with ease suggesting that the differential effects of PZQ is not based on cell exclusion. A transcriptomal analysis of gene expression between 4 and 6 weeks p.i. revealed 607 up-regulated candidate genes whose products are potential PZQ targets. A comparison of this gene list with that of genes expressed by PZQ sensitive miracidia reduced this target list to 247 genes, including a number involved in aerobic metabolism and cytosolic calcium regulation. Finally, we also report the effect of an in vitro sub-lethal exposure of PZQ on the transcriptome of S. mansoni PR-1. Annotation of genes differentially regulated by PZQ exposure suggests that schistosomes may undergo a transcriptomic response similar to that observed during oxidative stress.
Collapse
Affiliation(s)
- Anthony D. Aragon
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Reza A. Imani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vint R. Blackburn
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pauline M. Cupit
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandra D. Melman
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tinopiwa Goronga
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thomas Webb
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Charles Cunningham
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Kusel JR, Oliveira FA, Todd M, Ronketti F, Lima SF, Mattos ACA, Reis KT, Coelho PMZ, Thornhill JA, Ribeiro F. The effects of drugs, ions, and poly-l-lysine on the excretory system of Schistosoma mansoni. Mem Inst Oswaldo Cruz 2008; 101 Suppl 1:293-8. [PMID: 17308785 DOI: 10.1590/s0074-02762006000900046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022] Open
Abstract
We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow University, Glasgow, Scotland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
11
|
Bahia D, Avelar LGA, Vigorosi F, Cioli D, Oliveira GC, Mortara RA. The distribution of motor proteins in the muscles and flame cells of the Schistosoma mansoni miracidium and primary sporocyst. Parasitology 2006; 133:321-9. [PMID: 16740180 DOI: 10.1017/s0031182006000400] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/06/2006] [Accepted: 04/04/2006] [Indexed: 11/07/2022]
Abstract
Schistosoma mansoni eggs, miracidia and primary sporocysts were labelled with phalloidin-rhodamine to visualize filamentous actin structures. Analysis of these forms by confocal fluorescence microscopy revealed the presence of previously well-defined circular and longitudinal muscle layers. Besides these muscular layers that sustain and provide motility to these parasite forms, we found in these 3 consecutive developmental stages of the parasite previously unidentified actin-rich tubular structures. In the 3 forms, 4 actin-rich tubules could be observed by optical sectioning underneath the well-developed muscle layers. The tubules appear in pairs, transversal to the length of the parasite, and located towards the extremities. By using an anti-flame cell specific antibody we confirmed that the tubules co-localize with flame cells and also determined that the tubule core is filled with microtubules. The additional presence of myosin in these tubules strongly suggests that they are contractile structures.
Collapse
Affiliation(s)
- D Bahia
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou-FIOCRUZ, Av. Augusto de Lima 1715, 30190-002, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Daher W, Cailliau K, Takeda K, Pierrot C, Khayath N, Dissous C, Capron M, Yanagida M, Browaeys E, Khalife J. Characterization of Schistosoma mansoni Sds homologue, a leucine-rich repeat protein that interacts with protein phosphatase type 1 and interrupts a G2/M cell-cycle checkpoint. Biochem J 2006; 395:433-41. [PMID: 16411888 PMCID: PMC1422774 DOI: 10.1042/bj20051597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suppressor of the dis2 mutant (sds22+) has been shown to be an essential regulator in cell division of fission and budding yeast where its deletion causes mitotic arrest. Its role seems to take place through the activation of PP1 (protein phosphatase type 1) in Schizosaccharomyces pombe. In the trematode Schistosoma mansoni, we have identified the Sds22 homologue (SmSds), and the PP1 (SmPP1). We showed by using a GST (glutathione S-transferase) pull-down assay that the SmSds gene product interacts with SmPP1 and that the SmSds-SmPP1 complex is present in parasite extracts. Furthermore, we observed that SmSds inhibited PP1 activity. Functional studies showed that the microinjection of SmSds into Xenopus oocytes interacted with the Xenopus PP1 and disrupted the G2/M cell-cycle checkpoint by promoting progression to GVBD (germinal vesicle breakdown). Similar results showing the appearance of GVBD were observed when oocytes were treated with anti-PP1 antibodies. Taken together, these observations suggest that SmSds can regulate the cell cycle by binding to PP1.
Collapse
Affiliation(s)
- Wassim Daher
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
| | - Katia Cailliau
- †UPRES EA 1033, IFR 118, SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, Lille, France
| | - Kojiro Takeda
- ‡Department of Biophysics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606, Japan
- §Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606, Japan
| | - Christine Pierrot
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
| | - Naji Khayath
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
| | - Colette Dissous
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
| | - Monique Capron
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
| | - Mitsuhiro Yanagida
- §Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606, Japan
| | - Edith Browaeys
- †UPRES EA 1033, IFR 118, SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, Lille, France
| | - Jamal Khalife
- *Unité INSERM 547/IPL, Institut Pasteur, 1 rue du Pr Calmette, B.P. 245, F-59019 Lille Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Oliveira FA, Kusel JR, Ribeiro F, Coelho PMZ. Responses of the surface membrane and excretory system of Schistosoma mansoni to damage and to treatment with praziquantel and other biomolecules. Parasitology 2005; 132:321-30. [PMID: 16318676 DOI: 10.1017/s0031182005009169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 08/27/2005] [Accepted: 09/07/2005] [Indexed: 11/06/2022]
Abstract
Damage to the surface membrane of adult Schistosoma mansoni, and the activity of the excretory system, as shown by resorufin fluorescence, was observed following treatment with praziquantel and incubation with other molecules. Praziquantel treatment induced damage to the surface membrane as measured by the use of a variety of fluorescent compounds. The excretory system of the male worm was inhibited immediately after praziquantel treatment, but fully recovered after culture for 2 h following removal of praziquantel. The excretory system of the female, observed to be minimally active in untreated worm pairs, was often greatly activated in paired females, as shown by intense resorufin labelling, after praziquantel treatment, and this continued during recovery of the male excretory system. In experiments with normal worm pairs, the female could be activated by inhibiting the metabolic rate of the pair by a cooling procedure. The effects on the excretory system of changes in culture conditions (such as changes in pH, concentrations of bacterial lipopolysaccharide, cytokines, reactive oxygen species, compounds which remove cholesterol, such as beta-methyl cyclodextrin, and damaging basic poly-L-lysine) were also assessed. It is concluded that the extensive excretory system of the adult worm is responsive to drug treatment and to certain changes in environmental conditions. Its activity seems to be strongly linked to the integrity of the surface membrane.
Collapse
Affiliation(s)
- F A Oliveira
- Centro de Pesquisas René Rachou/Fiocruz, Belo-Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
14
|
Rossi A, Ghislain M, Klinkert MQ. Regulatory pathways in ion homeostasis involving calcineurin and a calcium transporting ATPase are different between yeast and schistosomes. Mol Biochem Parasitol 2005; 135:165-9. [PMID: 15287599 DOI: 10.1016/j.molbiopara.2004.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Alessandro Rossi
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany.
| | | | | |
Collapse
|
15
|
Knobloch J, Rossi A, Osman A, LoVerde PT, Klinkert MQ, Grevelding CG. Cytological and biochemical evidence for a gonad-preferential interplay of SmFKBP12 and SmTβR-I in Schistosoma mansoni. Mol Biochem Parasitol 2004; 138:227-36. [PMID: 15555734 DOI: 10.1016/j.molbiopara.2004.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/20/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
In eukaryotes, FK506-binding proteins with a molecular weight of 12 kDa (FKBP12s) influence a variety of signal transduction pathways that regulate cell division, differentiation, and ion homeostasis. Amongst these, TGFbeta signaling and calcineurin (CN) phosphatase activity is modulated by FKBP12 via binding to TGFbeta-family type I receptors (TbetaR-Is) or to the CN subunit A, respectively. In this work, we demonstrate the tissue-specific expression of the Schistosoma mansoni FKBP12 homologue (SmFKBP12) in the gonads of female parasites as well as in the tegument of both genders. Components of the TGFbeta pathway have been characterized in schistosomes and their roles in mediating host-parasite or male-female interactions proposed. We show that a schistosome TGFbeta-family type I receptor (SmTbetaR-I, SmRK-1) is expressed in the female gonads, suggesting that SmFKBP12 may regulate its activity in this tissue. This hypothesis is supported by yeast two-hybrid analyses showing a direct binding of SmFKBP12 and SmTbetaR-I, which was specifically inhibited by the drug FK506. Our data provide the first evidence for the activity of a transmembrane receptor in the vitellarium of schistosome females and indicate that FKBP12-meditated regulation of the TGFbeta pathway is evolutionarily conserved in a primitive metazoan such as Schistosoma. Furthermore, we show that the schistosome CN (SmCN) is not expressed in the female gonads, but co-localizes with SmFKBP12 only in the tegument. From these data we conclude an SmFKBP12/SmTbetaR-I, but not an SmCN/SmFKBP12 interplay in the female gonads.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institut für Genetik, Genetische Parasitologie und Biologisch-Medizinisches-Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Wippersteg V, Ribeiro F, Liedtke S, Kusel JR, Grevelding CG. The uptake of Texas Red-BSA in the excretory system of schistosomes and its colocalisation with ER60 promoter-induced GFP in transiently transformed adult males. Int J Parasitol 2003; 33:1139-43. [PMID: 13678630 DOI: 10.1016/s0020-7519(03)00168-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The excretory system of schistosomes has focused some attention during the last years since accumulating evidence suggests that it plays an important role in the host-parasite interaction. Signalling molecules such as phosphatases, but also proteases have been localised in the excretory system. To some extent, however, localisation studies are limited by the fact that sections of fixed specimens are used. In this study, we tested the fluorescent molecules FITC-dextran and Texas Red-BSA for their ability to enter the excretory system of living Schistosoma mansoni males. It is demonstrated that the dyes selectively stain the excretory tubules which are widely distributed along the worm body. This finding was used to investigate whether the staining of worms with Texas Red-BSA can help to localise transgene activity in worms which were transiently transformed by particle bombardment. A vector was used for transformation which contained the green fluorescent protein gene, under the control of the regulatory elements of the cysteine protease ER60 gene. After transformation and staining, confocal laser scanning microscopy revealed that ER60-induced green fluorescent protein activity colocalises with Texas Red-BSA in the excretory tubules. The results suggest a role for ER60 during the host-parasite interaction. Furthermore, the colocalisation approach introduced here opens further perspectives to characterise gene-expression profiles in this parasite.
Collapse
Affiliation(s)
- Volker Wippersteg
- Institute for Genetics, Genetic Parasitology and Center for Biological and Medical Research, Heinrich-Heine-University, Universitätsstrasse 1, D-40225, Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
17
|
Rossi A, Wippersteg V, Klinkert MQ, Grevelding CG. Cloning of 5' and 3' flanking regions of the Schistosoma mansoni calcineurin A gene and their characterization in transiently transformed parasites. Mol Biochem Parasitol 2003; 130:133-8. [PMID: 12946850 DOI: 10.1016/s0166-6851(03)00158-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Alessandro Rossi
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany.
| | | | | | | |
Collapse
|
18
|
Abdel-Latif MS, Khattab A, Lindenthal C, Kremsner PG, Klinkert MQ. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun 2002; 70:7013-21. [PMID: 12438381 PMCID: PMC132968 DOI: 10.1128/iai.70.12.7013-7021.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies from individuals living in areas where malaria is endemic are known to react with parasite-derived erythrocyte surface proteins. The major immunogenic and clonally variant surface antigen described to date is Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1), which is encoded by members of the multicopy var gene family. We report here that rifin proteins (RIF proteins), belonging to the largest known family of variable infected erythrocyte surface-expressed proteins, are also naturally immunogenic. Recombinant RIF proteins were used to analyze the antibody responses of individuals living in an area of intense malaria transmission. Elevated anti-rifin antibody levels were detected in the majority of the adult population tested, whereas the prevalence of such antibodies was much lower in malaria-exposed children. Despite the high degree of diversity between rif sequences and the high gene copy number, it appears that P. falciparum infections can induce antibodies that cross-react with several variant rifin molecules in many parasite isolates in a given community, and the immune response is most likely to be stable over time in a hyperendemic area. The protein was localized by fluorescence microscopy on the membrane of ring and young trophozoite-infected erythrocytes with antibodies from human immune sera with specificities for recombinant RIF protein.
Collapse
Affiliation(s)
- Mohamed S Abdel-Latif
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Rossi A, Pica-Mattoccia L, Cioli D, Klinkert MQ. Rapamycin insensitivity in Schistosoma mansoni is not due to FKBP12 functionality. Mol Biochem Parasitol 2002; 125:1-9. [PMID: 12467969 DOI: 10.1016/s0166-6851(02)00207-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rapamycin (RAPA) is a well-known immunosuppressant, the action of which is mediated by the immunophilin FKBP12. Upon RAPA binding, FKBP12 forms ternary complexes with phosphatidyl inositol related kinases known as the target of RAPA (TOR), which can lead to a mitotic block at the G1-S phase transition. Such an antiproliferative effect makes RAPA an attractive anticancer, antifungal or antiparasitic compound. In this study, we found the helminth parasite Schistosoma mansoni to be insensitive to the drug. In order to elucidate the mechanism underlying RAPA resistance, the S. mansoni drug receptor FKBP12 (SmFKBP12) was cloned for functional analysis. Western blot experiments showed that the protein is constitutively expressed in all life cycle stages and in both male and female parasites. The Escherichia coli-synthesised recombinant protein possessed enzymatic activity, which was inhibitable by RAPA. Moreover, SmFKBP12 was able to complement mutant Saccharomyces cerevisiae cells lacking FKBP12 in their RAPA sensitivity phenotype, leading us to conclude that SmFKBP12 is expressed in yeast in a functional form and capable of interacting with the drug and yeast TOR kinase. Even though the wild type SmFKBP12 appeared to restore a large part of RAPA sensitivity, a mutation of Asp(89)-Lys(90) to Pro(89)-Gly(90) in the schistosome protein was found to be more effective and restored drug sensitivity to the same level as the endogenous yeast protein. Despite ternary complex formation, our results suggest that additional unknown factors other than a functional drug receptor are implicated in drug resistance mechanisms.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tubingen, Germany
| | | | | | | |
Collapse
|