1
|
Walters HA, Welter BH, Knight EW, Villano MA, Keramati CA, Morris MT, Temesvari LA. Hypothetical proteins play a role in stage conversion, virulence, and the stress response in the Entamoeba species. Exp Parasitol 2022; 243:108410. [PMID: 36309065 DOI: 10.1016/j.exppara.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and amoebic liver abscess in humans, affecting millions of people worldwide. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. As cysts can be ingested from contaminated food and water, this parasite is prevalent in underdeveloped countries and poses a significant health burden. Until recently there was no reliable method for inducing stage conversion in E. histolytica in vitro. As such, the reptilian pathogen, Entamoeba invadens, has long-served as a surrogate. Much remains unclear about stage conversion in these parasites and current treatments for amoebiasis are lacking, as they cause severe side effects. Therefore, new therapeutic strategies are needed. The genomes of these parasites remain enigmatic as approximately 54% of E. histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins. In this study, we characterized two hypothetical proteins in the Entamoeba species, EIN_059080, in E. invadens, and its homolog, EHI_056700, in the human pathogen, E. histolytica. EHI_056700 has no homolog in the human host. We used an RNAi-based silencing system to reduce expression of these genes in E. invadens and E. histolytica trophozoites. Loss of EIN_059080 resulted in a decreased rate of encystation and an increased rate of erythrophagocytosis, an important virulence function. Additionally, mutant parasites were more susceptible to oxidative stress. Similarly, loss of EHI_056700 in E. histolytica trophozoites resulted in increased susceptibility to oxidative stress and glucose deprivation, but not to nitrosative stress. Unlike the E. invadens mutants, E. histolytica parasites with decreased reduced expression of EHI_056700 exhibited a decreased rate of erythrophagocytosis of and adhesion to host cells. Taken together, these data suggest that these hypothetical proteins play a role in stage conversion, virulence, and the response to stress in the Entamoebae. Since parasites with reduced expression of EHI_056700 show decreased virulence functions and increased susceptibility to physiologically relevant stressors, EHI_056700 may represent a possible therapeutic target for the treatment of amoebiasis.
Collapse
Affiliation(s)
- Heather A Walters
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Emily W Knight
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Martha A Villano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Cameron A Keramati
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA; Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
2
|
Eukaryotic Initiation Factor 2α Kinases Regulate Virulence Functions, Stage Conversion, and the Stress Response in Entamoeba invadens. mSphere 2022; 7:e0013122. [PMID: 35638357 PMCID: PMC9241534 DOI: 10.1128/msphere.00131-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. Since infection is acquired by ingestion of cysts from contaminated food and water, this parasite is prevalent in underdeveloped countries. A reptilian pathogen, Entamoeba invadens, which can encyst in culture, has long served as a surrogate to study stage conversion. In the host, Entamoeba species must manage stress, including nutrient deprivation and host immune pressure. In many systems, the stress response is characterized by downregulation of translation, which is initiated by the phosphorylation of eukaryotic initiation factor-2 alpha (eIF2α). In mammalian cells, this phosphorylation is carried out by a family of eIF2α kinases. A canonical eIF2α translational control system exists in Entamoeba species; however, no eIF2α kinases have been characterized. In this study, we identified two eIF2α kinases in E. invadens, EiIF2K-A and EiIF2K-B. Their identity as eIF2α kinases was validated using a heterologous yeast system. We used an RNA interference (RNAi) trigger-mediated silencing system to reduce expression of EiIF2K-A, which also reduced expression of EiIF2K-B. Parasites with decreased kinase expression exhibited decreased phosphorylation of eIF2α and increased sensitivity to oxidative stress. Diminished kinase expression also correlated with an increased rate of encystation, a decreased rate of excystation, and an increase in several virulence functions, erythrophagocytosis and adhesion to host cells. Taken together, these data suggest that EiIF2K-A and EiIF2K-B are authentic eIF2α kinases that may regulate the Entamoeba stress response. IMPORTANCEEntamoeba histolytica is a human pathogen that causes dysentery and affects millions of people worldwide. This parasite possesses a two-stage life cycle: an environmentally stable cyst and the pathogenic trophozoite. Cysts are ingested from contaminated food and water; thus, this parasite in prevalent in underdeveloped countries. Current therapies commonly cause adverse side effects; therefore, new treatments are needed. In the host, Entamoeba experiences stress brought on, in part, by the host immune system. Understanding stage conversion and the stress response of this pathogen may lead to new drug therapies. Using the model organism E. invadens, we identified two kinases similar to those involved in stress and stage conversion in other systems. We determined that these kinases may regulate the oxidative stress response, stage conversion, and virulence. This work is significant, as it will inform future studies on the life cycle and pathogenicity of Entamoeba species.
Collapse
|
3
|
Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol 2020; 115:901-915. [PMID: 33249684 DOI: 10.1111/mmi.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis in humans. This ameba parasite resides as a commensal in the intestine where it shares intestinal resources with the bacterial microbiome. In the intestinal ecosystem, the ameba encysts and eventually develops disease by invading the tissues. E. histolytica possesses cell surface receptors for the proper sensing of signals involved in encystation or sustaining parasite interaction with bacteria and human cells. Among those receptors are the Gal/GalNAc lectin, G protein-coupled receptors, and transmembrane kinases. In addition there are recently discovered, promising proteins, including orthologs of Toll-type receptors and β trefoil lectins. These proteins trigger a wide variety of signal transduction pathways; however, most of the players involved in the signaling pathways evoked in this parasite are unknown. This review provides an overview of amoebic receptors and their role in encystation, adherence to bacteria or human cells, as well as the reported intracellular signal transduction processes that they can trigger. This knowledge is essential for understanding the lifestyle of E. histolytica and its cytopathic effect on bacteria and human cells that are responsible for infection.
Collapse
Affiliation(s)
- Nancy Guillen
- Institut Pasteur, Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
4
|
Manna D, Ehrenkaufer GM, Lozano-Amado D, Singh U. Entamoeba stage conversion: progress and new insights. Curr Opin Microbiol 2020; 58:62-68. [PMID: 33032142 DOI: 10.1016/j.mib.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Entamoeba histolytica, an anaerobic protozoan, is an important global health problem. This parasite has a biphasic life cycle consisting of a dormant cyst stage which is environmentally resistant and transmits the infection, and the proliferative trophozoite stage which is motile and causes invasive disease. The stage conversion process remains poorly understood despite being central to amoebic biology. In this review, we will highlight recent progress in our understanding of Entamoeba stage conversion including dissecting transcriptome analysis in development, characterization of transcriptional networks, demonstration of epigenetic regulation, and role of small molecules that regulate Entamoeba development.
Collapse
Affiliation(s)
- Dipak Manna
- Division of Infectious Diseases, Stanford University School of Medicine, United States
| | | | - Daniela Lozano-Amado
- Division of Infectious Diseases, Stanford University School of Medicine, United States
| | - Upinder Singh
- Division of Infectious Diseases, Stanford University School of Medicine, United States; Department of Microbiology and Immunology, Stanford University School of Medicine, United States.
| |
Collapse
|
5
|
Morphological and Motility Features of the Stable Bleb-Driven Monopodial Form of Entamoeba and Its Importance in Encystation. Infect Immun 2020; 88:IAI.00903-19. [PMID: 32393510 DOI: 10.1128/iai.00903-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/27/2020] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica and its reptilian counterpart and encystation model Entamoeba invadens formed a polarized monopodial morphology when treated with pentoxifylline. This morphology was propelled by retrograde flow of the cell surface resulting from a cyclic sol-gel conversion of cytoplasm and a stable bleb at the leading edge. Pentoxifylline treatment switched the unpolarized, adherent trophozoites to the nonadherent, stable bleb-driven form and altered the motility pattern from slow and random to fast, directionally persistent, and highly chemotactic. Interestingly, exogenously added adenosine produced multiple protrusions and random motility, an opposite phenotype to that of pentoxifylline. Thus, pentoxifylline, an adenosine antagonist, may be inducing the monopodial morphology by preventing lateral protrusions and restricting the leading edge to one site. The polarized form of E. invadens was aggregation competent, and time-lapse microscopy of encystation revealed its appearance during early hours, mediating the cell aggregation by directional cell migration. The addition of purine nucleotides to in vitro encystation culture prevented the formation of polarized morphology and inhibited the cell aggregation and, thus, the encystation, which further showed the importance of the polarized form in the Entamoeba life cycle. Cell polarity and motility are essential in the pathogenesis of Entamoeba parasites, and the stable bleb-driven polarized morphology of Entamoeba may also be important in invasive amoebiasis.
Collapse
|
6
|
Manna D, Lozano-Amado D, Ehrenkaufer G, Singh U. The NAD + Responsive Transcription Factor ERM-BP Functions Downstream of Cellular Aggregation and Is an Early Regulator of Development and Heat Shock Response in Entamoeba. Front Cell Infect Microbiol 2020; 10:363. [PMID: 32766170 PMCID: PMC7379229 DOI: 10.3389/fcimb.2020.00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite and a major cause of dysentery and diarrheal disease in developing countries. Disease transmission from one host to another occurs via cysts which can survive in environmental extremes and are transmitted through contaminated food and water. Recent studies in our lab identified a novel transcription factor, Encystation Regulatory Motif- Binding Protein (ERM-BP), which is responsive to NAD+ and has an important role in encystation. The key residues important for ERM-BP function were demonstrated in vitro using recombinant protein. In this study we demonstrate the in vivo functional consequences of mutations in key domains and their impact on Entamoeba encystation. Our results show that mutations in the DNA binding domain (ERM-BP-DBM) and in the nicotinamidase domain (ERM-BP-C198A) lead to protein mis-localization in both trophozoites and cysts and significantly reduce encystation efficiency. Additionally, we showed that silencing of ERM-BP significantly decreased the size and number of multi-nucleated giant cells (MGC) that form during encystation, indicating that ERM-BP functions upstream of the cellular aggregation that precedes stage conversion. Dissection of epistatic interactions between ERM-BP and a second encystation-related transcription factor, NF-Y revealed that ERM-BP is upstream of NF-Y in controlling the developmental cascade and appears to be one of the earliest regulators of development identified to date in Entamoeba. We also demonstrated that ERM-BP is upregulated during heat stress in Entamoeba, another condition which increases intracellular NAD+ levels and that overexpression of ERM-BP makes E. histolytica and E. invadens parasites more resistant to heat stress. Overexpression of ERM-BP in E. histolytica also induced the formation of cyst-like quadrinucleated cells and formation of MGCs. Overall, our work has identified an important role of ERM-BP in Entamoeba stress response and links an NAD+-responsive transcription factor to both development and heat shock response. Characterization of stress and developmental cascades are important avenues to investigate for Entamoeba, an important human parasitic pathogen.
Collapse
Affiliation(s)
- Dipak Manna
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniela Lozano-Amado
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Gretchen Ehrenkaufer
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Upinder Singh
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Mi-Ichi F, Miyake Y, Tam VK, Yoshida H. A Flow Cytometry Method for Dissecting the Cell Differentiation Process of Entamoeba Encystation. Front Cell Infect Microbiol 2018; 8:250. [PMID: 30087858 PMCID: PMC6066566 DOI: 10.3389/fcimb.2018.00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Amoebiasis is caused by Entamoeba histolytica infection, a protozoan parasite belonging to the phylum Amoebozoa. This parasite undergoes a fundamental cell differentiation process from proliferative trophozoite to dormant cyst, termed “encystation.” The cysts formed by encystation are solely responsible for the transmission of amoebiasis; therefore, Entamoeba encystation is an important subject from both biological and medical perspectives. Here, we have established a flow cytometry strategy for not only determining the percentage of formed cysts but also for monitoring changes in cell populations during encystation. This strategy together with fluorescence microscopy enables visualization of the cell differentiation process of Entamoeba encystation. We also standardized another flow cytometry protocol for counting live trophozoites. These two different flow cytometry techniques could be integrated into 96-well plate-based bioassays for monitoring the processes of cyst formation and trophozoite proliferation, which are crucial to maintain the Entamoeba life cycle. The combined two systems enabled us to screen a chemical library, the Pathogen Box of the Medicine for Malaria Venture, to obtain compounds that inhibit either the formation of cysts or the proliferation of trophozoites, or both. This is a prerequisite for the development of new drugs against amoebiasis, a global public health problem. Collectively, the two different 96-well plate-based Entamoeba bioassay and flow cytometry analysis systems (cyst formation and trophozoite proliferation) provide a methodology that can not only overcome the limitations of standard microscopic counting but also is effective in applied as well as basic Entamoeba biology.
Collapse
Affiliation(s)
- Fumika Mi-Ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Vo Kha Tam
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Welter BH, Sehorn MG, Temesvari LA. Flow cytometric characterization of encystation in Entamoeba invadens. Mol Biochem Parasitol 2017; 218:23-27. [PMID: 29037797 DOI: 10.1016/j.molbiopara.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Entamoeba histolytica causes dysentery and liver abscess mostly in countries that lack proper sanitation. Infection is acquired by ingestion of the cyst form in contaminated food or water. E. histolytica does not encyst in vitro; thus, E. invadens, a reptilian parasite that encysts in vitro, has been used as a surrogate. Cysts are small and possess chitin-rich walls. These are characteristics that may be exploited by flow cytometry. We stained encysting E. invadens cells with a fluorescent chitin stain, and analyzed fluorescence and forward scatter by flow cytometry. We demonstrate that flow cytometry can be used to track differentiation, reveal unique cell populations, and evaluate encystation inhibitors.
Collapse
Affiliation(s)
- Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA; Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
Abstract
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Collapse
|
10
|
Abstract
Amebiasis is caused by Entamoeba histolytica infection and can produce a broad range of clinical signs, from asymptomatic cases to patients with obvious symptoms. The current epidemiological and clinical statuses of amebiasis make it a serious public health problem worldwide. The Entamoeba life cycle consists of the trophozoite, the causative agent for amebiasis, and the cyst, the form responsible for transmission. These two stages are connected by "encystation" and "excystation." Hence, developing novel strategies to control encystation and excystation will potentially lead to new measures to block the transmission of amebiasis by interrupting the life cycle of the causative agent. Here, we highlight studies investigating encystation using inhibitory chemicals and categorize them based on the molecules inhibited. We also present a perspective on new strategies to prevent the transmission of amebiasis.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
De Cádiz AE, Jeelani G, Nakada-Tsukui K, Caler E, Nozaki T. Transcriptome analysis of encystation in Entamoeba invadens. PLoS One 2013; 8:e74840. [PMID: 24040350 PMCID: PMC3770568 DOI: 10.1371/journal.pone.0074840] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 08/08/2013] [Indexed: 11/23/2022] Open
Abstract
Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite.
Collapse
Affiliation(s)
- Aleyla Escueta De Cádiz
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao, Philippines
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
12
|
Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends Parasitol 2011; 27:450-8. [PMID: 21775209 DOI: 10.1016/j.pt.2011.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Certain protozoan parasites use survival strategies to reside outside the host such as the formation of cysts. This dormant and resistant stage results from the complex process of encystment that involves diverse molecular and cellular modifications. The stimuli and changes associated with cyst biogenesis are a matter of ongoing studies in human and animal protozoan parasites such as amoeba and Giardia species because blocking every step in the encystment pathway should, in theory, interrupt their life cycles. The present review thoroughly examines this essential process in those protozoan parasites and discusses the possibility of using that information to develop new kinds of anti-parasite specific and life cycle-interrupting drugs, aimed at holding back the dissemination of these infections.
Collapse
|
13
|
Šarić M, Irmer H, Eckert D, Bär AK, Bruchhaus I, Scholze H. The cysteine protease inhibitors EhICP1 and EhICP2 perform different tasks in the regulation of endogenous protease activity in trophozoites of Entamoeba histolytica. Protist 2011; 163:116-28. [PMID: 21440496 DOI: 10.1016/j.protis.2011.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Trophozoites of E. histolytica are equipped with two chagasin-like cysteine protease inhibitors, EhICP1 and EhICP2, also known as amoebiasin 1 and 2. Expression studies using E. invadens as model organism showed that corresponding mRNAs were detectable in both life stages of the parasite, cyst and trophozoite state. Unlike EhICP1 known to act in the cytosol, EhICP2 co-localized with cysteine protease EhCP-A1 in lysosome-like vesicles, as demonstrated by immunofluorescence microscopy. Silencing or overexpressing of the two inhibitors did not show any effect on morphology and viability of the trophozoites. Overexpression of the EhICPs, however, although dramatically dampening the proteolytic activity of cell extracts from the corresponding cell lines, did not influence expression rate or localization of the major amoebic cysteine proteases as well as phagocytosis and digestion of erythrocytes. Activity gels of cell extracts from strains overexpressing ehicp1 showed a drastically reduced activity of EhCP-A1 suggesting a high affinity of EhICP1 towards this protease. From these data, we propose that EhCP-A1 accidentally released into the cytosol is the main target of EhICP1, whereas EhICP2, beside its role in house-keeping processes, may control the proteolytic processing of other hydrolases or fulfils other tasks different from protease inhibition.
Collapse
Affiliation(s)
- Mirela Šarić
- Faculty of Biology, Department of Biochemistry, University of Osnabrueck, Barbarastr. 13, D-49069 Osnabrueck, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Singh N, Bhattacharya S, Paul J. Entamoeba invadens: dynamics of DNA synthesis during differentiation from trophozoite to cyst. Exp Parasitol 2010; 127:329-33. [PMID: 20727884 DOI: 10.1016/j.exppara.2010.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/26/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
The DNA dynamics which mediate conversion of uni-nucleate trophozoite into quadrinucleate cyst in Entamoeba histolytica is not well understood. Here, we have addressed this question in Entamoeba invadens (a model system for encystation) through a detailed time course study of the differentiation process. We combined flow cytometric analysis with the change in rate of thymidine incorporation and the number of nuclei per cell. Our data shows that during encystment the cell population passes through three phases: (1) Early phase (0-8h); of rapid DNA synthesis which may correspond to completion of ongoing DNA replication. Bi-nucleated cells increase with concomitant drop in uni-nucleated cells. (2) Commitment phase (8-24h); in which DNA synthesis rate slows down. Possibly new rounds of replication are initiated which proceed slowly, followed by mitosis at 20 h. After this the number of bi- and uni-nucleated cells gradually decline and the tri- and tetra-nucleated cells begin to increase. (3) Consolidation phase (24-72 h); in which the rate of DNA synthesis shows a small increase till 32 h and then begins to decline. The G2/M peak reappears at 48 h, showing that more rounds of DNA replication may be getting completed, followed by nuclear division. By 72 h the encystment is virtually complete. The bi-nucleated stage could be an intermediate both in the conversion of trophozoite to cyst and back. Our study provides a comprehensive view of DNA dynamics during encystation and excystation of E. invadens.
Collapse
Affiliation(s)
- Nishant Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
15
|
Abstract
Acanthamoeba keratitis (AK) is a serious infection of the cornea. At present, diagnosis of the disease is not straightforward and treatment is very demanding. While contact lens wear is the leading risk factor for A K, Acanthamoeba parasites are increasingly recognized as an important cause of keratitis in non-contact lens wearers. The first critical step in the pathogenesis of infection is the adhesion of the microbe to the surface of the host tissues. Acanthamoebae express a major virulence protein, the mannose-binding protein (MBP), which mediates the adhesion of amoebae to the surface of the cornea. The MBP is a transmembrane protein with characteristics of a typical cell surface receptor. Subsequent to the MBP-mediated adhesion to host cells, the amoebae produce a contact-dependent metalloproteinase and several contact-independent serine proteinases. These proteinases work in concert to produce a potent cytopathic effect (CPE ) involving killing of the host cells, degradation of epithelial basement membrane and underlying stromal matrix, and penetration into the deeper layers of the cornea. In the hamster animal model, oral immunization with the recombinant MBP protects against AK, and this protection is associated with an increased level of anti-MBP IgA in tears of protected animals. Normal human tear fluid contains IgA antibodies against Acanthamoeba MBP that is likely to provide protection by inhibiting the adhesion of parasites to host cells. Indeed, in in vitro CPE assays, even a low concentration of tears (10 microL of undiluted tears per milliliter of media) almost completely inhibits Acanthamoeba-induced CPE . In addition to adherence-inhibiting, IgA-mediated protection, human tears also contain IgA-independent factors that provide protection against Acanthamoeba-induced CPE by inhibiting the activity of cytotoxic proteinases. Characterization of the CPE-inhibitory factors of human tears should lead to a better understanding of the mechanism by which the tissues of the host resist the infection and also help decode circumstances that predispose to Acanthamoeba infections.
Collapse
Affiliation(s)
- Noorjahan Panjwani
- Departments of Ophthalmology and Biochemistry, The New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Segovia-Gamboa NC, Chávez-Munguía B, Medina-Flores Y, Cázares-Raga FE, Hernández-Ramírez VI, Martínez-Palomo A, Talamás-Rohana P. Entamoeba invadens, encystation process and enolase. Exp Parasitol 2010; 125:63-9. [PMID: 20045689 DOI: 10.1016/j.exppara.2009.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Abstract
The reptilian parasite Entamoeba invadens is accepted as a model for the study of the Entamoeba encystation process. Here we describe the production and characterization of a mAb (B4F2), generated against a component of the E. invadens cyst wall. This mAb specifically recognizes a 48-kDa protein present in cytoplasmic vesicles of cells encysting for 24 h. In mature cysts (96 h), the antigen was detected on the cyst surface. By two-dimensional electrophoresis and mass spectrometry analysis, the B4F2 specific antigen was identified as enolase. Levels of enolase mRNA were increased in encysting cells and the B4F2 mAb was found to inhibit cyst formation. Therefore, these results strongly suggest a new role for enolase in E. invadens encystation, and the B4F2 mAb will be useful tool to study its role in the differentiation process.
Collapse
Affiliation(s)
- Norma Cristina Segovia-Gamboa
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
Siddiqui R, Jarroll EL, Khan NA. Balamuthia mandrillaris: role of galactose in encystment and identification of potential inhibitory targets. Exp Parasitol 2009; 126:22-7. [PMID: 19766634 DOI: 10.1016/j.exppara.2009.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
Balamuthia mandrillaris is a causative agent of granulomatous encephalitis that almost always proves fatal. A major concern during the course of therapy is that B. mandrillaris can transform into cysts. Cysts are highly resistant to physical and chemical conditions and present a problem in successful antimicrobial chemotherapy. However, the underlying mechanisms of B. mandrillaris transformation into cysts are not known. In this study, we examined the effects of exogenous sugars on B. mandrillaris encystment. The findings revealed that free exogenous galactose, but not other sugars, enhanced parasite differentiation into cysts, and apparently a galactose-binding protein is involved in B. mandrillaris encystment. Cytoskeletal re-arrangements and phosphatidylinositol 3-kinase (PI3K)-mediated pathways are involved in B. mandrillaris encystment based on inhibitor studies. Dual functionality of galactose-binding protein in B. mandrillaris pathogenesis and encystment is discussed further.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- School of Biological and Chemical Sciences, Birkbeck College, University of London, London, England, UK
| | | | | |
Collapse
|
18
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Picazarri K, Nakada-Tsukui K, Nozaki T. Autophagy during proliferation and encystation in the protozoan parasite Entamoeba invadens. Infect Immun 2008; 76:278-88. [PMID: 17923513 PMCID: PMC2223641 DOI: 10.1128/iai.00636-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/13/2007] [Accepted: 09/29/2007] [Indexed: 11/20/2022] Open
Abstract
Autophagy is one of the three systems responsible for the degradation of cytosolic proteins and organelles. Autophagy has been implicated in the stress response to starvation, antigen cross-presentation, the defense against invading bacteria and viruses, differentiation, and development. Saccharomyces cerevisiae Atg8 and its mammalian ortholog, LC3, play an essential role in autophagy. The intestinal protozoan parasite Entamoeba histolytica and a related reptilian species, Entamoeba invadens, possess the Atg8 conjugation system, consisting of Atg8, Atg4, Atg3, and Atg7, but lack the Atg5-to-Atg12 conjugation system. Immunofluorescence imaging revealed that polymorphic Atg8-associated structures emerged in the logarithmic growth phase and decreased in the stationary phase and also increased in the early phase of encystation in E. invadens. Immunoblot analysis showed that the increase in phosphatidylethanolamine-conjugated membrane-associated Atg8 was also accompanied by the emergence of Atg8-associated structures during the proliferation and differentiation mentioned above. Specific inhibitors of class I and III phosphatidylinositol 3-kinases simultaneously inhibited both the growth of trophozoites and autophagy and also both encystation and autophagy in E. invadens. These results suggest that the core machinery for autophagy is conserved and plays an important role during proliferation and differentiation in Entamoeba.
Collapse
Affiliation(s)
- Karina Picazarri
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
20
|
Byers J, Eichinger D. Acetylation of the Entamoeba histone H4 N-terminal domain is influenced by short-chain fatty acids that enter trophozoites in a pH-dependent manner. Int J Parasitol 2007; 38:57-64. [PMID: 17706222 PMCID: PMC2763443 DOI: 10.1016/j.ijpara.2007.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/14/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Treatment of higher eukaryotic cells with short-chain fatty acids (SCFA) such as butyrate causes decreased levels of histone deacetylase (HDAC) activity and hyperacetylation of histones, and thereby affects gene expression, cell growth and differentiation. Entamoeba parasites encounter high levels of SCFA in the host colon, and in vitro these compounds allow trophozoite stage parasites to multiply but prevent their differentiation into infectious cysts. The Entamoeba invadens IP-1 histone H4 protein has an unusual number of lysines in its N-terminus, and these become hyperacetylated in trophozoites exposed to the HDAC inhibitors trichostatin A (TSA) or HC-toxin, but not in trophozoites exposed to butyrate. We have now found that several other commonly studied isolates of Entamoeba parasites also have an extended set of histone H4 acetylation sites that become hyperacetylated in response to TSA, but hypoacetylated in response to butyrate, suggesting an unusual sensitivity of this parasite's histone modifying enzymes to SCFA. Butyrate was found to enter trophozoites in a pH-dependent manner consistent with diffusive entry of the un-ionised form of the fatty acid into the amoebae. Transit of the Entamoeba organism through areas of the host intestine with distinct pH and SCFA concentrations would therefore result in very different levels of SCFA within the parasite. Entamoeba appears to have acquired unique alterations of its histone acetylation mechanism that may allow for its growth in the presence of varying amounts of the bacterial fermentation products.
Collapse
Affiliation(s)
- Jennifer Byers
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
| | - Daniel Eichinger
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
- Corresponding author. Department of Medical Parasitology, New York University School of Medicine, 341 East, 25 Street, New York, NY 10010 USA, Tel.: +1-212-263-8171; fax: +1-212-263-8116. E-mail address:
| |
Collapse
|
21
|
Turner NA, Eichinger D. Entamoeba invadens: the requirement for galactose ligands during encystment. Exp Parasitol 2007; 116:467-74. [PMID: 17442308 PMCID: PMC2692995 DOI: 10.1016/j.exppara.2007.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 12/01/2022]
Abstract
During periods of stress, trophozoites of Entamoeba invadens (strain IP-1) undergo a process of differentiation (encystment) that results in a dormant cyst with a chitin-containing cyst wall. Encystment can be induced by resuspension of trophozoites from growth medium into a diluted glucose-free medium (47% LG) containing 5% adult bovine serum (ABS). ABS is thought to be a source of gal-terminated ligands that are required for high levels of encystment. After resuspension of trophozoites in 47% LG, encystment cultures were examined every 2h for responses to the (i) addition of 10mM free-galactose, (ii) resuspension of cells to serum-free medium, (iii) and dilution of encysting cultures to cell densities below that known to support full encystment (from 5 x 10(5) to 1 x 10(4)cells/ml). The role of serum components (and the gal-terminated ligand asialofetuin; ASF) adsorbed onto the surface upon which encystment proceeds, and their effect on the multi-cellular aggregation patterns formed during encystment, were also investigated. The addition of free-galactose reduced the levels of encystment (compared with the control) even when added at 10h after resuspension of trophozoites in 47% LG. The requirement for the presence of ABS during encystment was lost within 6h, with levels of encystment of cells washed free of serum reaching 80% of the control. The ability of cells to encyst when diluted to a cell density below that normally thought to support encystment reached over 50% by 8h. Efficient encystment could be obtained in 47% LG in the absence of ABS or ASF using pre-treated glass culture tubes. Encystment (47% LG; 5% ABS) using ultra low attachment plates was poor, suggesting attachment of cells to a surface via gal-terminated ligands was important for efficient encystment. The results suggest that ABS is probably not the only source of gal-terminated ligands necessary for high levels of encystment in 47% LG. While serum may provide a source of ligands which enhance the levels of encystment initially, other gal-terminated ligands possibly released by the encysting cells are still required for the completion of the encystment process and the formation of mature cysts. In addition, the gal-terminated ligands necessary for encystment efficiency may be adsorbed onto the glass surface of culture tubes and aid the initial aggregation process, as well as be involved in cell signaling during the encystment process.
Collapse
Affiliation(s)
- N A Turner
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | |
Collapse
|
22
|
Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Cedillo-Rivera R, Bonilla P, Martínez-Palomo A. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol Res 2007; 100:1169-75. [PMID: 17252271 DOI: 10.1007/s00436-006-0447-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/29/2022]
Abstract
Cysts represent a phase in the life cycle of biphasic parasitic protozoa that allow them to survive under adverse environmental conditions. Two events are required for the morphological differentiation from trophozoite to cyst and from cyst to trophozoite: the encystation and excystation processes. In this paper, we present a review of the ultrastructure of the encystation and excystation processes in Entamoeba invadens, Acanthamoeba castellanii, and Giardia lamblia. The comparative electron microscopical observations of these events here reported provide a morphological background to better understand recent advances in the biochemistry and molecular biology of the differentiation phenomena in these microorganisms.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
23
|
Frederick JR, Petri WA. Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation. Glycobiology 2005; 15:53R-59R. [PMID: 16037494 DOI: 10.1093/glycob/cwj007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Entamoeba histolytica, an intestinal protozoan parasite, is a major cause of morbidity and mortality in developing countries. The pathology of the disease is caused by the colonization of the large intestine by the amoebic trophozoites and the invasion of the intestinal epithelium. Some of the trophozoites will eventually differentiate into the infectious cyst form, allowing them to be transmitted out of the bowel and into water supplies to be passed from person to person. Both the virulence of the organism and the differentiation process relies on a galactose-/N-acetylgalactosamine (GalNAc)-binding lectin that is expressed on the surface of trophozoites. The functional activity of this lectin has been shown to be involved in host cell binding, cytotoxicity, complement resistance, induction of encystation, and generation of the cyst wall. The role of the lectin in both differentiation and virulence suggests that it may be a pivotal molecule that determines the severity of the infection from a commensal state resulting from increased encystation to an invasive state. The lectin-glycan interactions that initiate these diverse processes are discussed with emphasis on comparing the binding of host ligands and the interactions involved in encystation.
Collapse
Affiliation(s)
- Jesse R Frederick
- Division of Infectious Diseases, University of Virginia Health System, MR4 Building, Room 2115, Charlottesville, VA 22908-1340, USA
| | | |
Collapse
|
24
|
Frederick J, Eichinger D. Entamoeba invadens contains the components of a classical adrenergic signaling system. Mol Biochem Parasitol 2005; 137:339-43. [PMID: 15383304 DOI: 10.1016/j.molbiopara.2004.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 11/25/2022]
Abstract
Epinephrine (Epi) was previously found to bypass the need for galactose ligands during early steps in the initiation of Entamoeba encystment. Epinephrine is presumed to act on amoebae through a classical adrenergic signaling pathway that results in the increased production of cyclic adenosine monophosphate (cAMP). The object of this study was to verify the existence of an adrenergic like pathway and its response to Epi in both whole Entamoeba trophozoites and purified plasma membrane preparations. Whole trophozoite and purified membrane preparations from Entamoeba invadens responded to the presence of Epi by increasing the production of cAMP. The modulators of heterotrimeric G protein signaling, forskolin (FK), pertussis toxin (PTX) and cholera toxin (CTX), also increased cAMP levels in whole cells and membrane fragments. All of these increases in cAMP were inhibited by specific inhibitors of adenylyl cyclase (AC). Treatment of membrane fragments with epinephrine caused an increased binding of non-hydrolysable GTP analogs. Entamoeba trophozoites therefore appear to contain G-protein-regulated adenylyl cyclase that functions downstream of an adrenergic ligand receptor.
Collapse
Affiliation(s)
- Jesse Frederick
- Medical and Molecular Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| | | |
Collapse
|
25
|
Abstract
Entamoeba parasites multiply as trophozoites in the layer of mucus that overlies the colonic epithelium. In response to stimuli that are not understood, trophozoites stop multiplying and differentiate into cysts that are released to infect another host. In the colon, Entamoeba trophozoites are exposed to the large variety of biochemicals that are carried into or are produced within this organ. The normal bacterial population of the colon releases large amounts of short-chain fatty acids (SCFAs). These compounds have effects on the growth, differentiation and repair of the colonic epithelium that correlate with de-creased activity of a Class I/II histone deacetylase (HDAC). We found that the formation of cysts, but not the growth of trophozoite-stage Entamoeba invadens parasites, was inhibited by physiologic concentrations of SCFAs. Variable levels of cyst formation did occur if SCFA concentrations were lowered. Specific inhibitors of Class I/II-type HDACs also prevented encystation, and trophozoites exposed to these compounds had increased levels of acetylation of histone H4 and other nuclear proteins. These results suggest that production of the infectious cyst stage of Entamoeba parasites is regulated in part by the levels of SCFAs made by the bacterial population of the colon.
Collapse
Affiliation(s)
- Jennifer Byers
- Medical and Molecular Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | | | |
Collapse
|
26
|
Campos-Góngora E, Ebert F, Willhoeft U, Said-Fernández S, Tannich E. Characterization of Chitin Synthases from Entamoeba. Protist 2004; 155:323-30. [PMID: 15552059 DOI: 10.1078/1434461041844204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major component of the Entamoeba cyst wall is chitin, a homopolymer of beta-(1,4)-linked N-acetyl-D-glucosamine. Polymerization of chitin requires the presence of active chitin synthases (CHS), a group of enzymes belonging to the family of beta-glycosyl transferases. CHS have been described for fungi, insects, and nematodes; however, information is lacking about the structure and expression of this class of enzymes in protozoons such as Entamoeba. In this study, the primary structures of two putative E. histolytica CHS (EhCHS-1 and EhCHS-2) were determined by gene cloning and homologous proteins were identified in databases from E. dispar and the reptilian parasite E. invadens. The latter constitutes the widely used model organism for the study of Entamoeba cyst development. The two ameba enzymes revealed between 23% and 33% sequence similarity to CHS from other organisms with full conservation of all residues critically important for CHS activity. Interestingly, EhCHS-1 and EhCHS-2 differed substantially in their predicted molecular weights (73 kD vs. 114 kD) as well as in their isoelectric points (5.04 vs. 8.05), and homology was restricted to a central stretch of about 400 amino acid residues containing the catalytic domain. Outside the catalytic domain, EhCHS-1 was predicted to have seven transmembrane helices (TMH) of which the majority is located within the C-terminal part, resembling the situation found in yeast; whereas, EhCHS-2 is structurally related to nematode or insect chitin synthases, as it contained 17 predicted TMHs of which the majority is located within the N-terminal part of the molecule. Northern blot analysis revealed that genes corresponding to CHS-1 and CHS-2 are not expressed in Entamoeba trophozoites, but substantial amounts of CHS-1 and CHS-2 RNA were present 4 to 8 hours after induction of cyst formation by glucose deprivation of E. invadens. The time-courses of expression differed slightly between the two ameba CHS genes, as in contrast to CHS-1 RNA, expression of CHS-2 RNA was more transient and no plateau was observed between 8 and 16 hours of encystation. However, both CHS RNAs were no longer detectable after 48 hours when most of the cells had been transformed into mature cysts.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Chávez-Munguía B, Hernández-Ramírez V, Angel A, Ríos A, Talamás-Rohana P, González-Robles A, González-Lázaro M, Martínez-Palomo A. Entamoeba histolytica: ultrastructure of trophozoites recovered from experimental liver lesions. Exp Parasitol 2004; 107:39-46. [PMID: 15208036 DOI: 10.1016/j.exppara.2004.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/16/2004] [Accepted: 04/22/2004] [Indexed: 11/21/2022]
Abstract
Ultrastructural studies on Entamoeba histolytica have been carried out mostly with trophozoites cultured for many years. Under these conditions, the availability of nutrients and the absence of environmental stimuli may switch off some phenotypic characteristics of the parasite. As a result, virulence of E. histolytica diminishes with prolonged culture passages, and the ability to form cysts disappears in axenically maintained trophozoites. The present analysis by transmission electron microscopy of trophozoites recovered from experimental amebic liver lesions in hamsters revealed two types of cytoplasmic changes. On the one hand, the number of peripheral electron dense granules significantly increased in amebas obtained from liver lesions 15 min and 6h after inoculation. On the other hand, large cytoplasmic vesicles with a microfibrillar content appeared in trophozoites cultured from 72 or 96 h hepatic lesions. With fluorescence microscopy, a chitin-like material was identified in these vesicles by reactivity with calcofluor M2R. Ultrastructurally, these cytoplasmic components resemble the encystation vesicles of Entamoeba invadens and Giardia lamblia. The release of large amounts of electron dense granules, known to contain collagenase activity, probably contributes to degrade extracellular matrix components during tissue invasion. In addition, under the conditions mentioned above, amebas form encystation-like vesicles in an incomplete process of differentiation into cysts, which are the resistant form of the parasite.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Given that resistance to antiprotozoal drugs exists and is likely to increase and given that currently no reliable treatments exist for some of these infections, efforts to find new targets for chemotherapy must be continued. In the case of cyst-forming pathogenic protozoa, one such target might be encystment pathways and cyst-wall assembly. Information is increasing on protozoan encystment and, as it does, we can begin to answer the question of whether targeting it for chemotherapy is a viable drug strategy. Currently, there are significant efforts to understand encystment in Giardia and Entamoeba, and potential targets are being discovered as work on their encystment mechanisms progress. We know with certainty now that Giardia and Entamoeba cyst walls contain unique proteins and polysaccharides which differ from those of their hosts and thus make them potentially interesting targets for a variety of chemotherapeutic attacks. Although we lack detailed information about the other protozoan cyst formers, enough evidence exists for Giardia and Entamoeba that it seems prudent to screen them with some of the antifungal drugs, especially those that target mannoproteins, chitin synthesis, and beta (1, 3) glucan synthesis to ascertain if they target elements in these protozoan pathways that are similar to those found in fungi.
Collapse
Affiliation(s)
- Edward L Jarroll
- Department of Biology, Northeastern University, 106 Egan Bldg., 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Wang Z, Samuelson J, Clark CG, Eichinger D, Paul J, Van Dellen K, Hall N, Anderson I, Loftus B. Gene discovery in the Entamoeba invadens genome. Mol Biochem Parasitol 2003; 129:23-31. [PMID: 12798503 DOI: 10.1016/s0166-6851(03)00073-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entamoeba invadens, a parasite of reptiles, is a model for the study of encystation by the human enteric pathogen Entamoeba histolytica, because E. invadens form cysts in axenic culture. With approximately 0.5-fold sequence coverage of the genome, we were able to get insights into E. invadens gene and genome features. Overall, the E. invadens genome displays many of the features that are emerging from ongoing genome sequencing efforts in E. histolytica. At the nucleotide level the E. invadens genome has on average 60% sequence identity with that of E. histolytica. The presence of introns in E. invadens was predicted with similar consensus (GTTTGT em leader A/TAG) sequences to those identified in E. histolytica and Entamoeba dispar. Sequences highly repeated in the genome of E. histolytica (rRNAs, tRNAs, CXXC-rich proteins, and Leu-rich repeat proteins) were found to be highly repeated in the E. invadens genome. Numerous proteins homologous to those implicated in amoebic virulence, (Gal/GalNAc lectins, amoebapores, and cysteine proteinases) and drug resistance (p-glycoproteins) were identified. Homologs of proteins involved in cell cycle, vesicular trafficking and signal transduction were identified, which may be involved in en/excystation and cell growth of E. invadens. Finally, multiple copies of a number of E. invadens genes coding for predicted enzymes involved in core metabolism and the targets of anti-amoebic drugs were identified.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hughes MA, Lee CW, Holm CF, Ghosh S, Mills A, Lockhart LA, Reed SL, Mann BJ. Identification of Entamoeba histolytica thiol-specific antioxidant as a GalNAc lectin-associated protein. Mol Biochem Parasitol 2003; 127:113-20. [PMID: 12672520 DOI: 10.1016/s0166-6851(02)00326-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is a human intestinal parasite that causes amebic dysentery. A cell surface amebic adhesin, the galactose and N-acetyl-D-galactosamine inhibitable (GalNAc) lectin mediates amebic adherence to and contact-dependent killing of host cells. Previous work has suggested that the GalNAc lectin transduces signals via protein interactions with its short cytoplasmic domain. We used a yeast two-hybrid system to screen an E. histolytica cDNA library for proteins that interact with the GalNAc lectin cytoplasmic domain. One isolate was the E. histolytica thiol-specific antioxidant (TSA). TSA is an enzyme that detoxifies hydrogen peroxide. TSA did not interact in yeast two-hybrid experiments with a mutant version of the lectin cytoplasmic domain, confirming the specificity of the lectin-TSA interaction. Furthermore, mutational analyses of the TSA isolate demonstrated that an in-frame five amino acid sequence introduced between amino acids 61-62 yielded a TSA mutant that did not interact with the lectin cytoplasmic domain upon expression in the yeast two-hybrid system. The association of TSA and GalNAc lectin was further supported by co-immunoaffinity purification. Confocal microscopy demonstrated co-localization of TSA and GalNAc lectin at sites of ameba:host cell contact. Recruitment of TSA by the GalNAc lectin suggests a novel mechanism of parasite defense against reactive oxygen intermediates generated by host peripheral mononuclear cells.
Collapse
Affiliation(s)
- Molly A Hughes
- Department of Internal Medicine, Division of Infectious Diseases, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Petri WA, Haque R, Mann BJ. The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol 2003; 56:39-64. [PMID: 12142490 DOI: 10.1146/annurev.micro.56.012302.160959] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Entamoeba histolytica, as its name suggests, is an enteric parasite with a remarkable ability to lyse host tissues. However, the interaction of the parasite with the host is more complex than solely destruction and invasion. It is at the host-parasite interface that cell-signaling events commit the parasite to (a) commensal, noninvasive infection, (b) developmental change from trophozoite to cyst, or (c) invasion and potential death of the human host. The molecule central to these processes is an amebic cell surface protein that recognizes the sugars galactose (Gal) and N-acetylgalactosamine (GalNAc) on the surface of host cells. Engagement of the Gal/GalNAc lectin to the host results in cytoskeletal reorganization in the parasite. The parasite cytoskeleton regulates the extracellular adhesive activity of the lectin and recruits to the host-parasite interface factors required for parasite survival within its host. If the parasite lectin attaches to the host mucin glycoproteins lining the intestine, the result is commensal infection. In contrast, attachment of the lectin to a host cell surface glycoprotein leads to lectin-induced host cell calcium transients, caspase activation, and destruction via apoptosis. Finally, trophozoite quorum sensing via the lectin initiates the developmental pathway resulting in encystment. The structure and function of the lectin that controls these divergent cell biologic processes are the subject of this review.
Collapse
Affiliation(s)
- William A Petri
- Division of Infectious Diseases, University of Virginia, MR4 Bldg Room 2115, Lane Road, Charlottesville 22908-1340, USA.
| | | | | |
Collapse
|
32
|
Mann BJ. Structure and function of the Entamoeba histolytica Gal/GalNAc lectin. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:59-80. [PMID: 12049210 DOI: 10.1016/s0074-7696(02)16003-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gal/GalNAc lectin is a novel multifunctional virulence factor of the human parasite Entamoeba histolytica. The native protein is a 260-kDa heterodimer consisting of a type 1 membrane protein disulfide bonded to a lipid-anchored protein. Each subunit has several isoforms that may form functionally different heterodimers, analogous to the integrin family of proteins. Recently a second 150-kDa Gal/GalNAc lectin has been identified in E. histolytica that associates with the 260-kDa lectin. The functions of the 260-kDa lectin have been characterized using specific monoclonal antibodies. This lectin plays roles in many of the critical aspects of this parasite's pathogenicity including adherence, cytolysis, invasion, resistance to lysis by complement, and also perhaps encystment. Current knowledge regarding both the structure and function of this unique multifunctional virulence factor are discussed.
Collapse
Affiliation(s)
- Barbara J Mann
- Department of Internal Medicine and Microbiology, University of Virginia, Charlottesville 22908, USA
| |
Collapse
|
33
|
|
34
|
Boettner DR, Huston C, Petri WA. Galactose/N-acetylgalactosamine lectin: The coordinator of host cell killing. J Biosci 2002. [DOI: 10.1007/bf02704847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Abstract
It is an exciting time in the study of Entamoeba histolytica. Over the past two years, the natural history and burden of disease in humans has been redefined, mucosal immune responses associated with protection identified, and the developmental regulation of encystation outlined. The number of genes sequenced has increased from a few hundred to a few thousand, and study of the genome structure is revealing unusual repetitive elements and plasticity. DNA microarrays promise the first ability to examine global patterns of mRNA abundance. The mechanism of transcriptional control via histone modifications and sequence-specific DNA-binding proteins are to be delineated. Advances in cell biology are providing new insights into invasion through the intestinal epithelium.
Collapse
Affiliation(s)
- William A Petri
- Division of Infectious Diseases, Room 2115, MR4 Building, Lane Road, PO Box 801340, University of Virginia Health System, Charlottesville, Virginia 22908-1340, USA.
| |
Collapse
|
36
|
Coppi A, Merali S, Eichinger D. The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. J Biol Chem 2002; 277:8083-90. [PMID: 11779874 DOI: 10.1074/jbc.m111895200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteric amoebae of the genus Entamoeba travel from host to host in an encysted form. We previously showed that in vitro cyst development of Entamoeba invadens requires the addition of defined amounts of multivalent galactose-terminated molecules, such as mucin, to the cultures. The amoeba surface lectin that binds mucin is presumed to convey transmembrane signals when clustered by the ligand, but the signaling molecules that function downstream of the lectin are not known. We report here that Entamoeba encystation was induced in the absence of galactose ligand when catecholamines were added to the encystation medium. Micromolar amounts of both epinephrine and norepinephrine induced encystation. Of a variety of synthetic catecholamine agonists tested, only beta(1)-adrenergic receptor agonists supported encystation, whereas alpha- and beta(2)-adrenergic receptor agonists did not. Only beta(1)-adrenergic receptor antagonists inhibited encystation, and did so even when exogenous catecholamines were not added, indicating that catecholamine binding is required for encystation and suggesting an endogenous source of the ligand. High performance liquid chromatography analysis of Entamoeba extracts showed that the amoebae themselves contain catecholamines and at least one of these is released when the cells are stimulated to encyst with galactose-terminated ligands. The presence of catecholamine binding sites on the surface of amoeba trophozoites was confirmed using radiolabeled catecholamine antagonist. Amoeba encystment was inhibited by addition of beta(1)-adrenergic receptor antagonist to cells that were stimulated to differentiate with either galactose ligand or catecholamines, but not with dibutyryl cAMP. This suggests that the amoeba catecholamine receptor functions downstream of the galactose lectin and upstream of adenylyl cyclase. This enteric protozoan parasite, therefore, contains the components of an autocrine catecholamine ligand-receptor system that may act in conjunction with a galactose lectin to regulate differentiation into the infectious cyst stage.
Collapse
Affiliation(s)
- Alida Coppi
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, New York 10010, USA.
| | | | | |
Collapse
|
37
|
Abstract
In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.
Collapse
Affiliation(s)
- D Eichinger
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York 10010, USA.
| |
Collapse
|
38
|
Frisardi M, Ghosh SK, Field J, Van Dellen K, Rogers R, Robbins P, Samuelson J. The most abundant glycoprotein of amebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains. Infect Immun 2000; 68:4217-24. [PMID: 10858239 PMCID: PMC101730 DOI: 10.1128/iai.68.7.4217-4224.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of approximately 100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains.
Collapse
Affiliation(s)
- M Frisardi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Gonzalez J, Bai G, Frevert U, Corey EJ, Eichinger D. Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:897-904. [PMID: 10491138 DOI: 10.1046/j.1432-1327.1999.00682.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteases play an important role in the pathogenic mechanisms and differentiation events of protozoan parasites; the proteasome/ubiquitin system is essential for maintaining the differentiation state of many cell types. A single input of the specific inhibitor of proteasomes, lactacystin, prevented encystation of the protozoan parasite Entameoba invadens, whereas a cysteine protease inhibitor, E64, only delayed encystation. The ameba target of lactacystin was purified and it displayed the features typical of eukaryotic 20S proteasome complexes. In addition, transcripts encoding ubiquitin were detectable in trophozoites stage cells, disappeared immediately following transfer of amoebae to encystation induction medium, and reappeared at the same time during encystation as other encystation-specific transcripts. These results demonstrate that proteasome function is required during the conversion of the disease-causing trophozoite into the infectious cyst stage of Entamoeba parasites, and that ubiquitin transcript levels undergo an unusual decrease during the early stages of this differentiation process.
Collapse
Affiliation(s)
- J Gonzalez
- Parasitology Unit, Medical Technology Department, University of Antofagasta, Chile, Spain
| | | | | | | | | |
Collapse
|