1
|
Saito S, Hashimoto H, Wakashin H, Ishibane M, Pae S, Saito S, Reien Y, Hirayama Y, Seo Y, Mizushima T, Anzai N. Central administered xenin induced Fos expression in nesfatin-1 neurons in rats. Brain Res Bull 2023; 204:110788. [PMID: 37844783 DOI: 10.1016/j.brainresbull.2023.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Xenin is a 25-amino acid peptide identified in human gastric mucosa, which is widely expressed in peripheral and central tissues. It is known that the central or peripheral administration of xenin decreases food intake in rodents. Nesfatin-1/NUCB2 (nesfatin-1) has been identified as an anorexic neuropeptide, it is often found co-localized with many peptides in the central nervous system. After the intracerebroventricular administration of xenin on nesfain-1-like immunoreactivity (LI) neurons, we examined its effects on food intake and water intake in rats. As a result, Fos-LI neurons were observed in the organum vasculosum of the laminae terminalis (OVLT), the median preoptic nucleus (MnPO), the subfornical organ (SFO), the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the arcuate nucleus (Arc), the lateral hypothalamic area (LHA), the central amygdaloid nucleus (CAN), the dorsal raphe nucleus (DR), the locus coeruleus (LC), the area postrema (AP) and the nucleus of the solitary tract (NTS). After the administration, the number of Fos-LI neurons was significantly increased in the LC and the OVLT, the MnPO, the SFO, the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. After the administration of xenin, we conducted double immunohistochemistry for Fos and nesfatin-1, and found that the number of nesfatin-1-LI neurons expressing Fos were significantly increased in the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. The pretreatment of nesfatin-1 antisense significantly attenuated this xenin-induced feeding suppression, while that of nesfatin-1 missense showed no improvement. These results indicate that central administered xenin may have anorexia effects associated with activated central nesfatin-1 neurons.
Collapse
Affiliation(s)
- Shota Saito
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN; Department of Rehabilitation, Dokkyo Medical University, 8880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Hirofumi Hashimoto
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN; Department of Rehabilitation, Dokkyo Medical University, 8880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan; Department of Regulatory Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan.
| | - Hidefumi Wakashin
- Department of Regulatory Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Misaki Ishibane
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| | - Sangjon Pae
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| | - Shinpei Saito
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| | - Yoshie Reien
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| | - Yuri Hirayama
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| | - Yoshiteru Seo
- Department of Regulatory Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan; Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takashi Mizushima
- Department of Rehabilitation, Dokkyo Medical University, 8880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, JAPAN
| |
Collapse
|
2
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
3
|
Kuwahara Y, Takahashi K, Akai M, Kato I, Kozakai T, Asano S, Inui T, Marunaka Y, Kuwahara A. Minimum biological domain of xenin-25 required to induce anion secretion in the rat ileum. Peptides 2022; 147:170680. [PMID: 34757144 DOI: 10.1016/j.peptides.2021.170680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent. We have previously reported that xenin-25 modulates intestinal ion transport and colonic smooth muscle activity. However, minimal biological domain of xenin-25 to induce ion transport was not clear. To improve the mechanistic understanding of xenin-25 and to gain additional insights into the functions of xenin-25, the present study was designed to determine the minimal biological domain of xenin-25 required for ion transport in the rat ileum using various truncated xenin fragments and analogues in an Ussing chamber system. The present results demonstrate that the minimum biological domain of xenin-25 to induce Cl-/HCO3- secretion in the ileum contains the C-terminal pentapeptide. Furthermore, Arg at position 21 is important to retain the biological activity of xenin-25 and induces Cl-/HCO3- secretion in the rat ileum.
Collapse
Affiliation(s)
- Yuko Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kohei Takahashi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Miho Akai
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Takaharu Kozakai
- Faculty of Education, Art, and Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| |
Collapse
|
4
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
5
|
Kuwahara Y, Kato I, Inui T, Marunaka Y, Kuwahara A. The effect of Xenin25 on spontaneous circular muscle contractions of rat distal colon in vitro. Physiol Rep 2021; 9:e14752. [PMID: 33600071 PMCID: PMC7891183 DOI: 10.14814/phy2.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Xenin25 has a variety of physiological functions in the Gastrointestinal (GI) tract, including ion transport and motility. However, the motility responses in the colon induced by Xenin25 remain poorly understood. Therefore, the effect of Xenin25 on the spontaneous circular muscle contractions of the rat distal colon was investigated using organ bath chambers and immunohistochemistry. Xenin25 induced the inhibition followed by postinhibitory spontaneous contractions with a higher frequency in the rat distal colon. This inhibitory effect of Xenin25 was significantly suppressed by TTX but not by atropine. The inhibitory time (the duration of inhibition) caused by Xenin25 was shortened by the NTSR1 antagonist SR48692, the NK1R antagonist CP96345, the VPAC2 receptor antagonist PG99-465, the nitric oxide-sensitive guanylate-cyclase inhibitor ODQ, and the Ca2+ -dependent K+ channel blocker apamin. The higher frequency of postinhibitory spontaneous contractions induced by Xenin25 was also attenuated by ODQ and apamin. SP-, NOS-, and VIP-immunoreactive neurons were detected in the myenteric plexus (MP) of the rat distal colon. Small subsets of the SP-positive neurons were also Calbindin positive. Most of the VIP-positive neurons were also NOS positive, and small subsets of the NK1R-positive neurons were also VIP positive. Based on the present results, we propose the following mechanism. Xenin25 activates neuronal NTSR1 on the SP neurons of IPANs, and transmitters from the VIP and apamin-sensitive NO neurons synergistically inhibit the spontaneous circular muscle contractions via NK1R. Subsequently, the postinhibitory spontaneous contractions are induced by the offset of apamin-sensitive NO neuron activation via the interstitial cells of Cajal. In addition, Xenin25 also activates the muscular NTSR1 to induce relaxation. Thus, Xenin25 is considered to be an important modulator of post prandial circular muscle contraction of distal colon since the release of Xenin25 from enteroendocrine cells is stimulated by food intake.
Collapse
Affiliation(s)
- Yuko Kuwahara
- Department of Molecular cell PhysiologyGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Research Unit for Epithelial PhysiologyResearch Center for Drug Discovery and Pharmaceutical Development ScienceResearch Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
| | - Ikuo Kato
- Department of Medical BiochemistryKobe Pharmaceutical UniversityKobeJapan
| | | | - Yoshinori Marunaka
- Department of Molecular cell PhysiologyGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Research Unit for Epithelial PhysiologyResearch Center for Drug Discovery and Pharmaceutical Development ScienceResearch Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
- Research Institute for Clinical PhysiologyKyoto Industrial Health AssociationKyotoJapan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial PhysiologyResearch Center for Drug Discovery and Pharmaceutical Development ScienceResearch Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
| |
Collapse
|
6
|
Guclu YA, Sahin E, Aksit M. The relationship between elevated serum xenin and insulin resistance in women with polycystic ovary syndrome: a case-control study. Gynecol Endocrinol 2019; 35:960-964. [PMID: 31010340 DOI: 10.1080/09513590.2019.1604663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study aims to determine whether serum xenin-25 levels are altered in women with polycystic ovary syndrome (PCOS). The study included 31 women diagnosed with PCOS according to the 2003 Rotterdam criteria and 30 healthy controls. The primary outcome was serum xenin-25 levels. Other variables evaluated were menstrual history, physical findings, Ferriman-Gallwey hirsutism score, blood pressure, transvaginal ultrasonography, fasting blood glucose, insulin, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, C-reactive protein, follicle stimulating hormone, luteinizing hormone, estradiol, total testosterone, dehydroepiandrosterone sulfate, and day-21 progesterone. Median (min-max) values of xenin-25 were 45.50 pg/mL (7.10-656.40) and 9.85 pg/mL (7.00-564.40) for cases and controls, respectively, demonstrating a significant difference (Z = 2.803, p = .007). The ROC curve for xenin-25 predicting the PCOS risk had an area under the curve of 0.747. The optimal cutoff value of xenin-25 for detecting PCOS was calculated as ≥32.60 pg/mL with sensitivity, specificity values of 61.3% and 86.7%, respectively. A logistic regression model including xenin-25, FSH, Ferriman-Gallwey score, and Menstrual cycle frequency demonstrated the independent relationship of xenin-25 on PCOS (p < .05). This study demonstrated that xenin-25 may contribute to the diagnosis of PCOS. Further studies are needed to fully elucidate the effects of xenin-25 in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yusuf Adnan Guclu
- Department of Family Medicine, Tepecik Education and Research Hospital, Health Sciences University , Izmir , Turkey
| | - Ebru Sahin
- Department of Gynecology and Obstetrics, Tepecik Education and Research Hospital, Health Sciences University , Izmir , Turkey
| | - Murat Aksit
- Department of Biochemistry, Tepecik Education and Research Hospital , Izmir , Turkey
| |
Collapse
|
7
|
Kuwahara A, Kuwahara Y, Kato I, Kawaguchi K, Harata D, Asano S, Inui T, Marunaka Y. Xenin-25 induces anion secretion by activating noncholinergic secretomotor neurons in the rat ileum. Am J Physiol Gastrointest Liver Physiol 2019; 316:G785-G796. [PMID: 30978113 DOI: 10.1152/ajpgi.00333.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan
| | - Yuko Kuwahara
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University , Kobe , Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Daiki Harata
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | | | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association , Kyoto , Japan
| |
Collapse
|
8
|
Craig SL, Gault VA, Irwin N. Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes Metab Res Rev 2018; 34:e3006. [PMID: 29633491 DOI: 10.1002/dmrr.3006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Xenin-25 is a 25-amino acid peptide hormone co-secreted from the same enteroendocrine K-cell as the incretin peptide glucose-dependent insulinotropic polypeptide. There is no known specific receptor for xenin-25, but studies suggest that at least some biological actions may be mediated through interaction with the neurotensin receptor. Original investigation into the physiological significance of xenin-25 focussed on effects related to gastrointestinal transit and satiety. However, xenin-25 has been demonstrated in pancreatic islets and recently shown to possess actions in relation to the regulation of insulin and glucagon secretion, as well as promoting beta-cell survival. Accordingly, the beneficial impact of xenin-25, and related analogues, has been assessed in animal models of diabetes-obesity. In addition, studies have demonstrated that metabolically active fragment peptides of xenin-25, particularly xenin-8, possess independent therapeutic promise for diabetes, as well as serving as bioactive components for the generation of multi-acting hybrid peptides with antidiabetic potential. This review focuses on continuing developments with xenin compounds in relation to new therapeutic approaches for diabetes-obesity.
Collapse
Affiliation(s)
- Sarah L Craig
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
9
|
Kerbel B, Badal K, Sundarrajan L, Blanco A, Unniappan S. Xenin is a novel anorexigen in goldfish (Carassius auratus). PLoS One 2018; 13:e0197817. [PMID: 29791497 PMCID: PMC5965858 DOI: 10.1371/journal.pone.0197817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Xenin, a highly conserved 25 amino acid peptide cleaved from the N-terminus of the coatomer protein alpha (COPA), is emerging as a food intake regulator in mammals and birds. To date, no research has been conducted on xenin biology in fish. This study aims to identify the copa mRNA encoding xenin in goldfish (Carassius auratus) as a model, to elucidate its regulation by feeding, and to describe the role of xenin on appetite. First, a partial sequence of copa cDNA, a region encoding xenin, was identified from goldfish brain. This sequence is highly conserved among both vertebrates and invertebrates. RT-qPCR revealed that copa mRNAs are widely distributed in goldfish tissues, with the highest levels detected in the brain, gill, pituitary and J-loop. Immunohistochemistry confirmed also the presence of COPA peptide in the hypothalamus and enteroendocrine cells on the J-loop mucosa. In line with its anorexigenic effects, we found important periprandial fluctuations in copa mRNA expression in the hypothalamus, which were mainly characterized by a gradually decrease in copa mRNA levels as the feeding time was approached, and a gradual increase after feeding. Additionally, fasting differently modulated the expression of copa mRNA in a tissue-dependent manner. Peripheral and central injections of xenin reduce food intake in goldfish. This research provides the first report of xenin in fish, and shows that this peptide is a novel anorexigen in goldfish.
Collapse
Affiliation(s)
- Brent Kerbel
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kimberly Badal
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ayelen Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
10
|
Abstract
Xenin is a gastrointestinal hormone that belongs to the neurotensin family. Central administration of xenin to obese mice reduces food intake and body weight gain and causes alterations in the expression of lipid metabolism-related genes and proteins in white adipose tissue (WAT). However, it has not been tested whether or not xenin directly acts on adipose tissue and alters lipid metabolism. The present study was performed to address this possibility by examining the effect of xenin treatment on the levels of glycerol and free fatty acids (FFA) and expression levels of lipolysis marker proteins ex vivo in cultured mouse WAT. Xenin treatment significantly increased concentrations of glycerol and FFA in culture media and increased phosphorylation of hormone sensitive lipase (HSL) in ex vivo cultured WAT. These findings support the hypothesis that xenin directly acts on adipose tissues and stimulates lipolysis. Thus, enhancement of xenin action and its downstream signaling may offer a novel and effective therapy for obese patients by reducing the amount of stored fat in adipose tissue.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW We report recently published knowledge regarding gut chemosensory mechanisms focusing on nutrient-sensing G protein-coupled receptors (GPCRs) expressed on gut enteroendocrine cells (EECs), tuft cells, and in afferent nerves in the gastroduodenal mucosa and submucosa. RECENT FINDINGS Gene profiling of EECs and tuft cells have revealed expression of a variety of nutrient-sensing GPCRs. The density of EEC and tuft cells is altered by luminal environmental changes that may occur following bypass surgery or in the presence of mucosal inflammation. Some EECs and tuft cells are directly linked to sensory nerves in the subepithelial space. Vagal afferent neurons that innervate the intestinal villi express nutrient receptors, contributing to the regulation of duodenal anion secretion in response to luminal nutrients. Nutrients are also absorbed via specific epithelial transporters. SUMMARY Gastric and duodenal epithelial cells are continually exposed to submolar concentrations of nutrients that activate GPCRs expressed on EECs, tuft cells, and submucosal afferent nerves and are also absorbed through specific transporters, regulating epithelial cell proliferation, gastrointestinal physiological function, and metabolism. The chemical coding and distribution of EECs and tuft cells are keys to the development of GPCR-targeted therapies.
Collapse
|
12
|
Bhavya S, Lew PS, Mizuno TM. Central action of xenin affects the expression of lipid metabolism-related genes and proteins in mouse white adipose tissue. Neuropeptides 2017; 63:67-73. [PMID: 28190525 DOI: 10.1016/j.npep.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
Xenin is a gastrointestinal hormone that reduces food intake when administered centrally and it has been hypothesized that central action of xenin participates in the regulation of whole-body metabolism. The present study was performed to address this hypothesis by investigating the central effect of xenin on the expression of genes and proteins that are involved in the regulation of lipid metabolism in white adipose tissue (WAT). Male obese ob/ob mice received intracerebroventricular (i.c.v.) injections of xenin (5μg) twice 12h apart. Food intake and body weight change during a 24-h period after the first injection were measured. Epididymal WAT was collected at the end of the 24-h treatment period and levels of lipid metabolism-related genes and proteins were measured. Xenin treatment caused significant reductions in food intake and body weight compared to control vehicle treatment. Levels of fatty acid synthase (FASN) protein were significantly reduced by xenin treatment, while levels of adipose triglyceride lipase (Atgl) and beta-3 adrenergic receptor (Adrb3) mRNA and phosphorylated hormone sensitive lipase (Ser660-pHSL and Ser563-pHSL) were significantly increased by xenin treatment. These findings suggest that central action of xenin causes alterations in lipid metabolism in adipose tissue toward reduced lipogenesis and increased lipolysis, possibly contributing to xenin-induced body weight reduction. Thus, enhancing central action of xenin and its downstream targets may be possible targets for the treatment of obesity by reducing the amount of stored fat in adipose tissue.
Collapse
Affiliation(s)
- Sharma Bhavya
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Pei San Lew
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Tooru M Mizuno
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
13
|
Kaji I, Akiba Y, Kato I, Maruta K, Kuwahara A, Kaunitz JD. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways. J Pharmacol Exp Ther 2017; 361:151-161. [PMID: 28115552 PMCID: PMC5363776 DOI: 10.1124/jpet.116.238485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.
Collapse
Affiliation(s)
- Izumi Kaji
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Ikuo Kato
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Koji Maruta
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Atsukazu Kuwahara
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| |
Collapse
|
14
|
Parthsarathy V, Irwin N, Hasib A, Martin CM, McClean S, Bhat VK, Ng MT, Flatt PR, Gault VA. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochim Biophys Acta Gen Subj 2016; 1860:757-64. [DOI: 10.1016/j.bbagen.2016.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
15
|
Gault VA, Martin CMA, Flatt PR, Parthsarathy V, Irwin N. Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetol 2015; 52:461-71. [PMID: 25374384 DOI: 10.1007/s00592-014-0681-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
AIMS Xenin-25 is co-secreted with glucose-dependent insulinotropic polypeptide (GIP) from intestinal K-cells following a meal. Xenin-25 is believed to play a key role in glucose homoeostasis and potentiate the insulinotropic effect of GIP. METHODS This study investigated the effects of sub-chronic administration of the stable and longer-acting xenin-25 analogue, xenin-25[Lys(13)PAL] (25 nmol/kg), in diabetic mice fed with a high-fat diet. RESULTS Initial studies confirmed the significant persistent glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05) actions of xenin-25[Lys(13)PAL] compared with native xenin-25. Interestingly, xenin-25 retained significant glucose-lowering activity in GIP receptor knockout mice. Twice-daily intraperitoneal (i.p.) injection of xenin-25[Lys(13)PAL] for 14 days had no significant effect on food intake or body weight in high-fat-fed mice. Non-fasting glucose and insulin levels were also unchanged, but overall glucose levels during an i.p. glucose tolerance and oral nutrient challenge were significantly (p < 0.05) lowered by xenin-25[Lys(13)PAL] treatment. These changes were accompanied by significant improvements in i.p. (p < 0.05) and oral (p < 0.001) nutrient-stimulated insulin concentrations. No appreciable changes in insulin sensitivity were observed between xenin-25[Lys(13)PAL] and saline-treated high-fat mice. However, xenin-25[Lys(13)PAL] treatment restored notable sensitivity to the biological actions of exogenous GIP injection. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were not altered by 14-day twice-daily treatment with xenin-25[Lys(13)PAL]. In contrast, ambulatory activity was significantly (p < 0.05 to p < 0.001) increased during the dark phase in xenin-25[Lys(13)PAL] mice compared with high-fat controls. CONCLUSIONS These data indicate that sustained administration of a stable analogue of xenin-25 exerts a spectrum of beneficial metabolic effects in high-fat-fed mice.
Collapse
Affiliation(s)
- V A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | | | | | | | | |
Collapse
|
16
|
Impaired suppression of feeding by the gut hormone xenin in type I interleukin-1 receptor-deficient mice. Behav Brain Res 2014; 261:60-4. [DOI: 10.1016/j.bbr.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/10/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022]
|
17
|
Chowdhury S, Reeds DN, Crimmins DL, Patterson BW, Laciny E, Wang S, Tran HD, Griest TA, Rometo DA, Dunai J, Wallendorf MJ, Ladenson JH, Polonsky KS, Wice BM. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2014; 306:G301-9. [PMID: 24356886 PMCID: PMC3920124 DOI: 10.1152/ajpgi.00383.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.
Collapse
Affiliation(s)
- Sara Chowdhury
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dominic N. Reeds
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dan L. Crimmins
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Bruce W. Patterson
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Erin Laciny
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Songyan Wang
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Hung D. Tran
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Terry A. Griest
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - David A. Rometo
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Judit Dunai
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Michael J. Wallendorf
- 4Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Jack H. Ladenson
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Kenneth S. Polonsky
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; ,5Division of the Biological Sciences and Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Burton M. Wice
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
18
|
Zhang S, Hyrc K, Wang S, Wice BM. Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1347-55. [PMID: 23086920 PMCID: PMC3532549 DOI: 10.1152/ajpgi.00116.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 (Xen) is a 25 amino acid neurotensin-related peptide reportedly produced with glucose-dependent insulinotropic polypeptide (GIP) by a subset of K cells in the proximal gut. We previously showed exogenously administered Xen, with GIP but not alone, increases insulin secretion in humans and mice. In mice, this effect is indirectly mediated via a central nervous system-independent cholinergic relay in the periphery. Xen also delays gastric emptying, reduces food intake, induces gall bladder contractions, and increases gut motility and secretion from the exocrine pancreas, suggesting that some effects of Xen could be mediated by myenteric neurons (MENs). To determine whether Xen activates these neurons, MENs were isolated from guinea pig proximal small intestines. Cells expressed neuronal markers and exhibited typical neuron-like morphology with extensive outgrowths emanating from cell bodies. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) were measured using Fura-2. ATP/UTP, KCl, and forskolin increased [Ca(2+)](i) in 99.6%, 92%, and 23% of the MENs imaged, respectively, indicating that they are functional and activated by nucleotide receptor signaling, direct depolarization, and cAMP. [Ca(2+)](i) increased in only 12.7% of MENs treated with Xen. This rise was blocked by pretreatment with EGTA, diazoxide, SR48692, and neurotensin. Thus the Xen-mediated increase in [Ca(2+)](i) involves influx of extracellular Ca(2+) and activation of neurotensin receptor-1 (NTSR1). Xen also increased acetylcholine release from MENs. Amylin, produced by β-and enteroendocrine cells, delays gastric emptying and increased [Ca(2+)](i) almost exclusively in Xen-responsive MENs. Immunohistochemistry demonstrated NTSR1 expression in human duodenal MENs. Thus myenteric rather than central neurons could mediate some effects of Xen and amylin.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
19
|
Martin CM, Gault VA, McClean S, Flatt PR, Irwin N. Degradation, insulin secretion, glucose-lowering and GIP additive actions of a palmitate-derivatised analogue of xenin-25. Biochem Pharmacol 2012; 84:312-9. [DOI: 10.1016/j.bcp.2012.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/16/2022]
|
20
|
Wice BM, Reeds DN, Tran HD, Crimmins DL, Patterson BW, Dunai J, Wallendorf MJ, Ladenson JH, Villareal DT, Polonsky KS. Xenin-25 amplifies GIP-mediated insulin secretion in humans with normal and impaired glucose tolerance but not type 2 diabetes. Diabetes 2012; 61:1793-800. [PMID: 22522617 PMCID: PMC3379667 DOI: 10.2337/db11-1451] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion (GSIS). This response is blunted in type 2 diabetes (T2DM). Xenin-25 is a 25-amino acid neurotensin-related peptide that amplifies GIP-mediated GSIS in hyperglycemic mice. This study determines if xenin-25 amplifies GIP-mediated GSIS in humans with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or T2DM. Each fasting subject received graded glucose infusions to progressively raise plasma glucose concentrations, along with vehicle alone, GIP, xenin-25, or GIP plus xenin-25. Plasma glucose, insulin, C-peptide, and glucagon levels and insulin secretion rates (ISRs) were determined. GIP amplified GSIS in all groups. Initially, this response was rapid, profound, transient, and essentially glucose independent. Thereafter, ISRs increased as a function of plasma glucose. Although magnitudes of insulin secretory responses to GIP were similar in all groups, ISRs were not restored to normal in subjects with IGT and T2DM. Xenin-25 alone had no effect on ISRs or plasma glucagon levels, but the combination of GIP plus xenin-25 transiently increased ISR and plasma glucagon levels in subjects with NGT and IGT but not T2DM. Since xenin-25 signaling to islets is mediated by a cholinergic relay, impaired islet responses in T2DM may reflect defective neuronal, rather than GIP, signaling.
Collapse
Affiliation(s)
- Burton M. Wice
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Kenneth S. Polonsky, , or Burton M. Wice,
| | - Dominic N. Reeds
- Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hung D. Tran
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dan L. Crimmins
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Bruce W. Patterson
- Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Judit Dunai
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J. Wallendorf
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Jack H. Ladenson
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dennis T. Villareal
- Division of Geriatrics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Geriatrics, University of New Mexico School of Medicine and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico
| | - Kenneth S. Polonsky
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Division of Biological Sciences and Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
- Corresponding author: Kenneth S. Polonsky, , or Burton M. Wice,
| |
Collapse
|
21
|
K-cells and glucose-dependent insulinotropic polypeptide in health and disease. VITAMINS AND HORMONES 2011; 84:111-50. [PMID: 21094898 DOI: 10.1016/b978-0-12-381517-0.00004-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 1970s, glucose-dependent insulinotropic polypeptide (GIP, formerly gastric inhibitory polypeptide), a 42-amino acid peptide hormone, was discovered through a search for enterogastrones and subsequently identified as an incretin, or an insulinotropic hormone secreted in response to intraluminal nutrients. Independent of the discovery of GIP, the K-cell was identified in small intestine by characteristic ultrastructural features. Subsequently, it was realized that K-cells are the predominant source of circulating GIP. The density of K-cells may increase under conditions including high-fat diet and obesity, and generally correlates with plasma GIP levels. In addition to GIP, K-cells secrete xenin, a peptide with as of yet poorly understood physiological functions, and GIP is often colocalized with the other incretin hormone glucagon-like peptide-1 (GLP-1). Differential posttranslational processing of proGIP produces 30 and 42 amino acid versions of GIP. Its secretion is elicited by intraluminal nutrients, especially carbohydrate and fat, through the action of SGLT1, GPR40, GPR120, and GPR119. There is also evidence of regulation of GIP secretion via neural pathways and somatostatin. Intracellular signaling mechanisms of GIP secretion are still elusive but include activation of adenylyl cyclase, protein kinase A (PKA), and protein kinase C (PKC). GIP has extrapancreatic actions on adipogenesis, neural progenitor cell proliferation, and bone metabolism. However, the clinical or physiological relevance of these extrapancreatic actions remain to be defined in humans. The application of GIP as a glucose-lowering drug is limited due to reduced efficacy in humans with type 2 diabetes and its potential obesogenic effects demonstrated by rodent studies. There is some evidence to suggest that a reduction in GIP production or action may be a strategy to reduce obesity. The meal-dependent nature of GIP release makes K-cells a potential target for genetically engineered production of satiety factors or glucose-lowering agents, for example, insulin. Transgenic mice engineered to produce insulin from intestinal K-cells are resistant to diabetes induced by a beta-cell toxin. Collectively, K-cells and GIP play important roles in health and disease, and both may be targets for novel therapies.
Collapse
|
22
|
Wice BM, Wang S, Crimmins DL, Diggs-Andrews KA, Althage MC, Ford EL, Tran H, Ohlendorf M, Griest TA, Wang Q, Fisher SJ, Ladenson JH, Polonsky KS. Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 2010; 285:19842-53. [PMID: 20421298 PMCID: PMC2888395 DOI: 10.1074/jbc.m110.129304] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/22/2010] [Indexed: 02/06/2023] Open
Abstract
The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM.
Collapse
Affiliation(s)
- Burton M Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cooke JH, Patterson M, Patel SR, Smith KL, Ghatei MA, Bloom SR, Murphy KG. Peripheral and central administration of xenin and neurotensin suppress food intake in rodents. Obesity (Silver Spring) 2009; 17:1135-43. [PMID: 19214175 DOI: 10.1038/oby.2008.652] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenin is a 25-amino acid peptide highly homologous to neurotensin. Xenin and neurotensin are reported to have similar biological effects. Both reduce food intake when administered centrally to fasted rats. We aimed to clarify and compare the effects of these peptides on food intake and behavior. We confirm that intracerebroventricular (ICV) administration of xenin or neurotensin reduces food intake in fasted rats, and demonstrate that both reduce food intake in satiated rats during the dark phase. Xenin reduced food intake more potently than neurotensin following ICV administration. ICV injection of either peptide in the dark phase increased resting behavior. Xenin and neurotensin stimulated the release of corticotrophin-releasing hormone (CRH) from ex vivo hypothalamic explants, and administration of alpha-helical CRH attenuated their effects on food intake. Intraperitoneal (IP) administration of xenin or neurotensin acutely reduced food intake in fasted mice and ad libitum fed mice in the dark phase. However, chronic continuous or twice daily peripheral administration of xenin or neurotensin to mice had no significant effect on daily food intake or body weight. These studies confirm that ICV xenin or neurotensin can acutely reduce food intake and demonstrate that peripheral administration of xenin and neurotensin also reduces food intake. This may be partly mediated by changes in hypothalamic CRH release. The lack of chronic effects on body weight observed in our experiments suggests that xenin and neurotensin are unlikely to be useful as obesity therapies.
Collapse
Affiliation(s)
- Jennifer H Cooke
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Leckstrom A, Kim ER, Wong D, Mizuno TM. Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway. Diabetes 2009; 58:87-94. [PMID: 18984739 PMCID: PMC2606897 DOI: 10.2337/db08-0260] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Xenin, a 25-amino acid peptide, was initially isolated from human gastric mucosa. Plasma levels of xenin rise after a meal in humans, and administration of xenin inhibits feeding in rats and chicks. However, little is known about the mechanism by which xenin regulates food intake. Signaling pathways including leptin and melanocortins play a pivotal role in the regulation of energy balance. Therefore, we addressed the hypothesis that xenin functions as a satiety factor by acting through the melanocortin system or by interacting with leptin. RESEARCH DESIGN AND METHODS The effect of intracerebroventricular and intraperitoneal administration of xenin on food intake was examined in wild-type, agouti, and ob/ob mice. The effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on xenin-induced anorexia was also examined in wild-type mice. To determine whether the hypothalamus mediates the anorectic effect of xenin, we examined the effect of intraperitoneal xenin on hypothalamic Fos expression. RESULTS Both intracerebroventricular and intraperitoneal administration of xenin inhibited fasting-induced hyperphagia in wild-type mice in a dose-dependent manner. The intraperitoneal injection of xenin also reduced nocturnal intake in ad libitum-fed wild-type mice. The intraperitoneal injection of xenin increased Fos immunoreactivity in hypothalamic nuclei, including the paraventricular nucleus and the arcuate nucleus. Xenin reduced food intake in agouti and ob/ob mice. SHU9119 did not block xenin-induced anorexia. CONCLUSIONS Our data suggest that xenin reduces food intake partly by acting through the hypothalamus but via signaling pathways that are independent of those used by leptin or melanocortins.
Collapse
Affiliation(s)
- Arnold Leckstrom
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
25
|
Chapter 15 Glucose‐Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). VITAMINS AND HORMONES 2009; 80:409-71. [DOI: 10.1016/s0083-6729(08)00615-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 2008; 283:18365-76. [PMID: 18420580 DOI: 10.1074/jbc.m710466200] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The K cell is a specific sub-type of enteroendocrine cell located in the proximal small intestine that produces glucose-dependent insulinotropic polypeptide (GIP), xenin, and potentially other unknown hormones. Because GIP promotes weight gain and insulin resistance, reducing hormone release from K cells could lead to weight loss and increased insulin sensitivity. However, the consequences of coordinately reducing circulating levels of all K cell-derived hormones are unknown. To reduce the number of functioning K cells, regulatory elements from the rat GIP promoter/gene were used to express an attenuated diphtheria toxin A chain in transgenic mice. K cell number, GIP transcripts, and plasma GIP levels were profoundly reduced in the GIP/DT transgenic mice. Other enteroendocrine cell types were not ablated. Food intake, body weight, and blood glucose levels in response to insulin or intraperitoneal glucose were similar in control and GIP/DT mice fed standard chow. In contrast to single or double incretin receptor knock-out mice, the incretin response was absent in GIP/DT animals suggesting K cells produce GIP plus an additional incretin hormone. Following high fat feeding for 21-35 weeks, the incretin response was partially restored in GIP/DT mice. Transgenic versus wild-type mice demonstrated significantly reduced body weight (25%), plasma leptin levels (77%), and daily food intake (16%) plus enhanced energy expenditure (10%) and insulin sensitivity. Regardless of diet, long term glucose homeostasis was not grossly perturbed in the transgenic animals. In conclusion, studies using GIP/DT mice demonstrate an important role for K cells in the regulation of body weight and insulin sensitivity.
Collapse
Affiliation(s)
- Matthew C Althage
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kamiyama Y, Aihara R, Nakabayashi T, Mochiki E, Asao T, Kuwano H. The peptide hormone xenin induces gallbladder contractions in conscious dogs. Neurogastroenterol Motil 2007; 19:233-40. [PMID: 17300294 DOI: 10.1111/j.1365-2982.2006.00881.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenin is a 25-amino acid peptide isolated from human gastric mucosa. The biological activities of xenin include modulating intestinal motility and affecting exocrine pancreatic secretion and gastric acid secretion. The physiological effect of xenin on the gastrointestinal tract, however, is incomplete. The objective of this study is to investigate the effects of xenin on the gastrointestinal tract motility of conscious dogs. Gastrointestinal tract and gallbladder contractions were monitored by chronically implanted force transducers. Synthetic xenin was injected intravenously during the interdigestive state with or without pretreatment with cholinergic blockers. The effects of xenin following cholecystectomy and truncal vagotomy were also investigated. Xenin induced gallbladder and jejunal contractions, although a dose-dependent response was shown only with gallbladder contractions. These effects were inhibited by pretreatment with cholinergic blockers, but were not enhanced by truncal vagotomy. The jejunal contractions were completely inhibited by cholecystectomy. The only direct effect of xenin in terms of gastrointestinal motility was to induce gallbladder contractions in conscious dogs. The neural pathway mediating xenin's action was cholinergic, but not the vagal. This novel finding indicates a new role of xenin.
Collapse
Affiliation(s)
- Y Kamiyama
- Department of General Surgical Science (Surgery I), Gunma University, Graduate School of Medicine, Maebashi, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Robertson MD. Food perception and postprandial lipid metabolism. Physiol Behav 2006; 89:4-9. [PMID: 16556452 DOI: 10.1016/j.physbeh.2006.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 10/24/2022]
Abstract
The postprandial response to macronutrients in the diet, particularly carbohydrates and fats, underpins the detrimental changes in metabolism (impaired glucose tolerance or postprandial hyperlipaemia) and later pathology (insulin resistance, type 2 diabetes or atherosclerosis) associated with Westernised diets. Research has shown that in addition to what and how much we eat, eating behaviour in itself may be implicated in postprandial regulation. The process of ingestion stimulates cholinergic-vagal activity, irrespective of what is eaten, important in determining both the absorption and subsequent utilisation of nutrients but also potentially food intake through effects on hunger and satiety. Modifications in this aspect of physiology have the potential to influence all aspects of postprandial metabolism and subsequent disease risk in humans.
Collapse
Affiliation(s)
- M D Robertson
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
29
|
Feurle GE, Meyer HE, Hamscher G. Metabolism and potency of xenin and of its reduced hexapseudopeptide Ψ fragment in the dog. Life Sci 2003; 74:697-707. [PMID: 14654163 DOI: 10.1016/j.lfs.2003.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Xenin is a 25 amino acid peptide hormone, secreted into the circulation by specific endocrine cells in the duodenal mucosa. Plasma concentrations are elevated after sham feeding and feeding. In the present study the metabolism of xenin and of a C-terminal fragment was investigated. Xenin, its C-terminal hexapeptide, and a pseudopeptide analog psi (CH2NH) hexapeptide in which a psi reduced bond is introduced in the biologically important dibasic motif of the C-terminus were infused or injected intravenously in 14 anaesthetized dogs. Plasma disappearance time, metabolic clearance rate, the generation of metabolites, and biological effects on exocrine pancreatic secretion were determined employing radioimmunoassay, high pressure liquid chromatography, mass spectrometry (MALDI-MS), and sequence analysis. Half time after steady state infusion of xenin was 3.1 min(-1), that of psi xenin 6 was 6.2(-1) (p<0.01) Plasma concentrations of psi xenin 6 were significantly elevated (p<0.01), pancreatic secretion of volume was augmented by a factor of 50, and output of protein by a factor of 30 compared to unmodified xenin 6. MALDI-MS and sequencing after infusion of xenin revealed a C-terminal octapeptide fragment as primary metabolite. Introduction of a reduced pseudobond in the dibasic motif of xenin dramatically enhances biological potency. This indicates that such a reduced pseudopeptide may be useful in the treatment of bowel paralysis.
Collapse
Affiliation(s)
- G E Feurle
- DRK-Krankenhaus Neuwied Marktstr. 104 56564 Neuwied, Germany.
| | | | | |
Collapse
|